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Abstract
Background:  Glucose repression of transcription in the yeast, Saccharomyces cerevisiae, has been
shown to be controlled by several factors, including two repressors called Mig1 and Mig2. Past
results suggest that other repressors may be involved in glucose repression.

Results:  By a screen for factors that control transcription of the glucose-repressible SUC2 gene
of S. cerevisiae, the NRG1 gene was identified. Analysis of an nrg1∆ mutant has demonstrated that
mRNA levels are elevated at both the SUC2 and of the GAL genes of S. cerevisiae when cells are
grown under normally glucose-repressing conditions. In addition, genetic interactions have been
detected between nrg1∆ and other factors that control SUC2 transcription.

Conclusions:  The analysis of nrg1∆ demonstrates that Nrg1 plays a role in glucose repression of
the SUC2 and GAL genes of S. cerevisiae. Thus, three repressors, Nrg1, Mig1, and Mig2, are involved
as the downstream targets of the glucose signaling in S. cerevisiae.

Background
For the yeast Saccharomyces cerevisiae, glucose is the

preferred carbon source. When glucose is present in the

growth media, transcription of a large number of genes

encoding products involved in the metabolism of alter-
native carbon sources is repressed (for reviews, see

[1,2,3]. These genes include the GAL, SUC2, MAL and

STA genes, required, respectively, for the utilization of

galactose, sucrose/raffinose, maltose, and starch.

At many of these genes, glucose repression is mediated,

at least in part, by the glucose-dependent repressor Mig1,

a zinc-finger protein that binds in vitro to DNA consen-

sus sites consisting of a GC-rich core and flanking AT se-

quences [4, 5]. Mig1 is thought to bind to several

promoters, including GAL1, GAL4, SUC2 and MAL62,

and to effect transcriptional repression by interacting

with the co-repressor complex Ssn6-Tup1 [6,7,8]. Mig1's

activity is regulated by phosphorylation and subcellular

localization: in high glucose, Mig1 protein is hypophos-

phorylated and in the nucleus, where it can repress tran-

scription; upon withdrawal of glucose, Mig1 is rapidly
phosphorylated and transported into the cytoplasm [9].

This regulated phosphorylation requires the function of

the Snf1/Snf4 kinase complex [10].

Deletion of MIG1, however, only partially relieves glu-

cose repression at promoters such as SUC2, whereas de-

letion of either SSN6 or TUP1 completely abolishes

glucose repression. Moreover, the STA1 gene of S. cere-

visiae var. diastaticus, which is also repressed by glu-

cose, is unaffected by mig1∆ [11]. Therefore, other
proteins in addition to Mig1 are required for glucose re-

pression. One of these proteins is Mig2, which shares se-
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quence similarity with Mig1 in their zinc finger regions

[12, 13]. Genetic analysis suggests that Mig2 plays a mi-

nor role relative to Mig1.

Recently, a previously uncharacterized gene, NRG1

(Negative regulator of glucose-repressed genes), was

shown to be required for glucose repression of the STA1

gene in S. cerevisiae var. diastaticus [11]. These studies

demonstrated that LexA-Nrg1 behaves as a repressor of

a reporter construct and that this repression is depend-

ent on glucose, Ssn6, and Tup1. In addition, Nrg1 and

Ssn6 interact with each other in two-hybrid and GST

pull-down assays, indicating that Nrg1 may repress via

the same pathway as Mig1. Consistent with these results,

Nrg1 appears to bind to two sites within the STA1 pro-

moter.

The SUC2 gene of S. cerevisiae has been extensively

studied with respect to its glucose repression [1,2]. Glu-

cose repression of SUC2 is mediated by Ssn6/Tup1 and

SUC2 has two Mig1 binding sites in its regulatory region.

Additionally, in high glucose its promoter is also occu-

pied by positioned nucleosomes, which cause transcrip-

tional repression themselves [14, 15]. Derepression in

low glucose is correlated with a loss of both Mig1- and

nucleosome-mediated repression, although the precise

relationship between the two pathways is not clear.

Genetic screens have identified a large number of genes,
named SNF (Sucrose Non-Fermenting) that are required

for derepression of SUC2 transcription in the absence of

glucose [16,17,18]. Genetic analyses and subsequent

studies have traditionally divided SNF genes into two

groups. One group encodes the protein kinase Snf1 and

its associated regulator Snf4, required to antagonize the

repression caused by Mig1 [10, 19]. The other group con-

sists of members of the Swi/Snf complex required to

counter the repressive effects of chromatin by remode-

ling nucleosomes in an ATP-dependent manner (for re-

view see [20]. Suppressors of swi/snf mutations, such as

spt6, do not suppress snf1∆ [21], and ssn6, a strong sup-
pressor of snf1∆, only partially suppress swi/snf muta-

tions [22].

In this work, we report the identification of Nrg1 in a ge-

netic screen for new regulators of SUC2 transcription.

We show that Nrg1 plays a role in the glucose repression

of SUC2 and GAL genes in S. cerevisiae. Thus, at these
genes, Mig1, Mig2 and Nrg1 are partially redundant for

mediating repression by glucose. Consistent with our

findings, recent results have demonstrated an interac-

tion between Snf1 and Nrg1 [23]. We also present exper-

iments that test the genetic interactions between mig1∆,
nrg1∆ and deletions of various genes encoding activators
that function at the SUC2 promoter.

Results
Isolation of a high-copy-number suppressor of snf2∆
The Swi/Snf complex is required for normal levels of ex-

pression of SUC2 when cells are grown in low glucose. To

identify factors that might be functionally related to Swi/

Snf, we screened for high-copy-number plasmids that

could suppress a snf2∆ mutation (see Materials and

Methods). To sensitize the screen, we used an allele of

SUC2, SUC2-36, that allows an elevated level of SUC2

transcription in the absence of Swi/Snf [24]. The SUC2-

36 mutation is a single base pair change, AT to GC at po-

sition -401 relative to the SUC2 ATG. SUC2-36 strains

still have a Raf- phenotype in a snf2∆ mutant.

To identify high-copy-number suppressor candidates,

we used a 2µ circle library to transform the snf2∆ SUC2-

36 strain FY1845 (Table 1) and screened 60,000 trans-
formants for those with a Raf+ phenotype. Eighty-two

candidates were identified, 25 of which contained the

SNF2 gene. Among the remaining plasmids, most con-

ferred a weak Raf+ phenotype. We focused on the candi-

date that conferred the strongest Raf+ phenotype. This

plasmid contained a chromosome IV genomic fragment

that spans from within the NRG1 gene (open reading

frame YDR043C) through the HEM12 gene (YDR047W).

Subcloning experiments identified the partial NRG1

clone as the sequence responsible for suppression of

snf2∆ and demonstrated that this suppression occurred

in both SUC2-36 and SUC2 + genetic backgrounds (Fig-

ure 1).

NRG1 is predicted to encode a protein of 231 amino acids

with two C2H2 zinc fingers in the carboxyl terminus. Se-

quence analysis revealed that the 2µ plasmid that confers
suppression of snf2∆ encodes just the amino terminal re-

gion of Nrg1, lacking the zinc fingers. To test if the com-

plete NRG1 gene causes the same high copy number

phenotype, we subcloned the complete NRG1 gene into a

2µ plasmid and tested it for suppression of snf2∆. Our re-
sults demonstrate that the complete NRG1 gene on a 2µ
plasmid does not suppress snf2∆ (Figure 1).

NRG1 encodes a repressor of transcription
To characterize further the role of Nrg1 with respect to

SUC2 transcription, we constructed and analyzed an
nrg1∆ mutant. The nrg1∆ mutant grows normally on me-

dia containing glucose, sucrose, or galactose, demon-

strating that NRG1 is not essential for grwoth and that

nrg1∆ mutants can utilize several different carbon sourc-

es.

To test for the requirement for Nrg1 in glucose repres-

sion, we tested growth of an nrg1∆ mutant on YP sucrose

media containing the glucose analog, 2-deoxyglucose (2-
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Figure 1
Overexpressing a truncated clone of NRG1 suppresses snf2∆. Yeast strains FY32 (snf2∆1::HIS3 SUC2) and yHZ269
(snf2∆1::HIS3 SUC2-36) were transformed with nrgl∆Zn or full-length NRG1 cloned in pRS426, as well as vector alone. Ura +

single colonies carrying each construct were resuspended in 200 µl sterile water, and spotted on SC-Ura plates containing glu-
cose or raffinose as the carbon source. Plates were photographed on day 2.

Table 1: Yeast Strains

Strain Genotype

FY32 MATα his3∆ 200 snf2∆1::HIS3 ura3-52
FY1845 MAT a his3∆200 lys2-128δ snf2∆1::HIS3 SUC2-36 ura3-52
FY1846 MAT a /MATα his3∆200/HIS3 LEU2/leu2∆0 ura3∆0/ura3∆0
FY1847 MAT a his3∆200 leu2∆0 ura3∆0 nrg1∆1::URA3
FY1848 MATα his3∆200 leu2∆0 lys2∆0 swp73∆1::LEU2 ura3∆0
FY1849 MAT a leu2∆0 snf1∆10
FY1850 MAT a his3∆200 leu2∆0 lys2∆0 snf1∆10 nrg1∆1::URA3 ura3∆0
FY1851 MAT a his3∆200 leu2∆0 met15∆0 snf2∆2::LEU2 ura3∆0
FY1852 MAT a ade8 his3∆200 leu2∆0 met15∆0 swi1∆1::LEU2 ura3∆0
FY1853 MAT a his3∆200 leu2∆0 lys2∆0 swp73∆1::LEU2 nrg1∆1::URA3 ura3∆0
FY1854 MAT a his3∆200 leu2∆0 snf2∆2::LEU2 ura3∆0 nrg1∆1::URA3
FY1855 MAT a his3∆200 leu2∆0 swilM::LEU2 nrg1∆1::URA3 ura3∆0
FY1856 MATα his3∆200 leu2∆0 lys2-128δ ura3∆0
FY1857 MATα his3∆200 leu2∆0 lys2-128δ mig1-∆2::LEU2 ura3∆0
FY1858 MAT a his3∆200 leu2∆0 lys2-128δ mig2∆1::HIS3 ura3∆0 nrg1∆1::URA3
FY1859 MAT a his3∆200 leu2∆0 lys2-128δ mig1-∆2::LEU2 nrg1∆1::URA3 ura3∆0
FY1860 MAT a his3∆200 leu2∆0 met15∆0 mig1-∆2::LEU2 mig2∆1::HIS3 nrg1∆1::URA3

ura3∆0

FY1861 MAT a his3∆200 leu2∆0 met15∆0 mig1-∆2::LEU2 mig2∆1::HIS3 ura3∆0
FY1862 MAT a his3∆200 leu2∆0 met15∆0 mig2∆1::HIS3 ura3∆0
FY1863 MAT a his3∆200 leu2∆0 lys2-128δ mig1-∆2::LEU2 ura3∆0
FY1864 MAT a his3∆200 leu2∆0 lys2-128δ mig1-∆2::URA3 snf2∆2::LEU2 ura3∆0
FY1865 MAT a his3∆200 leu2∆0 lys2-128δ mig1-∆2::URA3 swi1∆1::LEU2 ura3∆0
FY1866 MAT a his3∆200 leu2∆0 lys2-128δ mig1-∆2::URA3 swp73∆1::LEU2 ura3∆0
FY1867 MAT a his3∆200 leu2∆0 lys2-128δ mig1-∆2::URA3 snf1∆10 ura3∆0
FY1868 MATα his3∆200 leu2∆0 lys2-128δ swi1∆1::LEU2
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DG). 2-DG causes glucose repression but cannot be used

as a carbon source by S. cerevisiae. Therefore, wild-type

cells do not grow on YP sucrose plates that contain 2-DG,

due to glucose repression of SUC2. However, strains de-

fective for glucose repression can grow on this medium

as they express SUC2 even in the presence of 2-DG. We

found that an nrg1∆ mutant was able to grow on YP su-

crose plus 2-DG, suggesting that nrg1∆ mutants are in-

deed defective for glucose repression. To assess the role

of Nrg1 relative to the two other factors known to be re-

quired for glucose repression, Mig1 and Mig2, we com-
pared the mutant phenotypes caused by nrg1∆, mig1∆,
and mig2∆, as well as testing combinations of these dele-

tions. We observed that the three single mutants grow

with different strengths on YP sucrose 2-DG plates in the

order mig1∆ > nrg1∆ > mig2∆ (Figure 2). The double and
triple mutants had stronger phenotypes than the single

mutants (Figure 2). These results strongly suggest that

Nrg1, Mig1, and Mig2 are each required for glucose re-

pression at the SUC2 locus, with Mig1 playing the major

role. We also tested growth of these strains on YP galac-

tose + 2-DG plates and found that only the triple mutant

was able to grow, albeit weakly, on this medium, perhaps

because galactose is a poor carbon source (data not

shown). This suggests that each of these three proteins

contributed to glucose repression of the GAL genes.

Glucose repression of transcription is defective in nrg1∆
To test whether the nrg1∆ phenotype on 2-DG plates is
caused by altered transcription, we performed Northern
analyses to SUC2 mRNA levels. Under repressing condi-

tions (2% glucose), the level of SUC2 mRNA was in-

creased by two-to-four fold in an nrg1∆ strain compared

to a wild-type control (Figure 3A). Consistent with previ-

ously published results, a mig1∆ mutant had a nine- to-

fourteen fold increase in SUC2 mRNA levels while a

mig2∆ mutant had no detectable defect in glucose re-

pression of SUC2 [4, 12]. We also analyzed the SUC2

Figure 2
Deletion of NRG1 partially abolishes glucose repression. nrg1∆ allows cells to grow on sucrose plates containing 2-
deoxyglucose, and has additive effects with mig1∆ and mig2∆. A single colony of each strain was inoculated into liquid YPD and
grown to saturation (approx. 1 × 108 cells/ml). The cultures were then diluted 1:2 (upper panels) or 1:5 (lower panels) in ster-
ile water, and spotted on YPD plates and YP sucrose plates with 200 µg/ml 2-deoxyglucose. Plates were photographed on after
1 and 2 days of incubation at 30°C.
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mRNA levels in double and triple mutant combinations.

In general, multiple mutations caused greater derepres-

sion, up to 79-fold for the triple mutant, nrg1∆ mig1∆
mig2∆ (Figure 3A). These data demonstrate that Nrg1,
Mig1, and Mig2 all contribute to the glucose repression

of SUC2.

We also tested if an nrg1∆ affects glucose repression of
the GAL genes as described in Materials and Methods.

Both nrg1∆ and mig1∆ mutations cause a defect in the

glucose repression of GAL1 and GAL10, whereas mig2∆
alone had no effect (Figure 3B). As for SUC2, additive ef-

fects were observed in double and triple mutant strains,

up to a 13-fold effect for the nrg1∆ mig1∆ mig2∆ triple
mutant (Figure 3B). These data indicate that all three

proteins are involved in glucose repression of GAL1-

GAL10, with Mig2 playing only a minor role.

Deletion of MIG1 or NRG1 suppresses mutations in both 
SNF1 and SWI/SNF genes
Activation of SUC2 transcription depends upon both the

Snf1/Snf4 kinase complex and the Swi/Snf nucleosome

remodeling complex. To address the relationship of Nrg1

to both complexes and to compare it to Mig1, we tested

the abilities of nrg1∆ and mig1∆ to suppress the Gal-,
Suc-, and Raf- phenotypes of mutations in SNF1 and

SWI/SNF genes.

Our results (Figure 4) show that both nrg1∆ and mig1∆
suppress, albeit sometimes weakly, mutations in both

SNF1 and SWI/SNF genes. With respect to suppression

of snf1∆, mig1∆ is the stronger suppressor, with suppres-
sion detectable for the Gal" phenotype (Figure 4A). The

observed suppression by mig1∆ is consistent with previ-
ous results [22]. The nrg1∆ mutation did not detectably

suppress either the Suc- or Raf- phenotypes caused by

snf1∆. With respect to swi/snf mutations, we tested sup-

pression of both snf2∆ and swp73∆ and observed weak
suppression of the Gal- and Suc phenotypes (Figure 4B).

Suppression of the Raf- phenotype was not detectable.

There appear to be some gene-specific interactions as

suppression of swp73∆ by mig1∆ was stronger than the
suppression observed for the other pairs tested.

Discussion
Our results demonstrate that Nrg1 plays a role in glucose

repression of the SUC2 and GAL genes of S. cerevisiae.

Consistent with a role in glucose repression, an nrg1∆
mutation suppresses the defects of a snf1∆ mutant. Re-

cent results from an independent study have demon-

strated an interaction between Snf1 and Nrg1 [23]. Our

results also suggest that Nrg1 is partially redundant with

two other factors required for glucose repression, Mig1

and Mig2. At SUC2 and GAL1-10, all three proteins ap-
pear to be involved in glucose repression, because dou-

ble- and triple-deletion mutations have additive effects.

Interestingly, both nrg1∆ and mig1∆ can also suppress
the defects caused by mutations in genes encoding mem-

bers of the Swi/Snf complex.

While Nrg1, Mig1, and Mig2 are partially redundant, cur-

rent evidence suggestions that they do not function in the

same relative fashion at all glucose-repressible promot-

ers. For example, while mig1∆ and nrg1∆ cause compa-

rable defects at GAL1-GAL10, nrg1∆ causes a weaker
defect at SUC2. Mig2 appears to have only a minimal

function at either promoter. In addition, Nrg1 is the ma-

jor repressor at STA1, whose glucose-repression does not

require Mig1 [11]. Therefore, some gene-specific special-

ization exists among these three glucose-dependent re-

pressors.

A previous study of Nrg1 provided evidence that it inter-

acts with Ssn6 and confers repression by recruitment of

Ssn6/Tup1 [11]. We initially identified NRG1 in our stud-

ies by the isolation of a high-copy-number plasmid en-

coding a fragment of Nrg1, lacking the zinc-finger

domain. Likely, the phenotype caused by this plasmid is

caused by interference of repression by Ssn6/Tup1.

Our studies have not yet distinguished between a direct

or indirect effect of Nrg1 on glucose repression at SUC2

and GAL1-GAL10. One possible indirect effect of Nrg1

could be by regulation of MIG1 transcription. However,
Northern analysis showed that MIG1 mRNA levels are

unaffected by an nrg1∆ mutation (H. Zhou and F. Win-

ston, unpublished data). We tested Nrg1 for binding to

the SUC2 promoter and those experiments are briefly

summarized here. We screened for DNA binding of Nrg1

to the SUC2 promoter region using a previously de-

scribed GST-Nrg1 fusion protein [11] and a gel shift as-

say. Our results demonstrated specific DNA binding to

two sites within the -1022 to -825 region 5' of SUC2 (H.

Zhou and F. Winston, unpublished results). However, a

deletion of this region does not alter SUC2 expression.

Based on the similarity between the zinc fingers of Nrg1

and Mig1 and our binding studies, the binding site of

Nrg1 may contain a GC-rich core. Another such site in

the SUC2 promoter may occur at -570 with the sequence

AGGCCCA. Although we did not detect a gel shift of a

fragment containing this site, it is still possible that it is

recognized and bound by Nrg1 in vivo. Furthermore, al-

though an Nrg1 consensus binding [11] exists at -976 of

SUC2, we were unable to detect binding to this site by

GST-Nrg1. This region also did not compete the binding

that we detected by GST-Nrg1. This discrepancy between

our findings and previous results can be explained by the

fact that Park et al [11] used 10-fold more GST-Nrg1 in

their binding studies than we did. Finally, we did not de-
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Figure 3
Deletion of NRG1 causes defects in glucose repression. (A) A single colony of each strain was inoculated into YPD liq-
uid with 2% glucose and grown to mid-log phase (approx. 1 × 107 cells/ml). The cells were harvested, and total RNA was iso-
lated and analyzed by electrophoresis followed by hybridization with probes specific to SUC2 or SPT15. The intensities of each
band was quantitated using phosphoimager and ImageQuant software. The amount of SUC2 mRNA in each strain was normal-
ized to SPT15, and the result obtained for the wild-type strain was assigned the arbitrary unit of 1.0 and used to calculate the
relative SUC2 mRNA levels in other strains. (B) Northern analysis of GAL1-10 mRNA in mutant strains. A single colony of each
strain was inoculated into SD complete liquid with 2% glucose+2% galactose and grown to mid-log phase. The cells were har-
vested, and total RNA was isolated from each and analyzed by electrophoresis followed by hybridization with probes specific
to GAL1, GAL10 or SPT15. Quantitation was carried out as for (A).
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tect any binding of Nrg1 to the Mig1 binding sites. Thus,

the DNA binding of Nrg1 to SUC2 remains to be resolved.

Conclusions
In conclusion, these studies have identified Nrg1 as a

third repressor required for glucose repression at SUC2

and the GAL genes. Based on the similarity between the

zinc fingers of Nrg1 and Mig1, the phenotypes of nrg1∆
and mig1∆, and the reported interaction between Nrg1

and Ssn6 [11], Nrg1 likely functions by binding to the tar-

get promoters and recruiting the Ssn6/Tup1 complex.

The relative and possible cooperative roles of each of

these repressors in recruiting Ssn6-Tup1 remains to be

determined.

Materials and methods
Yeast strains
All S. cerevisiae strains are listed in Table 1 and are in the

S288C genetic background [25, 26]. Deletion of MIG1

was achieved by transforming strain yHZ416 with the

HindIII digest of pJN22 (for migl-∆2::LEU2) or pJN41

(for mig1-∆2::URA3) [4], and selecting for Leu+ or Ura+

transformants, respectively. PCR-directed gene replace-

ment [27] was used to construct deletions of NRG1 and

Figure 4
Mutations in SNF1 and SNF/SWI can be suppressed by both nrg1∆ and migl∆. A single colony of each strain was inoc-
ulated into YPD liquid and grown over-night to saturation and adjusted in water to 1 × 108 cells/ml. The cultures were then
diluted 1:2 in sterile water and spotted on YPD, YP galactose and YP sucrose plates, with uracil added to each plate to 80 µM.
The first spot of each row represents a cell count of 5 × 107 cells/ml, which is diluted 1:4 for the second spot and 1:2 for each
spot thereafter. YPD and YP sucrose plates were photographed after incubation at 30°C for 2 days, and YP galactose plates
were photographed after 5 days.
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MIG2. PCR reactions were carried out using as templates

pRS vectors carrying the desired markers [25, 28]. For

NRG1, the oligos used were HZ034, 5' TCG ACC AGC

ATA TTA CTA CCC TTC GCA AAC TTT CAG GCA CTG
TGC GGT ATT TCA CAC CG 3'; and HZ035, 5' GTA GTA

CTG CTA ATG AGA AAA ACA CGG GTA TAC CGT CAA

AGA TTG TAC TGA GAG TGC AC 3'. For MIG2, the oli-

gos were HZ045, 5' TGA CCT CGA GAA CAA ACA AAA

TAA AAA TAA AAA AAG AGA CTG TGC GGT ATT TCA

CAC CG 3'; and HZ046, 5' TTA GAG GAA AAA TGG TGA

GAT AAA AAG GGG CCG TAA AGG AGA TTG TAC TGA

GAG TGC AC 3'. The PCR fragment was used to trans-

form a haploid strain directly. All gene replacements

were verified by PCR, Southern analyses, and tetrad

analyses.

Media
The media used in this study were previously described

[29]. Glucose, galactose, sucrose or raffinose was added

to 2% final weight per volume. For solid media contain-

ing a carbon source other than glucose or glycerol, an-

timycin A was also added to a concentration of 1 µg/ml.

To test for glucose repression of SUC2 and GAL genes, 2-

deoxyglucose was added to YP sucrose-antimycin A and

YP galactose-antimycin A plates to a final concentration

of 200 µg/ml [4]. We discovered during the course of this

study that a ura3∆0 strain had half the amount of GAL 1-

10 mRNA of a URA3 strain when grown in SD media con-

taining 2% glucose and 2% galactose. A ura3∆0 strain
also grew more slowly than a URA3 strain on minimal

media containing sucrose or galactose. We do not yet

have an explanation for this phenomenon. To overcome

this growth defect, uracil was added to YP plates to a final

concentration of 80 µM.

Subcloning of NRG1 constructs
The 1.8 kb SacI-SalI fragment of the original library

clone, containing only the 5' half of NrG1 without the zinc

fingers, was cloned into the SacI-SalI sites of pRS426 to

create pHZ56. To clone the complete NRG1 ORF, HZ032

and HZ033 were used to PCR from genomic DNA the

complete wild-type NRG1 from -1119 to +719. The PCR

fragment was digested with Sad and cloned into the

SacI-SmaI sites of pRS426 to generate pHZ52.

Northern analysis
Cell cultures were grown in liquid media as indicated to

mid-log phase (1-2 × l07 cells/ml), and total RNA was

prepared as previously described [27,30]. RNA was sep-

arated by electrophoresis on 1% agarose-formaldehyde

gels, transferred to membrane and blotted with specific

radio-labeled probes. The probes were: for SUC2, the 1.3

kb BamHI-HindIII fragment of pRB59 [31]; for GAL1-

10, the 2 kb EcoRI-EcoRI fragment of BNN45 [32] and
for SPT15, the 0.8 kb SpeI-HindIII fragment of pIP45 (I.

Pinto, personal communication). All probes were labeled

by random priming.
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