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Abstract

The main goal of this paper is to couple the Haseman-Elston method with a simple yet effective
Bayesian factor-screening approach. This approach selects markers by considering a set of
multigenic models that include epistasis effects. The markers are ranked based on their marginal
posterior probability. A significant improvement over our previously proposed Bayesian variable
selection methodology is a simple Metropolis-Hasting algorithm that requires minimum tuning on
the prior settings. The algorithm, however, is also flexible enough for us to easily incorporate our
hypotheses and avoid computational pitfalls. VWe apply our approach to the microsatellite data of
Collaborative Studies on Genetics of Alcoholism using the coded values for the ALDX| variable as

our response.

Background

The Haseman-Elston method is an effective method for
studying linkage between markers and diseases. Given the
genotypes and phenotypes of a set of sib-pairs, it regresses
a statistic measuring similarity of quantitative traits in the
sibling pair on the number of alleles identical by descent
(IBD) at each marker. The original Haseman-Elston meth-
ods used the squared difference between the trait values of
the siblings as the measure of similarity. More recently,
Elston et al. [1] proposed the cross-product of the trait val-
ues as the response. Several recent papers suggested other
statistics as the response. Feingold [2] gave a comprehen-
sive review of these regression-based linkage methods.

The simple regression setup of the Haseman-Elston
method allows one to easily study simultaneous effects of
several loci and epistasis effects. It also allows one to apply
model selection methods developed for regression analy-
sis. In the Genetic Analysis Workshop 12, Suh et al. 3]

explored these possibilities by applying stochastic search
variable selection (SSVS), a Bayesian variable selection
method proposed by George and McCulloch [4] for linear
regression models, to the Haseman-Elston method. In the
Genetic Analysis Workshop 13, Oh et al. [5] took a further
step to consider 399 markers as well as their interactions
using the same SSVS algorithm. In addition, they pro-
posed using the marginal posterior of each variable, both
main effects and interaction effects, to rank their impor-
tance. A known deficiency of SSVS is that its results are
sensitive to specification of a number of parameters in
prior settings. The effects of the choice of different prior
settings are also not well understood. Oh et al. [5] also
adopted a method developed by Chipman [6] to impose
a hierarchical prior structure on the model space. Such a
hierarchical prior reflects an a priori belief in certain types
of models but further complicates the algorithm and adds
computation burdens.
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The goal of this work is to propose a simple and effective
Bayesian variable selection method that requires mini-
mum specification of prior settings and leaves flexibility
to impose hypotheses on the model space. Another nota-
ble difference in our new approach from our previous
approaches [3,5] is that we make inference only on the
markers but not specific interaction effects. However,
when we evaluate a marker, its interactive effects with
other markers are considered in additional to its main
effects. The goal of our approach is to identify markers
that are potentially related to the phenotype but not to
find a genetic model that explains the phenotype.

Methods

We chose to analyze ALDX1 measured in the Collabora-
tive Study on the Genetics of Alcoholism study, using mic-
rosatellite genotype information. We only took those
individuals classified in ALDX1 as "purely unaffected",
coded 1, "unaffected with some symptoms", coded 3,
"affected", and coded 5. Among those individuals, we
used GENEHUNTER to obtain IBD values for all sib-pairs.
We used the cross product CP; = (Y;; - m)(Y,; - m) as our
measure of similarity of phenotype in the pair. Here m is
the mean of all individuals in the sib group. We also used

squared difference D7 = (Y;; — Y5;)? for comparison. We

also included the sex as an explanatory variable. Sex was
coded "0" if the sib pair was of the same gender and "1" if
not. For simplicity, we assumed the errors to be independ-
ent and normally distributed, but the correlation structure
could be implemented into our method in a straightfor-
ward way. Therefore, without loss of generality, we have

m
Response = B + ZBij +2[3inin + Y B XiX; X +¢, m
j=1

i<j i<j<k

where &vN(0, 62) are assumed to be independent, and X]-
values are either IBD values at markers, or measures of
similarity for some covariate. We refer to these marker loci
and covariates as factors in our discussion. The above
model includes main effects as well as two-factor interac-
tion effects and three-way interaction effects but can be
extended to include higher order interaction effects.

Oh et al. [5] used SSVS to obtain a Markov chain Monte
Carlo (MCMC) sample from the posterior of the model
space of 2 models, where p is the total number of effects
(i-e., main effects, epistasis effects) in the above equation.
Each model corresponds to a subset of p effects being
active. The marginal posterior of each effect is then
obtained to evaluate the importance of the effect. When
interaction effects are considered, the model space
becomes extremely large so that the MCMC algorithm is
less effective. Therefore, we propose an approach that
reduces the model size dramatically while considering the

m
interaction effects. Our model space only contains [ ] )

models, where m is the total number of factors (genetic
markers and/or environment factors), often much smaller
than p, and [ is the number of factors involved in a model.
The choice of [ reflects the number of factors believed to
be associated with the disease. Each model in our model
space corresponds one-to-one to a subset of [ elements
from n marker loci and covariates. Each model contains the
main effects of 1 factors and interaction effects up to a certain
order among those factors. The effects involving other factors
are not included in the model, i.e., their corresponding
coefficients in Equation (1) are set to be zero. Because all
models in our model space have the same number of
parameters, they are assigned the same prior probability.
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Marginal probability plots with CP as the response. Marginal frequency plots of markers with CP as the response. The
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Marginal probability plots with D2 as the response. Marginal frequency plots with D2 as the response. The left shows the
result of | = 3. The middle shows the results of | = 4, and the right shows the results of | = 5. The markers are ordered by their

positions on the genome. The 316t factor is sex (gender).

A model in our model space can be represented by a
binary vector y= (%, %, ... %), where %=1 indicates the

ith factor being active and 271' =1. For a model y we

denote the active coefficients as 3,in which the first ele-
ment always corresponds to the constant term, and the
model matrix as X, The prior of f,is given as N(0, 0?I*!)

1(0
where I' = —(

. The variance of the error term is
A210 I

assigned a non-informative prior f(0) = 1 / 0. By integrat-
ing out /3, the posterior of model ycan be shown to be

(1= X, (C+ X7 X)X Ty (/2

faly det(I"+ X X, )/

2)

Gendpr

D354542
0.8 7

o
=)
I

cp05i500k

I
~
I

D1s532 GATAG62F03

L

50 100 150 200 250 300

0.2

22

0.0 7

o

Figure 3

We adopt the Metropolis-Hasting algorithm to sample
from the model space and obtain a sequence %9, #1), ..,
#), ... At the (j + 1) th step, a model y* is selected by
replacing a random active factor in ) by an random inac-
tive factor not in ). Set Y +1) = y* with probability min
YA 1) / 5+ y),1}; otherwise, i+ 1) = 36). The mar-
ginal posterior of all factors are estimated from the MCMC
sample to measure the importance of those factors. It is
important to note here that the posterior probability of a
factor not only captures its main effects but also its inter-
action effects with other factors.

Our study is conducted with two settings, one with square
of difference, D2, and the other with cross product, CP.
There were 224 nuclear families and 1,499 sib pairs. The
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Marginal probability plots with different A values. Marginal frequency plots of markers with CP as the response. The left
shows the result of 4 = 1.5. The right shows the results of 4 = 10. These plots show that the choice of A has no significant

effect on the output.
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mean in CP was the average of each family. There are total
of 315 candidate markers treated as factors. An additional
factor is sex.

Wesset ] = 3, 4, 5 to reflect our belief that no more than 5
factors have a significant contribution. We consider mod-
els with main effects and all two-factor interactions. Each
model in the model space has intercept, main effects and
all two-factor interaction effects. The total number of
parameters in the models are 7, 11, and 16 respectively for
|1 = 3, 4, 5. We ran the Metroplis-Hasting Markov Chains
100,000 iterations for 3, 4-factor models and 500,000 for
5-factor model. To check for convergence, we ran two
chains of 100,000 with different random number generat-
ing seeds for each case. For a prior of 3, we chose 4= 1.5
in our computation. This reflects a belief that the average
size of 3,is 1.5 times of the error term. This choice follows
the recommendation of Box and Meyer [7]. In addition,
we also find the choice of 4 in a greater range, 1 <4 < 15
does not affect the results much. We illustrated this
robustness in Figure 3, in which marginal probability
plots from 4 = 1.5 and A = 10 are displayed side by side.
The two plots show identical main features.

Results and Discussion

The methods described in the previous section were
implemented using JAVA programming language for its
portability. The program runs successfully under Linux
and Mac OS X operating systems.

Figure 1 shows marginal frequency plots with CP as the
response and Figure 2 shows the result with D2 as the
response. It can be easily seen from the plots that the
results using CP and D? are very similar. Both show that
D3S4542 and sex have very high marginal posterior prob-
abilities. This suggests that marker D3S4542 and sex are
strongly associated with ALDX1.

As model size increases, the overall frequency was higher,
as we expected. Factors with high frequency are amplified
and new factors with higher frequency appear. Marker
GATAG62F03 in chromosome 9 shows relatively high mar-
ginal probability in most of the plots, as does marker
D1S226 on chromosome 1. These two markers also show
evidence of linkage with ALDX1, but not as strong as
D3S4542 and sex. We see an interesting region around the
D6S493. For D2, the plot shows some spikes and for CP,
the plot shows relatively wide discontinuity in this area. It
could be due to strong correlation between the IBD values
or something associated with ADXL1. We would need to
do further investigation of this region to address this issue.

Although one can visually inspect those plots and deter-
mine which markers are important, more formal statisti-

cal inferences are desired. However, this topic is not in the
scope of this paper and will be addressed in the future.

Conclusion

In this paper, we applied a Bayesian method to select
important markers using Haseman-Elston methods. The
likelihood of a marker associated with a phenotype is
evaluated by a posterior probability that captures not only
main effects but also all interaction effects of the marker.
The method is much simpler than previously proposed
Bayesian variable selection methods and does not require
fine tuning the prior settings. The result also shows the
consistency and robustness of our method. Our approach
is similar to the Bayesian factor screening method pro-
posed by Box and Meyer [7]. A major difference between
our approach and theirs is that we only consider models
with same number of active factors, and they consider all
2m models. An important advantage of our approach is
that we can assign equal priors to all models in our model
space. Assigning priors to models of different sizes has
many complications as discussed by Chipman et al. [8] in
great detail.

Abbreviations
IBD: Identical by descent

MCMC: Markov chain Monte Carlo
SSVS: Stochastic search variable selection
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