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Abstract
Random Forest is a prediction technique based on growing trees on bootstrap samples of data, in
conjunction with a random selection of explanatory variables to define the best split at each node.
In the case of a quantitative outcome, the tree predictor takes on a numerical value. We applied
Random Forest to the first replicate of the Genetic Analysis Workshop 13 simulated data set, with
the sibling pairs as our units of analysis and identity by descent (IBD) at selected loci as our
explanatory variables. With the knowledge of the true model, we performed two sets of analyses
on three phenotypes: HDL, triglycerides, and glucose. The goal was to approach the mapping of
complex traits from a multivariate perspective. The first set of analyses mimics a candidate gene
approach with a high proportion of true genes among the predictors while the second set
represents a genome scan analysis using microsatellite markers. Random Forest was able to identify
a few of the major genes influencing the phenotypes, such as baseline HDL and triglycerides, but
failed to identify the major genes regulating baseline glucose levels.

Background
Trees are nonparametric prediction models. In the context
of genetic linkage analysis, Zhang et al. [1] used single
trees to identify markers where mean identity-by-descent
(IBD) sharing in sib pairs is predictive of the affection sta-
tus of the pair. Breiman [2] and others have reported that
significant improvements in prediction accuracy are
achieved by using a collection of trees, called a random
forest. We applied Random Forest to the first replicate of
the Genetic Analysis Workshop 13 simulated data set,
with the sibling pairs as our units of analysis. We used the
IBD scores (mean IBD or probability of sharing two alleles
IBD) at various loci on the genome to predict the absolute
difference between phenotypic values in each pair of sib-

lings. In the candidate gene approach, IBD was estimated
at the location of the candidates while in the genome scan
approach, IBD was harvested at each microsatellite
marker.

Methods
We used MEGA2 [3] to create all nuclear families from the
data set and then computed multipoint IBD probabilities
on the whole genome for each family with GENE-
HUNTER [4]. We created two variables out of the IBD
sharing probabilities: mean IBD and probability of shar-
ing two alleles (Z2). We performed separate analyses using
the mean IBD only and Z2 only, and a joint analysis using
both mean IBD and Z2 as explanatory variables.
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We focused our efforts on baseline levels of the following
selection of traits: fasting glucose levels, fasting triglycer-
ide level, and HDL level. Baseline values for each individ-
ual were estimated using the first visit measurement for
glucose and triglyceride levels, because those traits
increase with age. HDL level is stable over time and we
used the mean HDL level over all visits to get a more pre-
cise estimate. These variables were stratified by ever hav-
ing smoked and gender and then adjusted for covariates
using the SAS [5] software program PROC REG. The cov-
ariates used to adjust the final variables were body mass
index (BMI) (mean over all visits), baseline grams of alco-
hol per day, smoking amount (baseline number of ciga-
rettes per day), and baseline age. In adjusting for smoking,
both linear and quadratic terms were included. Plots of
the adjusted trait values against the covariates showed no
remaining trend. We then computed the absolute differ-
ence between the values of these adjusted variables for
each sibling pair. A fourth phenotype was considered: the
first principal component, as calculated by PROC PRIN-
COMP in SAS, of the absolute sib-pair differences of the
adjusted glucose, adjusted triglycerides, and adjusted
HDL levels. The first principal component explains 38%
of the variance of the three phenotype differences.

A Random Forest is created by growing trees, without
pruning, on bootstrap samples of the data, selecting the
best split at each node among a random selection of the
explanatory variables. For quantitative outcomes the for-
est is made of regression trees, where the tree predictor is
the mean value of the training set observations in each ter-
minal leaf. The Random Forest predictor is computed by
averaging the tree predictors over trees for which the given
observation was "out-of-the bag", i.e., not included in the
bootstrap sample used to build the tree. The mean
squared generalization error or predictive error (PE) is
used to assess the predictive accuracy. Because the predic-
tion for an observation is based on trees grown without
the observation, an idea akin to cross-validation, the esti-
mated PEs are unbiased. The importance of a variable is
quantified by calculating the PE increase resulting from
randomly permuting the values of a particular variable
among the out-of-bag observations for each tree. Shuf-
fling the values of variables of high importance should
increase the PE, while the PE should not be affected by
permuting values of variables with low importance. Ran-
dom Forest regression was performed using the program
RRFOREST [6] with the following parameter settings: the
number of variables selected at each node was set to 30 in
the candidate gene approach and to 100 in the genome-
scan setting, roughly one-fourth of the total number of
variables. The number of trees was set to a value where
empirical evidence indicated that the importance index
estimates had converged. That value was 5000 in the can-
didate gene analysis and 10,000 in the genome scan.

The set of candidate genes consisted of all quantitative
trait loci (QTLs) affecting clinical phenotypes (b12 to b38
and s3 to s12) and four random locations on each of chro-
mosomes 2, 6, 10, and 16, which contain no QTL [7]. The
399 marker loci were included in the genome-scan analy-
sis. Since IBD is measured at marker loci instead of
directly at the QTLs in the genome-scan analysis, a defini-
tion of a region surrounding marker loci with high impor-
tance index values is needed to determine whether an
important marker locus is close enough to a QTL to be
called a true positive. We defined an importance peak
interval as a region surrounding one or more consecutive
markers with importance greater than 0.05%. Each peak
interval originates at a marker that is a local maximum of
the importance index and extends to the left and right
over 10 cM or to the first marker with importance lower
than 0.05%, whichever is furthest away. Overlapping peak
intervals were collapsed into a single peak interval.

We combined the results for the separate mean IBD and
Z2 analyses by ranking the peak intervals from the two
analyses in decreasing order of the maximum importance
reached within the interval, counting overlapping peak
intervals only once. The success of that combined analysis
was evaluated by determining whether each peak interval
contained genes influencing the particular trait. Candi-
date genes were ranked similarly.

Results
The importance of the mean IBD at candidate genes for
predicting phenotype absolute differences is reported in
Figure 1. The same measure at the genome scan markers is
reported in Figure 2. For adjusted HDL level difference,
genes b12 and b20, which both contribute to the HDL
phenotype, have the highest importance in the candidate
gene analysis. Mean IBD at the first three markers on chro-
mosome 9, close to b12, at a random location on chromo-
some 12, and at two locations on chromosome 17 linked
to genes b19, b20, b18, and b29 have the highest impor-
tance in the genome-scan analysis. Figure 3 shows the
importance values when using Z2 and both mean IBD and
Z2 (joint analysis) in the genome-scan analysis. While the
region around b12 on chromosome 9 is identified by all
choices of IBD measures, the chromosome 17 region is
common only to the mean IBD and joint analyses. The Z2
analysis points to a chromosome 17 locus near s11 that is
not seen in the other two analyses. In general, we observed
more consistency between the mean IBD and joint analy-
ses than between those two types of analysis and the Z2
analysis. For adjusted triglyceride level difference, the
mean IBD at candidate genes b17 and b14 is the highest.
A marker on chromosome 1 linked to b17 is detected in
the genome scan analysis, as well as a false-positive signal
on chromosome 17. For adjusted glucose level difference,
the candidate genes most predictive of the phenotype
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were random locations on even numbered chromosomes.
Similarly, the locations with the highest importance in the
genome scan are unlinked to any susceptibility gene. In
the analysis of the first principal component of the
adjusted HDL, triglyceride, and glucose level differences,
the mean IBD at gene b12 stands out as the most impor-
tant in both analyses. The second highest importance
peak in the genome scan analysis on chromosome 19
does not contain any QTL.

The ranking of the importance peaks from combining the
mean IBD and Z2 separate analyses in Table 1 shows QTLs
among the top hits with both candidate genes and
genome scan markers for all phenotypes except glucose
level. A few genes influencing a phenotype indirectly were
also detected. The candidate gene analysis yielded fewer
false positives, as expected.

Discussion
Although Random Forest was able to identify several
genes in the candidate-gene approach and several chro-
mosomal regions harboring susceptibility genes in the
genome-scan approach, the findings were not consistent
across different phenotypes. In addition, the ranking of

genes identified did not typically follow the ranking of
effect sizes used in the simulation. The predictive power
was in general very low, with PE in excess of 98% of the
variance of the absolute difference. However, that obser-
vation does not imply failure in the context of a linkage
analysis. By analogy, the Haseman and Elston [8] regres-
sion of squared difference against IBD sharing in sibs may
give a very significant result at a disease locus while at the
same time explain little of the total variance of the
regressed variable. A measure of the variability of the
importance index would be more relevant to assess the
significance of observed importance levels.

Since the selected phenotypes are correlated, some genes
also have an indirect influence on phenotypes other than
the one they directly affect. Genes affecting phenotypes
correlated to the one analyzed do figure among the loci
with highest importance in Table 1 and could represent
indirect effects. However, we did not expect the genes
influencing the slope with age to show elevated impor-
tance for baseline levels.

We elected to use the baseline value of the phenotypes
considered because a larger number of genes were

Importance of candidate genesFigure 1
Importance of candidate genes Importance measured by percent increase in PE. Variables are the mean IBD at genes b12 
to b38 and s3 to s12 and at four random locations (r) on each of chromosomes 2, 6, 10, and 16 (total of 52 loci, b37 and s12 
being merged into one). Random forests are 5000 trees. A sample of 30 variables is considered at each split.
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Importance of genome scan markersFigure 2
Importance of genome scan markers Importance measured by percent increase in PE. Variables are the mean IBD at the 
399 genome scan markers. Only the variables with non-zero importance are shown. Random forests are 10,000 trees. A sam-
ple of 100 variables is considered at each split.

Importance of genome scan markers using Z2 and both mean IBD and Z2 for HDL levelFigure 3
Importance of genome scan markers using Z2 and both mean IBD and Z2 for HDL level Importance of Z2 at the 
399 genome scan markers (A). Importance of mean IBD and Z2 at the 399 genome scan markers (798 variables) (B). Only the 
variables with non-zero importance are shown. Random forests are 10,000 trees. A sample of 100 variables is considered at 
each split.
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affecting baseline value than the slope of the phenotype
with age. Since we did not identify any baseline genes for
glucose levels in our first round of analyses, we subse-
quently applied the Random Forest method to the slope
of the regression of glucose level against age within indi-
vidual after some groups reported extremely strong signals
near the s3 gene on chromosome 5. We observed impor-
tance levels much larger than those reported in Figures 1
and 2 (increases in PE exceeding 5% at b22, a locus tightly
linked to s3, and around 3% at s3 itself, but no other can-
didate above 0.5%, under the candidate gene approach,
and exceeding 0.8% at the closest marker to s3 with no
other peak reaching 0.3% in the genome scan analysis,
using either mean IBD or Z2). This confirms that Random
Forest can identify a major locus when one is present.

It is encouraging that the ability to detect genes was not
limited to the candidate gene setting which had relatively
few random locations unlinked to each of the three phe-
notypes. In the genome-scan approach where we
simultaneously considered all genome scan markers, Ran-
dom Forest was again able to select several genomic
regions of interest without substantially increasing the
number of false-positive signals among variables with the
largest importance, compared to the candidate-gene
approach.
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Table 1: QTLs at candidate loci and in peak intervals with highest importance

Candidate Genes Analysis Genome Scan Analysis

Rank HDL Glucose Triglyceride
s

1st Principal 
Component

HDL Glucose Triglyceride
s

1st Principal 
Component

1 b12 FPB b17 b12 b12 FP FP b19,b20
2 b20 FP b14 b20 FP FP FP b13
3 b13 FP b12 FP b19,b20,b18 b30A b13 b12
4 s3A FP b27A FP FP s3 b14 FP
5 s4A FP FP b17 FP FP FP FP
6 FP FP FP b19 FP FP b17 FP
7 b19 FP b33A b20 FP b14 FP b29
8 FP b23A b25 FP FP FP b12 b22, s3
9 FP b22A FP b13 FP FP FP FP
10 s7A b18 FP FP b24A FP b35A FP
11 b24A FP FP s7A b26A FP FP FP
12 FP s4 FP s3 b20 FP FP b14

List of genes influencing a trait directly or indirectly through a correlated trait. For peak intervals (genome scan), all genes directly affecting a trait 
are listed. A Genes influencing only a correlated trait. BFP, false positive (for genome scan, peak intervals containing no gene influencing the trait).
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