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Abstract

Many investigators of complexly inherited familial traits bypass classical segregation analysis to
perform model-free genome-wide linkage scans. Because model-based or parametric linkage
analysis may be the most powerful means to localize genes when a model can be approximated,
model-free statistics may result in a loss of power to detect linkage. We performed limited
segregation analyses on the electrophysiological measurements that have been collected for the
Collaborative Study on the Genetics of Alcoholism. The resulting models are used in whole-
genome scans. Four genomic regions provided a model-based LOD > 2 and only 3 of these were
detected (p < 0.05) by a model-free approach. We conclude that parametric methods, using even
over-simplified models of complex phenotypes, may complement nonparametric methods and

decrease false positives.

Background

Although model-based or parametric linkage analysis on
extended families is generally considered the most power-
ful means to localize genes when a model can be approx-
imated, the requirement for reasonable model parameter
values is often perceived to be unattainable for complex
traits. As a result, the potential advantages of the method
are frequently passed over in favor of "model-free", non-
parametric statistics that may be less powerful [1,2]. The
rejection of parametric methods increases the possibility
of missing linkage signals. It is generally recognized that
failure to detect quantitative trait loci (QTLs) on an initial
scan is more problematic than false positives. The latter
should be excluded by follow-up analyses, but a false neg-
ative region may not be pursued. Thus, consideration of
how to avoid false negatives is warranted. To date, five
linkage studies have been performed on the electrophysi-
ological measurements (electroencephalogram, EEG and

event-related potential, ERP) that have been collected for
the Collaborative Study on the Genetics of Alcoholism
(COGA) dataset [3-7]. All of these linkage studies are
based on identity-by-descent (IBD) allele sharing status, a
"model-free" approach; four used variance decomposi-
tion as incorporated in SOLAR [3-6] and one used a
regression approach [7]. The purpose of the current paper
is to examine the utility of modeling the familial transmis-
sion of EEG and ERP phenotypes followed by 3-point,
model-based linkage analysis of these traits versus model-
free methods.

Methods

Phenotypes

We evaluated 13 quantitative traits representing neurolog-
ical function in the COGA dataset (143 families). These
included one EEG phenotype, ecb21, and 3 sets of 4
related ERP phenotypes (1 =FP1,2=FZ,3=CZ and 4 =
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Table I: Genetic models from PAP segregation analysis for adjusted traits.

Adjusted trait Model m(AA)2 m(Aa) m(aa) SD f(a)b -2InLIKE x2d p-valued
ecb2l Dom -0.44 [-0.44]¢ 10.53 3.56 0.231 2625.5 375 0.000000
ecb2l CoDom -0.12 14.31 16.73 3.95 0.008 2663.0

ntthl Dom -0.02 [-0.02] .12 0.37 0.143 815.9 21.2 0.000004
ntthl CoDom -0.01 1.03 3.50 0.38 0.008 837.1

ntth2 Dom -0.05 [-0.05] 1.35 0.49 0.202 N/Ae

ntth3 Dom -0.03 [-0.03] 1.38 0.52 0.167 1429.5 13.54 0.000234
ntth3 CoDom 0.00 1.59 2.21 0.56 0.001 1443.1

ntth4 Dom -0.01 [-0.01] 1.66 0.55 0.094 N/A

ttdtl Dom -0.06 [-0.06] 1.85 0.61 0.206 N/A

ttdt2 Dom -0.03 [-0.03] 2.25 0.74 0.134 1997.5 12.96 0.003180
ttdt2 CoDom -0.01 291 3.50 0.77 0.004 2010.4

ttdt3 Dom -0.05 [-0.05] 2.25 0.86 0.162 N/A

ttdt4 Dom -0.01 [2.73] 2.73 1.02 0.003 N/A

ttthl Dom -0.05 [-0.05] 1.14 0.48 0.218 N/A

ttth2 Dom 0.00 [2.12] 2.12 0.76 0.002 N/A

ttth3 Dom -0.03 [-0.03] 1.67 0.74 0.132 N/A

ttth4 Dom -0.02 [-0.02] 1.99 0.65 0.106 N/A

am(AA) = trait mean value of genotype AA
bf(a) = frequency of allele a
<[ ] = parameter fixed to equal homozygote value

dThe chi-square and p-values are for the co-dominant (CoDom) vs. dominant (Dom) model comparisons, when the co-dominant model could be fit

¢N/A = -2InLIKE not presented because no comparison was possible

PZ channels), ttth1, tth2, tth3, and ttth4; ttdt1, ttd2, ttd3,
and ttdt4; and ntt1, ntt2, ntt3, and ntt4. Linear regression
was used to adjust for the effects of age and sex. The vari-
able ecb21 was adjusted for sex, age, age?, and age3, and
the remaining variables were adjusted for sex, age, and
age?; all effects were highly significant. Additionally, the
regression residuals for each of the 143 families were re-
centered on zero to remove any family-specific effects on
the mean.

Modeling

Complex segregation analyses (CSA), using PAP v. 5, was
used to estimate co-dominant (no overdominance) and
dominant mixed models for each adjusted trait [8,9].
Multiple trials with random starting parameter values
ensured maximum likelihood convergence for each
model.

Linkage analyses

Using the more parsimonious CSA model for each trait,
we performed a two-marker genomic scan using LINK-
MAP [10,11]. Thus, we used each marker twice, except the
p and ¢ terminal markers of each chromosome, which
were used once. Sixty likelihoods were calculated for each
2-marker set, 20 from theta = 0.5 to theta = 0 relative to
marker 1, 20 between markers, and 20 from theta = 0 (rel-

ative to marker 2) to theta = 0.5. The possibility of linkage
heterogeneity was evaluated using heterogeneity LOD
scores (hLOD) using HOMOG [12]. A 2-point model-free
scan was also done for each of the 13 phenotypes using
the computer program MERLIN [13]. This program calcu-
lates an allele-sharing statistic, the Kong and Cox LOD
(KC-LOD), and its statistical significance, p(KC). Eleven
pedigrees too large for MERLIN analysis were trimmed for
MERLIN analysis but not for the LINKAGE analysis. How-
ever, of the 44 individuals trimmed, only 5 had any meas-
ured phenotype. Regions for which a LOD score > 2 was
detected were further evaluated by multipoint model-free
analysis for comparison purposes.

Results

For 9 of 13 traits the co-dominant models either resulted
in over-dominance or failed to converge; these were not
considered further. For the remaining traits (ecb21, ntth1,
ntth3, and ttdt2) the dominant model was found to be
more parsimonious (Table 1). In no case was the resulting
polygenic inheritance greater than 0.0001. In the 13 2-
point scans MERLIN found 29 linkages with p < 0.05 (data
not shown). Using the Mendelian dominant genetic
model for each trait, the parametric 2-marker genome
scans detected 4 regions with a LOD score of at least 2.0
for 3 of the 13 traits (Table 2). None of these linkages
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Table 2: Four regions with LOD score > 2.0.

Modeled, 2-marker (LINKAGE)  Model free, multipoint (MERLIN)
Chromosome Markers Adjusted trait LOD p(LOD) KC-LOD p(KC)

3 D352406-GATA128C02 tedtl 2.01 0.0024 0.68 0.04
GATA128C02-D352459 tedel 1.34 0.0130 " "

4 D4S1558-D4S2361 ecb2l 2.08 0.0020 0.29 0.12
D452361-D4S1559 ecb2l 1.08 0.0260 0.11 0.20

9 GATAI75H06-D95925 teehl 2.30 0.0011 0.63 0.04
D95925-D9S304 teehl 1.40 0.0113 " "

12 D12S1090-D12S390 ecb2l 2.6l 0.0005 0.90 0.02
D125390-D 125398 ecb2l 2.17 0.0016 " "

showed significant heterogeneity. One of these regions,
on chromosome 4, was not detected with a p < 0.05 using
the model-free approach.

Discussion

Model-based LOD score linkage has proven effective in
localizing genes associated with numerous disease-related
traits which, generally, exhibit Mendelian patterns of
inheritance and for which the parameters (mode of trans-
mission, gene frequency, and penetrance or quantitative
effect size) have been estimated. However, the models
available in current linkage software are overly simple for
complex traits and the utility of model-based methods
under these limitations is unclear. An incorrect model
may lead to loss of power in the presence of true linkage
as well as an overestimation of recombination [14]. Sev-
eral strategies have been suggested to overcome these lim-
itations of model-based linkage in complex traits. When
the 'true’ genetic model is unknown, maximizing the LOD
score over several modes of inheritance, usually a domi-
nant one and a recessive one, has been proposed [14].
Additionally, nonparametric or "model-free" linkage
analysis methods are often used. Model-free methods,
however, often put constraints on pedigree size and, over-
all, may have less power than model-based analyses, even
for complex traits [15]. Thus, if the true model can be
approximated, a model-based approach is desirable, espe-
cially in a genome scan, where exact specification of
recombination values is of secondary concern.

Our findings indicate that model-based linkage of com-
plex traits may add information not furnished by nonpar-
ametric analyses. Our two-marker parametric linkage
results suggest four regions with LOD > 2 for three traits.
The multipoint nonparametric analysis detected three of
these regions with a p < 0.05 but did not detect the chro-
mosome 4 region at this probability level. Two of the
regions identified with LOD > 2 using parametric linkage

appear to have been previously detected in published
analyses of these data, while two others were not. Both
previously detected regions were found by the program,
SOLAR, which calculates a likelihood ratio derived LOD
score by comparing a model in which the additive genetic
variance at a specified map position is compared to one in
which this component is set to zero. The chromosome 3
region (max LOD = 2.01 for ttdtla), near D352406-
GATA128C02-D3S2459, is the same location in which
Porjesz et al. [6], obtained a LOD of 2.59 for the N1 com-
ponent, P4 lead trait. This was a different ERP component
and lead compared to the P3-FP1 measurement giving our
chromosome 3 linkage. Although Porjesz et al. [6]
included the P3-FP1 phenotype in their study, they report
linkage only on chromosome 5 (LOD 2.64). We did not
have the N1 component available.

On chromosome 4 we obtained a LOD of 2.08 for ecb21
with D4S1558-D4S2361 whereas Williams et al. [4]
found a peak multipoint LOD score of 1.51 (bivariate
LOD = 2.65) at D4S1628 for the ERP phenotype, P3-CZ.
Although the markers D452361 and D4S1628 are sepa-
rated by 27 <M (Marshfield sex-averaged map), these two
findings may represent distinct signals. Using Markov
chain Monte Carlo (MCMC) methods, Sieh et al. [16]
obtained a strong linkage signal for ecb21 at GABRB1
(51.4 <M on the Kosambi map) with a separate, weaker
linkage at D4S1558. Using variance-components linkage
analysis Lin et al. [17] obtained a LOD peak of 1.96 at 108
cM with ecb21 that apparently shifted to 95 <M (adjacent
to D4S1559), LOD 4.38, when ALDX1 was added to cre-
ate a bivariate trait. The scores on chromosome 9 for ttth1
(LOD = 2.30, GATA175H06-D9S925) and on chromo-
some 12 for ecb21 (LOD = 2.61, D12S1090-D12S390 at
9p22.2and LOD =2.17,D12S390-D12S398 at 12q13.13)
appear to reference novel loci for EEG and ERP pheno-
types. Indeed, the two adjacent chromosome 12 scores
were the highest in our 13 genome scans, the largest asso-
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ciated with a p-value of 0.0005. Some support for linkage
on this chromosome is suggested by the MERLIN results
in that, of the 4 regions analyzed by multipoint linkage,
chromosome 12 gave the highest KC-LOD, 0.9, and the
smallest p(KC), 0.02.

Although, in this instance, our procedure resulted in the
identification of a possibly 'real' linkage that was missed
by standard nonparametric analysis, the use of nonpara-
metric linkage methods shouldn't be viewed as inferior
nor should our CSA be viewed as sufficient. The nonpara-
metric linkage tests found candidate loci that our model-
based procedure did not and our CSA was limited to a sin-
gle major gene and forced convergence within a restricted
sample space. Complex traits with multiple genetic and
environmental effects will often result in no reasonable
model. We found linkages for only four of thirteen mod-
eled traits. Failure to detect linkage may have been due to
unaccounted sources of familial correlation (e.g., environ-
mental) or to modeling a single major gene when one did
not exist. Also, when linkage is found using an overly-sim-
ple model, sensitivity testing to evaluate parameter values,
e.g., marker allele frequencies and QTL penetrance/quan-
titative effect, can assess potential misspecification. How-
ever, overall, we recommend obtaining maximum
likelihood genetic models from CSA whenever possible;
by definition no 'truer' trait models can be obtained, given
the single major gene restraint conditions under which we
modeled.

Conclusion

Our results indicate that model-based linkage procedures
using simple models from CSA may detect candidate loci
for complex traits that are not revealed by commonly used
model-free techniques. Parametric methods that allow
more complex modeling, such as MCMC methods, are
being implemented [16,18,19]. However, the older
model-based methods have been shown to complement
MCMC approaches in complex trait linkage analyses and,
in fact, may be advantageous for initial screening [19].
Until procedures for generating and utilizing complex
trait linkage models are more widely available, parametric
analyses under simpler models and nonparametric meth-
ods might be better used in a complementary manner.
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