
BioMed CentralBMC Genetics

ss
Open AcceProceedings
Haseman-Elston weighted by marker informativity
Daniel Franke1, André Kleensang1, Robert C Elston2 and Andreas Ziegler*1

Address: 1Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Ratzeburger Allee 160, Haus 4, 23538 Lübeck, Germany and 
2Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA

Email: Daniel Franke - daniel.franke@imbs.uni-luebeck.de; André Kleensang - kleensang@imbs.uni-luebeck.de; 
Robert C Elston - rce@darwin.cwru.edu; Andreas Ziegler* - ziegler@imbs.uni-luebeck.de

* Corresponding author    

Abstract
In the Haseman-Elston approach the squared phenotypic difference is regressed on the proportion
of alleles shared identical by descent (IBD) to map a quantitative trait to a genetic marker. In
applications the IBD distribution is estimated and usually cannot be determined uniquely owing to
incomplete marker information. At Genetic Analysis Workshop (GAW) 13, Jacobs et al. [BMC
Genet 2003, 4(Suppl 1):S82] proposed to improve the power of the Haseman-Elston algorithm by
weighting for information available from marker genotypes. The authors did not show, however,
the validity of the employed asymptotic distribution. In this paper, we use the simulated data
provided for GAW 14 and show that weighting Haseman-Elston by marker information results in
increased type I error rates. Specifically, we demonstrate that the number of significant findings
throughout the chromosome is significantly increased with weighting schemes. Furthermore, we
show that the classical Haseman-Elston method keeps its nominal significance level when applied
to the same data. We therefore recommend to use Haseman-Elston with marker informativity
weights only in conjunction with empirical p-values. Whether this approach in fact yields an
increase in power needs to be investigated further.

Background
The Haseman and Elston (HE) method [1] is the best
known approach to map quantitative traits by linkage
analyses. It has been extended in many different ways to
increase statistical power. For example, Amos et al. [2]
introduced a generalized least squares approach and
weighted the squared phenotypic differences inversely
proportional to their respective variances. Sham and Pur-
cell [3] also proposed to weight phenotypes: they com-
bined the squared trait difference and the squared mean
centered sum linearly, the weights given to these two com-
ponents depending on the overall trait correlation.

A different approach has been followed by Jacobs et al. [4]
at the Genetic Analysis Workshop (GAW) 13. They pro-
posed to weight families for HE linkage analyses accord-

ing to marker informativity (as measured by the difference
between the allele sharing at the marker and the allele
sharing for a non-informative marker) and applied their
method to genome scan data for blood pressure. The
anticipated gain in power is substantial. For example, the
p-value dropped from approximately 10-2 to 10-4 on chro-
mosome 5 and from 10-3 to 10-5 on chromosome 12 for
the mean systolic blood pressure. However, Jacobs et al.
[4] did not show the validity of their approach, i.e., the
asymptotic normality of the proposed test statistic.

Here, we pick up their work. We use the same distance
metric as Jacobs et al. as well as a different simplex-based
weighting scheme and show that the HE regression with
weights according to this measure of marker informativity
suffers from inflated type I error rates. We illustrate the
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effect of the weighted HE regression using data from chro-
mosome 4 of the Aipotu population as available for GAW
14. For the analyses, we required and utilized the correct
answers for the simulated data.

Simplex weighting scheme
In the simplex weighting scheme, families are weighted
according to their degree of informativity for linkage. The
degree of informativity is determined by the Euclidian dis-
tance d between the current available identity-by-descent
(IBD) marker information and the IBD information for
uninformative markers.

The calculation of the simplex weights can be illustrated
by an equilateral triangle of height 1 (Fig. 1). Viviani's the-
orem states that, in an equilateral triangle, for any point f
= (f0, f1, f2), the sum of the perpendiculars fi from f to the

sides of the triangle equals the triangle's height, i.e., f0 + f1

+ f2 = 1. Therefore, any point in Figure 1 represents exactly

one possible IBD distribution. To compute the Euclidian

distance  between IBD

points f = (f0, f1, f2) and g = (g0, g1, g2), the IBD distribu-

tions f and g have to be mapped to the Cartesian coordi-
nates (fx, fy) and (gx, gy), respectively. The required

mapping function can easily be deduced from Figure 1
and is given by

If a genetic marker is non-informative, the IBD distribu-
tion equals (1/4,1/2,1/4). We therefore define simplex
weights w as the Euclidian distance d between a marker
with IBD distribution f = (f0, f1, f2) and a non-informative
marker by

Jacobs et al. [4] proposed slightly different weights and
determined marker informativity by a distance metric D
defined as

Other measures of informativity might be preferable but
are beyond the scope of this paper.

Classical HE and weighted HE regression
For simplicity, we consider a sample of n independent sib
pairs. Then, the classical HE regression ignores a possible
dominance effect and fits the linear model

∆2 = Xγ + ε, where

and the identity matrix Ω. The squared phenotypic differ-

ence of the ith sib pair is represented by , and πi denotes

the proportion of alleles IBD (πi = fi2 + fi1 / 2) of the ith sib

pair. In practice, a t-test statistic is employed to test the
null hypothesis of no linkage. Under H0 the test statistic

is asymptotically distributed as tn-1, where n - 1 denotes

the degrees of freedom. The parameter estimators for β

and  are given by

As soon as weights are introduced, Ω no longer represents
the identity matrix. Specifically, we aim to use simplex
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Equilateral triangle as illustration of the metric space of IBD distributionsFigure 1
Equilateral triangle as illustration of the metric space of IBD 
distributions.
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weights as described above, so that Ω becomes a diagonal
matrix with elements wi(f). Since the IBD distribution is

estimated from the available marker data,

 replaces the true matrix Ω. Test statistics

and estimates are obtained from equations (3) and (4)

where Ω is replaced by its estimate .

Methods
We illustrate the effect of the weighted HE regression by
using data from chromosome 4 of Aipotu. The ethnic
group as well as the chromosome was randomly chosen.
No positive finding in the microsatellite scan can be
expected for chromosome 4.

We employed a development branch of SIBPAL and
GENIBD from S.A.G.E. [5] to compute three different
asymptotic HE regression models for each of the 100 rep-
licates: the classical HE method as well as HE weighted by
weights according to Equations (1) and (2), respectively.
GENIBD was utilized to estimate multipoint IBD distribu-
tions; estimates were obtained at the marker positions.

We wished to investigate the validity of the asymptotic
distribution of the weighted HE methods. This can be
achieved by testing whether the number of significant
findings across a chromosome is significantly increased.
For sake of simplicity, we used the 5% test level for all fur-
ther investigations. For each genetic marker position, each
of the 100 replicates and each weighting scheme, p < 0.05
was tested. Generalized estimating equations with an
autoregressive (AR(1)) working correlation structure,
using the replicate as class level indicator, was used for
each weighting scheme to investigate whether the propor-
tion of significant findings across the chromosome
exceeded 5%. This model adequately adjusts for inter-
marker correlations on a chromosome. The estimated pro-
portion of significant findings across the whole chromo-
some is reported with its corresponding asymptotic 95%
confidence interval (CI).

Furthermore, we want to show that the number of signif-
icant findings is greater using the weighted HE methods
compared with the classical HE approach. To this end, a
Wilcoxon signed rank test was employed. Specifically, we
counted the number of microsatellite positions where p
<0.05 for both weighted and the classical HE regression
across the whole chromosome. The Wilcoxon signed rank
tested was computed across the 100 independent chro-
mosomes. If the weighted HE methods was too liberal, the
number of significant findings would be significantly
increased compared with the classical HE method.

Results
Table 1 shows that the number of significant results at a
marker position across the 100 replicates is at least as high
for the weighted HE regressions as for classical HE
method. This finding was substantiated by the generalized
estimating equation model, which shows that the propor-
tion of significant findings exceeds the nominal test level

of 5% for both weighted HE approaches (  = 0.0685;

95% CI: 0.0546–0.0823 for the simplex weighting

scheme;  = 0.0634; 95% CI: 0.0562–0.0706 for the

weighting scheme proposed by Jacobs et al. [4]) but not

for the classical HE method (  = 0.0552; 95% CI:

0.0431–0.0673). Furthermore, the number of markers
with positive linkage is greater for both weighted HE
regressions compared with the classical HE method (p =
3.3 × 10-7 for the simplex weight (Eq. (1)), p = 7.1 × 10-6

for the weights proposed by Jacobs et al. [4]). These find-
ings are invariant to increased sample size as achieved by
pairwise pooling of replicates (detailed results not
shown).

Conclusion
Weighting HE regression models by informativity is an
appealing approach. However, some care is needed when
applying this approach to real data. If phenotypes are
weighted appropriately within families, this may result in
substantial gain in statistical power [2,3]. Instead of
weighting phenotypes, an increase in power might also be
obtained by weighting according to marker informativity.
This approach has been successfully utilized in the context
of meta-analyses in which studies have been weighted
according to their informativity [6,7]. The method of
Jacobs et al. [4] combines both approaches. Jacobs et al.
weighted individual sib-pair families in the HE regression
according to their marker informativity as indicated
above. However, the asymptotic normality of the pro-
posed test statistic was not shown.

In this paper, using simulated data available for GAW14,
we demonstrated that the HE method with family-wise
weights according to marker informativity suffers from
inflated type I error levels when we measure informativity
as the distance between current IBD marker information
and the IBD information for uninformative markers. If p-
values are computed asymptotically from weighted regres-
sion models only, the t-test statistic maybe distorted.

We therefore recommend the use of weighting functions
in conjunction only with empirically computed p-values
until a theoretical solution to the detected problem is
found. Furthermore, it needs to be investigated whether
empirical p values in fact yield an increase in statistical
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power for weighted HE compared to the classical HE
regression.
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Table 1: Number of one-sided p-values smaller than 5% in the 
100 replicates of chromosome 4 from the simulated dataset of 
Aipotu.

Weights

Locus HE method Simplex weights 
(Eq. 1)

Jacobs et al. [4] method

D04S0128 8 9 9
D04S0129 5 6 5
D04S0130 5 6 6
D04S0131 5 5 5
D04S0132 8 9 9
D04S0133 10 12 12
D04S0134 6 7 6
D04S0135 6 9 7
D04S0136 6 6 6
D04S0137 7 7 7
D04S0138 5 6 6
D04S0139 6 7 7
D04S0140 2 3 3
D04S0141 5 6 5
D04S0142 6 8 8
D04S0143 5 5 5
D04S0144 6 9 9
D04S0145 5 7 7
D04S0146 7 9 8
D04S0147 7 8 7
D04S0148 6 8 7
D04S0149 7 9 9
D04S0150 7 10 9
D04S0151 11 12 11
D04S0152 9 11 11
D04S0153 5 7 6
D04S0154 6 8 7
D04S0155 4 4 4
D04S0156 7 8 8
D04S0157 4 5 4
D04S0158 3 3 3
D04S0159 1 1 1
D04S0160 2 2 2
D04S0161 3 4 4
D04S0162 6 6 6
D04S0163 4 5 5
D04S0164 3 5 3
D04S0165 6 10 8
D04S0166 6 10 9
D04S0167 6 6 6
D04S0168 3 4 4
D04S0169 6 6 6
D04S0170 3 4 3
D04S0171 4 7 6
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