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Abstract

Background: In genetic analysis of agronomic traits, quantitative trait loci (QTLs) that control the same phenotype
are often closely linked. Furthermore, many QTLs are localized in specific genomic regions (QTL clusters) that
include naturally occurring allelic variations in different genes. Therefore, linkage among QTLs may complicate the
detection of each individual QTL. This problem can be resolved by using populations that include many potential
recombination sites. Recently, multi-parent populations have been developed and used for QTL analysis. However,
their efficiency for detection of linked QTLs has not received attention. By using information on rice, we simulated
the construction of a multi-parent population followed by cycles of recurrent crossing and inbreeding, and we
investigated the resulting genome structure and its usefulness for detecting linked QTLs as a function of the
number of cycles of recurrent crossing.

Results: The number of non-recombinant genome segments increased linearly with an increasing number of
cycles. The mean and median lengths of the non-recombinant genome segments decreased dramatically during
the first five to six cycles, then decreased more slowly during subsequent cycles. Without recurrent crossing, we
found that there is a risk of missing QTLs that are linked in a repulsion phase, and a risk of identifying linked QTLs
in a coupling phase as a single QTL, even when the population was derived from eight parental lines. In our
simulation results, using fewer than two cycles of recurrent crossing produced results that differed little from the
results with zero cycles, whereas using more than six cycles dramatically improved the power under most of the
conditions that we simulated.

Conclusion: Our results indicated that even with a population derived from eight parental lines, fewer than two
cycles of crossing does not improve the power to detect linked QTLs. However, using six cycles dramatically
improved the power, suggesting that advanced intercrossing can help to resolve the problems that result from
linkage among QTLs.
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Background
Most agronomically and economically important traits
in plants vary quantitatively, and phenotypes of these
traits are generally controlled by a combination of many
genetic and environmental factors. Naturally occurring
genetic variation is a valuable source of alleles for agro-
nomically and economically important traits. In plants,
most quantitative trait loci (QTLs) have been identified
by using a biparental population such as the F2 gener-
ation and recombinant inbred lines (RILs). However, the
disadvantage of a biparental population is the reduction
in genetic heterogeneity compared with the total genetic
variation available for a species. Only two allelic varia-
tions are analyzed (one per parent) in a biparental popu-
lation, which means that useful naturally occurring
alleles from other parents might be missed. Another fre-
quently used method for QTL analysis is the association
study [1-5]. This strategy uses a large set of varieties and
sometimes their wild relatives as a genetic analysis popu-
lation, and analyzes the association between phenotypes
and marker genotypes. The advantage of this strategy is
that an association study can detect many naturally oc-
curring allelic variations simultaneously in a single study.
However, the application of this strategy in plants is
often disturbed by a number of false associations that
arise mainly from a highly structured population [5-7].
Nested association mapping (NAM) was designed to
combine the advantages of linkage analysis with those of
an association study [6,8]. In one use of the NAM strat-
egy, 25 diverse maize inbred lines were crossed with
single common inbred line to create 200 RILs for each
cross. This produced a total of 5000 RILs that could be
used simultaneously in the study. Compared to ordinary
association studies, the NAM strategy is less sensitive to
the existence of a population structure. An additional
advantage of the NAM strategy is that the historical
linkage disequilibrium information that is preserved in
the parental genomes enables precise mapping of QTLs.
The use of a multi-parent population for QTL analysis

has many advantages: accurate specification of the par-
ental origin of alleles [9-14], improvement of mapping
resolution by taking advantage of both historical and
synthetic recombination, and the use of abundant gen-
etic diversity without the effect of a population structure.
The idea of using multi-parent populations in QTL ana-
lysis is quite advanced in animal genetics. Heterogeneous
stocks in the mouse and in Drosophila have been created
by means of repeated crosses between eight parental
lines over many generations to produce highly recom-
binant populations [12,15]. The Collaborative Cross is a
mouse population derived from eight parent lines
followed by inbreeding [16,17]; this material required
only one-time genotyping and now enables experiments
with the same population in different environments. In
plants, inbred lines derived from multiple parents are
generally termed multi-parent advanced generation
inter-cross (MAGIC) populations [18]. In Arabidopsis, a
MAGIC population was derived from 19 founder strains
followed by four generations of random mating and six
generations of selfing [19]. In wheat, a MAGIC popula-
tion was constructed by inbreeding of four-way F1-like
progenies [20]. Rice MAGIC populations have been
derived from eight parental lines, and two different strat-
egies were applied for their construction [21]. The first
strategy used inbreeding of eight-way F1-like progenies.
The second strategy added two generations of random
mating before the inbreeding, and this strategy was
termed “MAGIC plus”.
Mapping of QTLs for agronomic traits has revealed

that QTLs controlling the same phenotype are often
closely linked [22-27]. When two linked QTLs act in op-
posite directions, it is likely to be difficult to detect them
with a population that has relatively few recombination
sites, such as an F2 population or biparental RILs. Fur-
thermore, in rice, many QTLs tend to be co-localized in
specific genomic regions, forming what are known as
QTL clusters [28], and these clusters harbor naturally
occurring allelic variations of different genes [29]. Be-
cause QTL clusters often harbor QTLs related to head-
ing date that affect many other traits, such as culm
length and grain yield, this complicates the detection of
other QTLs within the same QTL cluster. In both cases,
the problems result from linkage among the QTLs.
Linkage among QTLs remains an important issue in

the genetic analysis of quantitative traits, and several
elaborate theoretical methods have been developed and
used [30-32]. In addition, simulation studies have been
conducted to design an optimal way to separate linked
QTLs in biparental populations. Ronin et al. developed
an analytical method to evaluate the expected LOD
score for linked QTLs [33]. Mayer compared the power
to separate QTLs between regression interval mapping
and multiple interval mapping, and found that multiple
interval mapping tends to be more powerful as com-
pared to regression interval mapping [34]. Kao and Zeng
analyzed the effect of adding self- or random-mating
crosses, and found that it was easier to separate QTLs of
similar size in the repulsion phase [35]. Li et al. analyzed
relationships among the power to separate QTLs, the ef-
fect size of each QTL, the population size, and the marker
density, and found that dense markers were effective when
the population size was sufficiently large [36].
The use of populations that include more recombin-

ation sites is expected to be an effective way to resolve
the problems that result from linkage among QTLs. To
construct a population that includes more recombination
sites, an intermated recombinant inbred population
(IRIP) strategy with multiple parents is effective. This
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is an extension of the MAGIC plus approach in rice [21]
and is basically the same as the cc04 and cc08 Collabora-
tive Cross populations in the mouse [37]. Because artificial
crossing requires a large effort, especially in self-pollinating
crops such as rice, it is necessary to design an optimal
breeding strategy to minimize the cost and time require-
ments. In the mouse, an elaborate simulation study for
multi-parental populations is available [37]. However, it is
difficult to apply those results directly to self-pollinating
crops such as rice because of differences between outbred
animals and self-pollinating crops. For example, the differ-
ent mating systems result in differences in the inbreeding
procedures used for the construction of inbred lines. In
addition, differences in the genome structure between
inbred lines generated through siblings and through selfing
have been reported [9]. Furthermore, although it has been
reported that multi-parent populations can improve the
mapping resolution of a QTL by including more recom-
bination sites than ordinary biparental populations [19,37],
the efficiency of this approach for the detection of linked
QTLs has not been analyzed.
In the present study, we attempted to develop a

powerful model for rice that accounts for its differences
from the mouse by simulating the construction of rice
eight-way IRIPs with different numbers of cycles of recur-
rent crossing. First, we investigated the effect of advanced
Figure 1 Strategy used for the production of a rice eight-way IRIP. Cy
recurrent crossing, respectively. Cyn, number of cycles.
intercrossing on the genome structure of each IRIP. We
then investigated the effect of advanced intercrossing on
the detection of simulated closely linked QTLs.

Methods
Production of rice IRIPs
Because of the successes of eight-way populations
[16,17,20,21], we simulated the construction of an eight-
way rice IRIP. Figure 1 shows the strategy for the pro-
duction of the rice IRIP that we used in this study. The
strategy is divided into three parts. The first is the
mixing stage, in which the genomes of the parental lines
are mixed by repeated single crossings. The second is
the recurrent crossing stage. This stage is used to increase
the number of recombination sites within the population.
IRIPs derived from no or two cycles of recurrent crossing
(i.e., cycles 0 and 2 in Figure 1) during this stage are
the same as the corresponding populations in the rice
MAGIC and MAGIC plus designs, respectively [21].
We used disjoint random mating, and produced two
progenies from each mating combination in the next
generation. Thus, the population size remained constant
throughout this stage. The last part of the process is the
selfing stage. In this stage, the genomes were genetically
fixed by means of repeated inbreeding. To expand the size
of the segregating population, we used multiple-seed
cles 0 and 1 represent IRIPs derived from no cycles or one cycle of
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descent in the first generation of this stage. In the second
and subsequent generations, we used single-seed descent.
We simulated seven generations of inbreeding, which is
expected to fix more than 99% of the genome as homozy-
gous genotypes.
To provide a comparison with the eight-way IRIPs, we

also simulated the construction of two-way IRIPs. The
strategy is basically the same as the strategy with eight-way
IRIPs, but the two-way IRIP does not include a mixing
stage.

Genome structure
The rice genome in this study was represented by the
genetic map and chromosome lengths (Table 1) from
Harushima et al. [38], with a bin size of 0.1 cM. Thus,
we avoided complexities that would result from the exist-
ence of recombination hot spots and cold spots at certain
physical positions by conducting simulations based on the
linkage map positions. The number of crossovers on each
chromosome was determined using a random variable
drawn from a Poisson distribution. For each chromosome,
the lambda parameter of the Poisson distribution (i.e., the
expected value of the random variable) was set as the
length of the genetic map (in cM) estimated by Harushima
et al. [38]. The position of each crossover in a chromo-
some was sampled from a uniform distribution.
Changes in genome structure were evaluated in terms

of the number and length of the genome segments.
Non-recombinant genome segments were defined as
successive genomic regions composed of only one of the
parental genomes.

QTL conditions
Because most of the QTLs that have been studied in rice
have been explained by additive effects only, we assumed
that all QTLs in this simulation had only additive effects;
Table 1 Rice chromosomal lengths used in the simulations

Chromosome Length (cM)

1 181.8

2 157.9

3 166.4

4 129.6

5 122.3

6 124.4

7 118.6

8 121.1

9 93.5

10 83.8

11 117.9

12 109.5

From Harushima et al. [38].
that is, we assumed that the dominance and epistasis
effects were zero. For all of the settings, the QTL and a
marker were considered to be in complete linkage (i.e.,
co-located at the same position in the chromosome).
QTL conditions for mapping of a single additive QTL

are summarized in Table 2. To investigate the mapping
accuracy of a single additive QTL, we placed a QTL at
the 90-cM position in chromosome 1 (i.e., the middle of
the largest chromosome in rice). We defined the mapping
accuracy of a single additive QTL as the displacement
between the true QTL position and the M1 position (de-
fined in the section “Power to detect QTLs”).
QTL conditions for the investigation of the power to

detect linked QTLs are summarized in Table 3. For the
linked QTLs, we examined two cases. The first case
assumes that the additive effects of the two linked QTLs
act in opposite directions (i.e., the QTLs are in the
repulsion phase; Table 3). In this case, we placed two
QTLs with the same effect size but with the effects
acting in opposite directions. In the second case, we
assumed that the additive effects of two linked QTLs
were both positive (QTLs in coupling phases; Table 3).
In this case, we placed two QTLs that both had positive
additive effects. In both cases, QTL1 was placed at the
90-cM position in chromosome 1 and QTL2 was placed
at the position 90 + x cM position in chromosome 1,
where x was set to 5, 10, or 20 cM. The distribution of a
QTL allele among the parents affects the probability of
recombination between two linked QTLs during the
mixing stage (Figure 1). Therefore, we prepared two
conditions for the distribution of the QTL allele among
the parents. In the first, the alleles from parents P1, P3,
P5, and P7 possess the effect of the QTL and alleles
from the other parents have no effect on the phenotype.
We describe this arrangement of alleles as the “highest
frequency” arrangement (Table 3). In the second, the
alleles from parents P1, P2, P3, and P4 possess the effect
of the QTL and alleles from the other parents have no
effect on the phenotype. We describe this arrangement of
alleles as the “lowest frequency” arrangement (Table 3). In
this experiment, the environmental noise was set to be N
(0, 1). Therefore, PVE of the simulated QTLs is different
from each other. Distributions of actual PVE in this
experiment are indicated in Additional files 1 and 2.
In this study, we compared n = 800 in the eight-way

population with n = 200 and 800 in the two-way popula-
tion. We determined the size of a two-way population
with n = 200 using the following logic: First, given that
eight parental lines were chosen and that we tried to use
all of the available genetic diversity in these parents, the
resulting eight-way population is analogous to four two-
way populations with no replication of the parental lines.
If the size of each two-way population is n = 200, the
sum of the sizes of the four populations is four times



Table 2 QTL conditions for the simulation of power to detect single QTL

Allele frequency Additive effect size Location

P1 P2 P3 P4 P5 P6 P7 P8 Chr cM

Figure 4A 4:4 a a a a 0 0 0 0 1 90

*Values assigned to a are indicated on x-axis of Figure 4A.

Figure 4B PVE = 0 4:4 0 0 0 0 0 0 0 0 1 90

1:7 0 0 0 0 0 0 0 0 1 90

3:2:3 0 0 0 0 0 0 0 0 1 90

2:4:2 0 0 0 0 0 0 0 0 1 90

2:2:2:2 0 0 0 0 0 0 0 0 1 90

1:1:1:1:1:1:1:1 0 0 0 0 0 0 0 0 1 90

PVE = 0.02 4:4 0.28 0.28 0.28 0.28 0 0 0 0 1 90

1:7 0.43 0 0 0 0 0 0 0 1 90

3:2:3 0.33 0.33 0.33 0.16 0.16 0 0 0 1 90

2:4:2 0.4 0.4 0.2 0.2 0.2 0.2 0 0 1 90

2:2:2:2 0.38 0.38 0.26 0.26 0.13 0.13 0 0 1 90

1:1:1:1:1:1:1:1 0.43 0.37 0.31 0.25 0.19 0.12 0.06 0 1 90

PVE = 0.04 4:4 0.41 0.41 0.41 0.41 0 0 0 0 1 90

1:7 0.62 0 0 0 0 0 0 0 1 90

3:2:3 0.47 0.47 0.47 0.24 0.24 0 0 0 1 90

2:4:2 0.58 0.58 0.29 0.29 0.29 0.29 0 0 1 90

2:2:2:2 0.55 0.55 0.36 0.36 0.18 0.18 0 0 1 90

1:1:1:1:1:1:1:1 0.62 0.53 0.45 0.36 0.27 0.18 0.09 0 1 90

PVE = 0.06 4:4 0.5 0.5 0.5 0.5 0 0 0 0 1 90

1:7 0.76 0 0 0 0 0 0 0 1 90

3:2:3 0.58 0.58 0.58 0.29 0.29 0 0 0 1 90

2:4:2 0.71 0.71 0.36 0.36 0.36 0.36 0 0 1 90

2:2:2:2 0.68 0.68 0.45 0.45 0.23 0.23 0 0 1 90

1:1:1:1:1:1:1:1 0.77 0.66 0.55 0.44 0.33 0.22 0.11 0 1 90

Figure 4C 8-way AF 1/2 4:4 a a a a 0 0 0 0 1 90

8-way AF 1/8 1:7 a 0 0 0 0 0 0 0 1 90

2-way n = 800 1:1 a 0 - - - - - - 1 90

2-way n = 200 1:1 a 0 - - - - - - 1 90

*Values assigned to a are indicated on x-axis of Figure 4C.

Figure 4D 8-way AF 1/2 4:4 0.53 0.53 0.53 0.53 0 0 0 0 1 90

8-way AF 1/8 1:7 0.53 0 0 0 0 0 0 0 1 90

2-way n = 800 1:1 0.53 0 - - - - - - 1 90

2-way n = 200 1:1 0.53 0 - - - - - - 1 90
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this size (i.e., n = 4 × 200 = 800), which is the same size
as the eight-way population that we simulated.
We also simulated the power to detect multiple QTLs.

Effect size and allele frequency of each QTL was selected
from conditions described in Table 4 according to the
following rules. In Experiment 1, we based the distribu-
tion of 11 loci and their chromosomal locations on the
known positions of rice blast resistance QTLs (Table 5).
In general, the QTLs for blast resistance can be divided
into two patterns: either the QTL is multi-allelic and
each variety possesses an allele with a different level of
effect, or the QTL is bi-allelic and only one or a limited
number of varieties possesses the allele with measurable
effects. Therefore, in this experiment, we assumed that
the distribution of four loci and their allelic distribution
follow allele frequency “4:4” in Table 4, whereas another
four loci follow “1:1:1:1:1:1:1:1”. Allelic distributions of
the remaining three loci were determined randomly.



Table 3 QTL conditions for the simulation of power to detect linked QTLs

Additive effect size Location

P1 P2 P3 P4 P5 P6 P7 P8 Chr cM

Figure 5A, B (Repulsion) Highest QTL1 0.53 0.00 0.53 0.00 0.53 0.00 0.53 0.00 1 90

QTL2 −0.53 0.00 −0.53 0.00 −0.53 0.00 −0.53 0.00 1 90 + x

Lowest QTL1 0.53 0.53 0.53 0.53 0.00 0.00 0.00 0.00 1 90

QTL2 −0.53 −0.53 −0.53 −0.53 0.00 0.00 0.00 0.00 1 90 + x

Figure 5C (Coupling) Highest QTL1 0.53 0.00 0.53 0.00 0.53 0.00 0.53 0.00 1 90

QTL2 0.53 0.00 0.53 0.00 0.53 0.00 0.53 0.00 1 90 + x

Lowest QTL1 0.53 0.53 0.53 0.53 0.00 0.00 0.00 0.00 1 90

QTL2 0.53 0.53 0.53 0.53 0.00 0.00 0.00 0.00 1 90 + x

Figure 5D, Table 6 (Coupling of small QTLs) Highest QTL1 0.27 0.00 0.27 0.00 0.27 0.00 0.27 0.00 1 90

QTL2 0.27 0.00 0.27 0.00 0.27 0.00 0.27 0.00 1 90 + x

Lowest QTL1 0.27 0.27 0.27 0.27 0.00 0.00 0.00 0.00 1 90

QTL2 0.27 0.27 0.27 0.27 0.00 0.00 0.00 0.00 1 90 + x

Figure 5E (Repulsion) 4:4 QTL1 0.53 0.53 0.53 0.53 0.00 0.00 0.00 0.00 1 90

QTL2 −0.53 −0.53 −0.53 −0.53 0.00 0.00 0.00 0.00 1 100

3:2:3 QTL1 0.61 0.61 0.61 0.30 0.30 0.00 0.00 0.00 1 90

QTL2 −0.61 −0.61 −0.61 −0.30 −0.30 0.00 0.00 0.00 1 100

2:4:2 QTL1 0.75 0.75 0.37 0.37 0.37 0.37 0.00 0.00 1 90

QTL2 −0.75 −0.75 −0.37 −0.37 −0.37 −0.37 0.00 0.00 1 100

2:2:2:2 QTL1 0.71 0.71 0.47 0.47 0.24 0.24 0.00 0.00 1 90

QTL2 −0.71 −0.71 −0.47 −0.47 −0.24 −0.24 0.00 0.00 1 100

1:1:1:1:1:1:1:1 QTL1 0.81 0.69 0.58 0.46 0.35 0.23 0.12 0.00 1 90

QTL2 −0.81 −0.69 −0.58 −0.46 −0.35 −0.23 −0.12 0.00 1 100

Figure 5F (Coupling) 4:4 QTL1 0.53 0.53 0.53 0.53 0.00 0.00 0.00 0.00 1 90

QTL2 0.53 0.53 0.53 0.53 0.00 0.00 0.00 0.00 1 100

3:2:3 QTL1 0.61 0.61 0.61 0.30 0.30 0.00 0.00 0.00 1 90

QTL2 0.61 0.61 0.61 0.30 0.30 0.00 0.00 0.00 1 100

2:4:2 QTL1 0.75 0.75 0.37 0.37 0.37 0.37 0.00 0.00 1 90

QTL2 0.75 0.75 0.37 0.37 0.37 0.37 0.00 0.00 1 100

2:2:2:2 QTL1 0.71 0.71 0.47 0.47 0.24 0.24 0.00 0.00 1 90

QTL2 0.71 0.71 0.47 0.47 0.24 0.24 0.00 0.00 1 100

1:1:1:1:1:1:1:1 QTL1 0.81 0.69 0.58 0.46 0.35 0.23 0.12 0.00 1 90

QTL2 0.81 0.69 0.58 0.46 0.35 0.23 0.12 0.00 1 100

Figure 6A (Repulsion) 8-way AF 1/2 QTL1 0.53 0.53 0.53 0.53 0.00 0.00 0.00 0.00 1 90

QTL2 −0.53 −0.53 −0.53 −0.53 0.00 0.00 0.00 0.00 1 100

8-way AF 1/8 QTL1 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 90

QTL2 −0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 100

2-way QTL1 0.53 0.00 - - - - - - 1 90

QTL2 −0.53 0.00 - - - - - - 1 100
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Table 3 QTL conditions for the simulation of power to detect linked QTLs (Continued)

Figure 6B (Coupling) 8-way AF 1/2 QTL1 0.53 0.53 0.53 0.53 0.00 0.00 0.00 0.00 1 90

QTL2 0.53 0.53 0.53 0.53 0.00 0.00 0.00 0.00 1 100

8-way AF 1/8 QTL1 1 90

QTL2 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 100

2-way QTL1 0.53 0.00 - - - - - - 1 90

QTL2 −0.53 0.00 - - - - - - 1 100

Environmental noise was determined to be N (0,1) in all conditions.
Values assigned to x are indicated in caption of corresponding figures.

Table 4 QTL conditions for the simulation of multiple-QTLs

Allele frequency Variance of the additive effects of a QTL List of additive effect size

4:4 0.03 0.35 0.35 0.35 0.35 0.00 0.00 0.00 0.00

0.04 0.40 0.40 0.40 0.40 0.00 0.00 0.00 0.00

0.05 0.45 0.45 0.45 0.45 0.00 0.00 0.00 0.00

0.06 0.49 0.49 0.49 0.49 0.00 0.00 0.00 0.00

0.07 0.53 0.53 0.53 0.53 0.00 0.00 0.00 0.00

2:6 0.03 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.00

0.04 0.46 0.46 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.52 0.52 0.00 0.00 0.00 0.00 0.00 0.00

0.06 0.57 0.57 0.00 0.00 0.00 0.00 0.00 0.00

0.07 0.61 0.61 0.00 0.00 0.00 0.00 0.00 0.00

1:7 0.03 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.04 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.06 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.07 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3:2:3 0.03 0.40 0.40 0.40 0.20 0.20 0.00 0.00 0.00

0.04 0.46 0.46 0.46 0.23 0.23 0.00 0.00 0.00

0.05 0.52 0.52 0.52 0.26 0.26 0.00 0.00 0.00

0.06 0.57 0.57 0.57 0.28 0.28 0.00 0.00 0.00

0.07 0.61 0.61 0.61 0.31 0.31 0.00 0.00 0.00

2:4:2 0.03 0.49 0.49 0.24 0.24 0.24 0.24 0.00 0.00

0.04 0.57 0.57 0.28 0.28 0.28 0.28 0.00 0.00

0.05 0.63 0.63 0.32 0.32 0.32 0.32 0.00 0.00

0.06 0.69 0.69 0.35 0.35 0.35 0.35 0.00 0.00

0.07 0.75 0.75 0.37 0.37 0.37 0.37 0.00 0.00

2:2:2:2 0.03 0.46 0.46 0.31 0.31 0.15 0.15 0.00 0.00

0.04 0.54 0.54 0.36 0.36 0.18 0.18 0.00 0.00

0.05 0.60 0.60 0.40 0.40 0.20 0.20 0.00 0.00

0.06 0.66 0.66 0.44 0.44 0.22 0.22 0.00 0.00

0.07 0.71 0.71 0.47 0.47 0.24 0.24 0.00 0.00

1:1:1:1:1:1:1:1 0.03 0.53 0.45 0.38 0.30 0.23 0.15 0.08 0.00

0.04 0.61 0.52 0.44 0.35 0.26 0.17 0.09 0.00

0.05 0.68 0.59 0.49 0.39 0.29 0.20 0.10 0.00

0.06 0.75 0.64 0.53 0.43 0.32 0.21 0.11 0.00

0.07 0.81 0.69 0.58 0.46 0.35 0.23 0.12 0.00
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Table 5 Chromosomal (Chr) distribution of the simulated
QTLs

Chr cM Corresponding QTLs

Experiment 1: Blast resistance

1 140 Pi37

2 156 Pib

4 53 Pi21

6 56 Pi9

6 67 Pi-d2

8 22 Pi36

9 32 Pi5-1

11 33 Pia

11 91 Pb1

11 117 Pik1

12 50 Pi-ta

Experiment 2: Heading date

3 6 dth3

3 144 Hd6

6 10 Hd17

6 12 Hd3a

6 51 Hd1

6 59 DTH2

7 50 Ghd7

8 35 Ghd8

10 43 Ehd1

Experiment 3: Seed morphology

1 87 Rd

2 37 GW2

3 83 GS3

3 102 qGL3

4 59 GIF1

5 28 GS5

5 36 qSW5

6 91 TGW6

7 43 qSD7-1/qPC7

8 106 qGW8
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Among the eleven loci, one locus was selected from vari-
ance of additive effects of a QTL 0.03 in Table 4, five loci
from 0.04, three loci from 0.05, and two loci from 0.06.
Combination of allele frequency and QTL variance were
determined randomly in each simulation. In Experiment
2, we included nine loci whose chromosomal locations
were based on the positions of known heading date
QTLs (Table 5). Many heading date QTLs are bi-allelic,
though several are multi-allelic. Therefore, we assumed
the following distribution of these QTLs: two loci per
condition followed “4:4”, “2:6”, and “1:7”, and one locus
per model followed “3:2:3”, “2:4:2”, and “2:2:2:2” (Table 4).
Among the nine loci, two loci were selected from variance
of additive effects of a QTL 0.04 in Table 4, two loci from
0.05, three loci from 0.06, and two loci from 0.07. Expe-
riment 3 includes ten QTLs whose chromosomal loca-
tions were based on known QTLs for seed morphology
(Table 5). Because QTLs for seed morphology are often
bi-allelic and correspond to the population structure in
rice (i.e., the allelic pattern can be divided into indica or
japonica, the two main sub-species in cultivated rice), we
defined the allelic distribution of QTLs for the eight loci
using “4:4” and the distribution for the remaining two loci
using a randomly determined condition (Table 4). Among
the ten loci, two loci were selected from variance of
additive effects of a QTL 0.04 in Table 4, six loci from
0.05, and two loci from 0.06. Environmental noise was
determined to be N (0, 0.5) in all simulations. Thus, our
simulation conditions were stochastic (i.e., based on actual
positions of known QTLs, but with random assignment of
their effect). Distributions of actual PVE in this experi-
ment are indicated in Additional file 3.

Power to detect QTLs
For QTL mapping, we distributed markers with eight
polymorphisms at 1-cM intervals throughout the rice gen-
ome. This marker condition set is far from the currently
available marker sets, but we will provide a justification
for this approach in the Discussion. Using the F-test, we
detected a significant association between marker geno-
types and the phenotypes observed in the segregating
population. There are several elaborate methods that
enable the separation of linked QTLs [30-32]. However, as
described above, we assumed a simple situation for our
simulation. The aim of this study was to investigate the
potential of an eight-way IRIP to resolve problems derived
from linkage among QTLs, not to compare the perform-
ance of various theoretical methods. To simplify our
simulation and make it computationally feasible, we used
the following strategy to detect linked QTLs, which is
similar to the strategy used in the scantwo function
of R/qtl [39]. In the QTL analysis, we considered the
following two models:

H2 : y ¼ μþ β1q1 þ β2q2 þ ε

H1 : y ¼ μþ β1q1 þ ε

where H2 and H1 are the two-QTL and single-QTL
models, respectively; μ represents the population mean,
βx represents the additive effect of QTLx, qx represents
the coded variable for the QTL genotype of QTLx, and ε
represents the residual error. As we noted earlier, we did
not account for epistasis or dominance effects in the
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models. We then defined three indices for detecting
QTLs:

M2 ¼ max
c sð Þ¼i;c tð Þ¼j

− log10P s;tð Þ
� �

M1 ¼ max
c sð Þ¼i or j

− log10Ps
� �

M2vs1 ¼ M2−M1

where i and j indicate the chromosome number, including
the case when i = j, and c (s) and c (t) denote the chromo-
somes for loci s and t, respectively. Ps is the P-value from
the F-test at locus s, and P (s, t) is the P-value from loci s
and t (s ≠ t). M2 indicates the fit of the two-QTL model,
and was used in the experiments for separating two linked
QTLs. M1 indicates the fit of the single-QTL model, and
was used in all experiments in this study. M2vs1 indicates
whether the two-QTL model provides a sufficiently im-
proved fit over the best single-QTL model to justify its
use. To investigate the power of an eight-way IRIP to
separate linked QTLs, we used the following rule:

M2 > T 2 and M2vs1 > T2vs1

where T2 and T2vs1 indicate genome-wide significance
thresholds for M2 and M2vs1, respectively.
Although genome-wide significance thresholds can be

obtained by means of a permutation test, this approach
is computationally infeasible in our case because of the
large number of simulations required. In the present study,
we determined the genome-wide significance thresholds
following the method of Valdar et al. [37]. First, we simu-
lated a null distribution for M1, M2, and M2vs1 by repeating
10 000 simulations with only environmental noise inclu-
ded. In the null simulations, a low number of repeats often
results in underestimation of the significance thresholds,
and it has been suggested that estimating thresholds by
using a generalized extreme-value model is more efficient
than taking empirical quantiles [37]. Therefore, we fit a
Table 6 Estimated 5% genome-wide significance threshold fr

0 1 2

8-way IRIPs (n = 800) T1 4.03 4.03 4.09 4

T2 4.74 4.81 4.86 4

T2vs1 2.45 2.47 2.34 2

2-way IRIPs (n = 200) T1 4.09 - 4.02 4

T2 4.99 - 5.17 5

T2vs1 2.98 - 2.93 2

2-way IRIPs (n = 800) T1 4.00 - 3.90 3

T2 4.61 - 4.44 4

T2vs1 2.82 - 2.81 2

T1 represents the thresholds for the single-QTL model. T2 represents the thresholds
two-QTL model provides a sufficiently improved fit over the best single-QTL model
generalized extreme value by means of the maximum-
likelihood method to the values obtained from the null
simulations using the “evd” package of the R software [40].
We chose the 95th percentile of the null distribution as the
significance threshold for each experimental condition
(Table 6). In this study, we defined detection of a QTL
when the values of M1, M2, and M2vs1 within 20 cM from
the true position of the QTL or QTLs exceeded the
genome-wide significance threshold (Table 6). That is, for
mapping of a single QTL, M1 was obtained in the range
from 70 to 110 cM on chromosome 1. In the case of map-
ping of two QTLs, M1, M2, and M2vs1 were obtained in the
range from 70 to (110 + x) cM, where x is 5, 10 or 20 cM.
In other words, we defined significant signals in other gen-
omic regions as false positives because their chromosomal
locations were too far from the true positions of the simu-
lated QTLs.

Results
Effect of genetic drift during the recurrent crossing stage
In the construction of an IRIP, it is preferable to use a
larger population size during the recurrent crossing
stage (Figure 1) to create a larger number of recombin-
ation sites within the population [41]. However, a huge
number of crosses are an unrealistic goal, especially in a
self-pollinating crop, and a smaller population size is
preferable for actual breeding operations. On the other
hand, a small population will suffer from the effects of
genetic drift, which will result in the loss of some paren-
tal genomic regions from the population. As the first
step of this study, we therefore simulated the relation-
ship between population size during the recurrent cross-
ing stage and the effect of genetic drift to see if we could
find an optimal solution. We measured the degree of
genetic drift as a percentage of the total genomic regions
where genomes derived from one or more of the paren-
tal lines had been lost (i.e., where the number of marker
alleles in the population was less than eight). As we
om 10 000 null simulations

Number of cycles

4 6 8 10 12 20 22

.2 4.11 4.1 4.22 - 4.23 -

.95 4.97 4.87 5.03 - 5.19 -

.3 2.23 2.16 2.26 - 2.32 -

.15 4 4.11 4.15 4.19 - 4.15

.25 5.2 5.28 5.38 5.43 - 5.43

.69 2.67 2.51 2.44 2.4 - 2.23

.82 3.86 3.67 4.22 4.02 - 4.10

.46 4.73 4.22 5.21 4.92 - 4.75

.73 2.44 2.18 2.66 2.42 - 2.06

for the two-QTL model, and T2vs1 represents the thresholds if whether the
to justify its use.
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expected, a small population size increased the percent-
age of genomic regions affected by genetic drift as the
number of cycles increased, and a larger population size
decreased the frequency of lost regions (Figure 2). At a
population size of n = 100, the proportion of the gen-
omic regions affected by genetic drift remained less than
1% until 10 cycles of recurrent crossing and was about
10% even after 20 cycles (Figure 2). Because we thought
this magnitude of genetic drift was acceptably small and
the population size was at a realistic level for actual ope-
rations, we adopted a population size of n = 100 for our
subsequent simulations. We also tested n = 200 for some
simulations, but because the results were similar to those
with n = 100, we have not shown the data.

Relationships between the number of recurrent crossings
and the genome structure
We evaluated the effect of recurrent crossing on the
genome structure of individuals in an IRIP in terms of
the number and length of the genome segments. The
number of genome segments per individual increased
with increasing number of cycles during the recurrent
crossing stage (Figure 3A). In contrast, the length of the
genome segments was inversely related to the number of
cycles (Figure 3B). The mean and median genome seg-
ment lengths both decreased dramatically during the
first five to six cycles, but decreased more slowly during
subsequent cycles (Figure 3B). We also investigated the
differences in the genome structure between the two-
way and eight-way IRIPs (Figure 3). The difference
between the two-way and eight-way IRIPs in the number
of genome segments increased as the number of cycles
Figure 2 Frequency of genetic drift during the recurrent
crossing stage. The degree of genetic drift was represented by the
percentage of the total genomic regions in which the genome
derived from one or more of the parental lines had been lost.
n represents the population size.

Figure 3 Relationship between the number of cycles and the
genome structure in a rice two-way IRIP (n = 200) and an
eight-way IRIP (n = 800). Plots for the eight-way IRIP started two
cycles behind the two-way IRIP to match the total number of outcross-
ings (i.e., the eight-way population requires two additional outcrossings
to reach the cycle 0 stage). (A) Total number of genome segments per
individual. (B) Mean and median genome segment lengths.
increased (Figure 3A); however, the difference in the
length of these segments decreased as the number of
cycles increased (Figure 3B). The mean and median
genome segment lengths were higher than those ob-
served in the mouse Collaborative Cross. For example,
in cycle 4 for the eight-way IRIP, mean genome segment
lengths were 8.6 and 13.9 cM in the mouse [37] and rice
(Figure 3B) crosses, respectively. This is probably due to
the different inbreeding strategy; that is, the mouse strat-
egy used siblings and the rice strategy used selfing to
construct the inbred lines.
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Power to detect QTLs in rice eight-way IRIPs
The detection of a QTL generally depends on the popu-
lation size, allele frequency, and size of the effect. The
two latter factors determine the PVE that is more indi-
cative for the power to detect. Therefore, for the simu-
lation of power to detect a single additive QTL, we
described both the effect size and the corresponding
PVE (Figure 4A). The detection power was saturated at
PVE values of 0.120, 0.065, and 0.045 when n = 400, 800,
and 1200, respectively (Figure 4A). These results agree
well with the simulation results in the mouse Collabora-
tive Cross [37]. In multi-parent populations, segregating
QTLs are expected to be multi-allelic. We also com-
pared the power to detect between the bi-allelic and
multi-allelic cases (Table 2; Figure 4B). It should be
noted that the same PVE value at a different allele fre-
quency indicates a different size of the additive effect
(Table 2). If the QTL possessed the same PVE value in
both cases, then the number of alleles for the QTL had
little effect on the power to detect the QTL (Figure 4B).
Figure 4 Power to detect single additive QTLs in the rice eight-way IR
(A) Power to detect a single additive QTL in the rice eight-way IRIPs. Value
detect a single additive QTL between the bi-allelic case and the multi-alleli
power to detect a single additive QTL between the two-way and eight-wa
for the detected QTLs. The location error equals the distance between the
the result of 1000 simulations.
It would be interesting to compare the relative power
of the two-way and eight-way IRIP designs. However,
this is a difficult challenge because of differences in the
total phenotypic variance. In general, an eight-way popu-
lation includes more segregating QTLs, and this results
in a larger genetic variance that leads to a larger total
phenotypic variance. This changes the PVE of a QTL with
the same effect size and therefore changes the power to
detect the QTL. Because the change in the total pheno-
typic variance depends on the parental lines used to create
the study population, it is difficult to estimate. In the
following simulations, we assumed a simple situation in
which only one QTL is involved in the phenotype and the
environmental noise is constant (i.e., N (0, 1)). This may
be unrealistic, but it provides a good preliminary estimate
of the QTL’s characteristics because it is easy to interpret
the results obtained by the simulations.
In comparing the two-way and eight-way populations,

the reduction of the frequency of the QTL alleles should
also be considered. In the two-way population, the QTL
IPs. Detailed conditions of this experiment are described in Table 2.
s are the result of 400 simulations. (B) Comparison of the power to
c cases. Values are the result of 400 simulations. (C) Comparison of the
y IRIPs. Values are the result of 400 simulations. (D) The location error
position of the maximum P-value and the true QTL position. Values are
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allele frequency is always 1/2, whereas it ranges from a
minimum of 1/8 to a maximum of 1/2 in the eight-way
population. Therefore, for the eight-way population, we
simulated two cases: one in which the QTL allele fre-
quency is 1/2, and another in which the frequency is 1/8
(Table 2 and Figure 4C). When the allele frequency of
the QTL was 1/2 in the parental lines, the power to
detect was higher in the large eight-way population
(n = 800) than in the smaller two-way population (n = 200;
Figure 4C). When the allele frequency of the QTL was 1/8
in the parental lines, the power to detect was similar in the
two populations (Figure 4C). However, it should be noted
that we did not consider the increase in the total pheno-
typic variance in the eight-way population as described
above, and therefore, the detection power in the eight-way
population is only an estimate.
We also investigated the location error of the detected

QTLs (Figure 4D). Despite large differences in the genome
structure between the rice IRIP (Figure 3B) and the mouse
Collaborative Cross population [37], little difference was
observed in mapping accuracy (Figure 4D, [37]). Our
comparison of the location error between the two-way
and eight-way IRIPs provided results similar to those for
the power to detect. That is, when the allele frequency of
the QTL was 1/2 in the parental lines, the location error
in the large eight-way IRIP (n = 800) was smaller than that
in the smaller two-way IRIP (n = 200), but when the allele
frequency of the QTL was 1/8 in the parental lines, the lo-
cation error was similar in both IRIPs (Figure 4D).
We then simulated the power to separate linked QTLs

in eight-way IRIPs. First, we simulated the case where
the additive effects of two linked QTLs act in opposite
directions (i.e., QTLs in the repulsion phase; Table 3). In
this case, QTLs cannot be detected if there is insufficient
recombination between the QTLs because their alleles
have opposite effects and negate each other’s effects.
Therefore, an increased number of cycles will be required
to increase the power to detect QTLs. First, we investi-
gated the detection power by using the single-QTL model.
The detection power under this simulation setting was
indicated by the relative power compared with the case in
which the QTLs are unlinked. As expected, an increased
number of cycles improved the power to detect QTLs in
the repulsion phase (Figure 5A, B). It was interesting that
even when the distance between QTLs in the repulsion
phase was 20 cM, which is larger than the size of most of
QTL clusters [28], the power to detect linked QTLs was
less than 50% of that in the case with unlinked QTLs after
zero cycles, but increased rapidly with an increasing num-
ber of cycles (Figure 5A). By using the two-QTL model,
the detection power improved dramatically compared
with the results using the single-QTL model (Figure 5B).
However, if the QTL interval was 5 cM, the power
was less than 50% until four cycles (Figure 5B). Another
important result is that using fewer than two cycles
showed little improvement compared to using zero cycles
(Figure 5B).
When the additive effects of the linked QTLs are both

large and positive (i.e., QTLs in coupling phase; Table 3),
they are often mistakenly estimated as a single QTL with
a large effect at the wrong position. Therefore, we also
investigated the effectiveness of the IRIP approach to
separate two linked QTLs in the coupling phase by using
the two-QTL model. In general, it is more difficult to
separate two QTLs in the coupling phase than in the re-
pulsion phase [35]. Our results confirmed this problem
(Figure 5C). To achieve more than 50% detection power
for the separation required more than ten cycles when
the QTL interval was 10 cM (Figure 5C). When the
QTL interval was 5 cM, it required more than 20 cycles
to achieve 50% detection power (Figure 5C). As in the
case of QTLs in the repulsion phase, using fewer than
two cycles showed little improvement compared to using
zero cycles (Figure 5C). In addition, we simulated the
power to detect QTLs in the coupling phase in the fol-
lowing situation: If two linked QTLs are closely linked,
the P-value obtained by using the single-QTL model is
sufficiently large to achieve statistical significance be-
cause such QTLs behave as if they are a single QTL.
However, if the linkage between two QTLs is broken by
means of repeated crossing, those QTLs become un-
detectable because the effect size of each QTL is too
small to achieve statistical significance (Coupling of
small QTLs; Table 3). First, we simulated the detection
of such QTLs by using the single-QTL model. As expec-
ted, the detection power decreased as the number of
cycles increased (Figure 5D). In the analysis, using the
two-QTL model gave a power near 0% in all simulated
cases, even though the two-QTL model fit the completely
correct model for these simulated data (Table 7). In
addition, we investigated the differences in power to sep-
arate linked QTLs between the bi-allelic and multi-allelic
cases (Figure 5E, F). The number of alleles for the QTL
had little effect on the power to separate (Figure 5E, F).
We also simulated the power to separate two QTLs

between the two-way and eight-way IRIPs (Figure 6).
The results resembled those for the power to detect a
single QTL (Figure 4B). That is, when the allele fre-
quency of the QTL was 1/2 in the parental lines, the
power to detect was higher in the large eight-way IRIP
(n = 800) than in the smaller two-way IRIP (n = 200), but
when the allele frequency of the QTL was 1/8 in the par-
ental lines of the eight-way IRIP, the power to detect was
similar in both IRIPs (Figure 6).

Power to detect multiple QTLs
In the previously described simulations, we assumed the
segregation of only one or two target QTLs and assigned



Figure 5 Relationship between the number of cycles and the power to detect linked QTLs. Data are the results for the rice eight-way IRIPs
(n = 800). Values are the result of 400 simulations, and 5, 10, and 20 cM represent the distance between the QTLs. Detailed conditions of this
experiment are described in Table 3. (A) Power to detect QTLs in the repulsion phase by using the single-QTL model. (B) Power to detect QTLs
in the repulsion phase by using the two-QTL model. (C) Power to separate QTLs in the coupling phase by using the two-QTL model. (D) Power
to detect QTLs with a small effect in the coupling phase. (E) Comparison of the power to separate QTLs in the repulsion phase between the
bi-allelic and multi-allelic cases. (F) Comparison of the power to separate QTLs in the coupling phase between the bi-allelic and multi-allelic cases.
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the rest of the variance to environmental noise (Tables 2
and 3). These simple situations enabled us to interpret
the results more easily. However, in general, many QTLs
with different effect sizes and a different number of
alleles segregate simultaneously in populations. To investi-
gate the effectiveness of multi-parent IRIPs in an actual
QTL mapping study in rice, we simulated the power to
detect multiple QTLs by using three different experiments
(Tables 4 and 5). In this simulation, we compared the
power between an eight-way population with n = 800 and
four two-way populations with n = 200. In the latter case,
we defined the detection of QTLs as a situation in which



Table 7 Power to detect QTLs with a small effect that are
linked in the coupling phase

Highest frequency Lowest frequency

5 cM 10 cM 20 cM 5 cM 10 cM 20 cM

Cycle 0 0.0 0.0 0.2 0.0 0.0 0.3

Cycle 1 0.0 0.2 0.4 0.3 0.0 0.3

Cycle 2 0.0 0.4 0.5 0.0 0.0 0.0

Cycle 6 0.0 0.4 2.0 0.4 0.2 0.5

Cycle 10 0.5 0.7 1.9 0.3 1.3 1.9

Experimental conditions for these results are summarized in Table 3, using the
two-QTL model. Values are the result of 400 simulations.

Yamamoto et al. BMC Genetics 2014, 15:50 Page 14 of 17
http://www.biomedcentral.com/1471-2156/15/50
at least one of the two-way populations produced a signifi-
cant signal in the target region. For all three experiments
that we simulated, the eight-way population detected
more QTLs than in the four two-way populations
(Table 8). Because all the experiments included two com-
binations of closely linked QTLs (i.e., QTLs on the same
chromosome in Table 5), increasing the number of cycles
is expected to improve the power to detect the QTLs, as
shown in Figures 5 and 6. The effectiveness of increasing
the number of cycles was larger in the eight-way popula-
tion than in the two-way population (Table 8).

Discussion
In the present study, we simulated the construction of
an eight-way IRIP for rice and examined its power to
separate linked QTLs. Because the construction of such
populations requires a large effort, especially in self-
pollinating crops such as rice, we should carefully deter-
mine the optimal design for developing such an IRIP. In
this study, we investigated the efficiency of advanced
intercrossing for developing rice IRIPs and improving
Figure 6 Comparison of the power to separate linked QTLs between
started two cycles behind the two-way IRIP to match the number of outcross
to reach the cycle 0 stage). Values are the result of 400 simulations. Detailed c
QTLs in the repulsion phase by using the two-QTL model. (B) Power to separ
the QTL detection power as a function of the population
size and number of cycles of recurrent crossing.
Rice eight-way IRIPs are potentially useful as breeding

materials. The idea of using such populations as breed-
ing material resembles the “genome shuffling” that is
used in the breeding of microbes [42,43]. Genome shuf-
fling emphasizes that chimeric genes or genomes derived
from repeated genomic recombination can improve the
performance of the progenies. In addition, rice QTL clus-
ters appear to be composed of different but tightly linked
genes [28,29]. Because rice breeding is mainly conducted
through the pedigree method, introgressions have often
resulted in the replacement of large genome segments that
are sufficiently large to include all QTL cluster regions
[44]. Given this evidence, lines with a chimeric genome
structure within their QTL clusters will be good materials
for breeding because they include new combinations of
QTLs that are unavailable in current varieties because of
tight linkage among QTLs. Rice QTL clusters average
about 15 cM in size [28]. In rice eight-way populations,
the mean and median genome segment lengths were both
more than 15 cM after zero cycles. However, both para-
meters became less than 15 cM within five or six cycles
(Figure 3B). Thus, using five or six cycles appears to be
effective based on the results for the whole genome struc-
ture and for the structure within a QTL cluster.
In the simulation of the power to detect QTLs, we

placed markers with eight polymorphisms at 1-cM inter-
vals throughout the rice genome and used them to esti-
mate the number of recombination sites in the genome.
This approach could be implemented using, for example,
1551 simple-sequence-repeat markers with eight poly-
morphisms or 4653 single-nucleotide-polymorphism
markers for which each of three marker sets are tightly
the two-way and eight-way IRIPs. Plots for the eight-way population
ings (i.e., the eight-way population requires two additional outcrossings
onditions of this experiment are described in Table 3. (A) Power to detect
ate QTLs in the coupling phase by using the two-QTL model.



Table 8 Mean of the number of detected QTLs in each experiment

Experiment 1 Experiment 2 Experiment 3

2-way Cycle 0 6.35 ± 0.73 5.48 ± 0.63 6.51 ± 0.54

Cycle 8 6.44 ± 0.65 5.37 ± 0.71 6.45 ± 0.66

8-way Cycle 0 9.96 ± 0.69 7.63 ± 0.68 8.91 ± 0.72

Cycle 6 10.68 ± 0.49 8.09 ± 0.64 9.67 ± 0.49

Total number of QTLs 11 9 10

Experiments are based on the QTL data in Tables 4 and 5.
Values are the mean of 100 simulations.
In the two-way population, we defined detection of the QTL as a situation in which at least one of the four two-way populations produced a significant signal in
the target region.
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linked and constitute haplotype polymorphisms that can
distinguish among the eight ancestral genomes at the
marker position. Recently, a high-density single-nucleo-
tide-polymorphism genotyping system has been undergo-
ing development [45-49], and highly elaborate statistical
methods have been developed to estimate the parental
origins [9-14]. Based on this research, our assumption
about the marker conditions used in this study seems
to be sufficiently realistic. Recent advances in next-
generation sequencing technologies have enabled re-se-
quencing of a large number of genomes [50]. Application
of these technologies to IRIP genotyping will enable more
accurate mapping of QTLs in rice eight-way IRIPs.
As mentioned above, linkage among QTLs is problem-

atic in rice QTL analysis. Therefore, we investigated the
power to detect linked QTLs in a rice eight-way IRIP. If
the distance between QTLs in the repulsion phase was
20 cM, the detection power after zero cycles using the
single-QTL model was less than 40% of the power for
unlinked QTLs (Figure 5A). The distance of 20 cM is
larger than the size of most QTL clusters in rice [28].
Thus, even when the population was derived from eight
parental lines, using zero cycles of recurrent crossing
creates a risk of missing QTLs with a large effect because
their alleles in the same phase have opposite effects. Al-
though the power to detect QTLs in the repulsion phase
was dramatically improved by using the two-QTL model,
this required a combination of the two-QTL model with
at least six cycles of recurrent crossing to achieve 50%
power to detect QTLs within a 5-cM region (Figure 5B).
Moreover, separating QTLs in the coupling phase requi-
red more cycles to achieve sufficient improvement in the
detection power than would be required in the repulsion
phase (Figure 5C). Another important finding is that using
fewer than two cycles showed little or no improvement
over using zero cycles (Figure 5B, C). Collectively, the
simulation results suggest that several cycles of recurrent
crossing will be necessary to resolve the problems derived
from linkage among QTLs even when the populations are
derived from eight parental lines. On the other hand, we
also showed that, in some cases, linked QTLs with a small
additive effect size can be detected only in a population
with fewer recombination sites (Figure 5D). This result
was caused by overestimation of a single QTL’s effect
by failing to separate two QTLs, thus the information
obtained is incorrect in a precise sense. However, QTL
mapping projects are initiated for a variety of purposes,
and in an agronomic study, researchers are often inter-
ested in obtaining information that will guide future selec-
tion experiments. In this case, it is enough to identify a
genomic region that affects the target phenotype, even if
the obtained information is ambiguous (i.e., if two QTLs
in the coupling phase are not separated). Therefore, al-
though we have demonstrated the importance of advanced
intercrossing, we also note the merit of using a population
produced by zero cycles of recurrent crossing in some
cases, especially for agronomic purposes. In general, the
construction of inbred lines in self-pollinating crops is
easier than in outbreeding species. One method to resolve
the trade-off in the number of cycles required may be to
construct inbred lines using different numbers of cycles.
This method will increase the likelihood of detecting
QTLs in both repulsion and coupling phases.
We also compared the power to detect and separate

the QTLs between the two- and eight-way IRIPs. Based
on the simplifying assumption that only one or two target
QTLs were segregating in the populations, the two-way
populations had similar or higher power to detect QTLs
(Figures 4 and 6). However, in two-way populations, it is
possible that both parents have the same allele for the
target QTL. In this case, the QTL cannot be detected even
if some of the QTL’s alleles have a large effect. In the
simulations to detect multiple QTLs (Tables 4 and 5), the
eight-way IRIPs had higher detection power than the two-
way populations (Table 8). Thus, if the allele frequency or
distribution are not known ab initio, the eight-way IRIP is
a safer alternative despite the risk of decreasing the power
to detect and separate QTLs in some cases.
In this study, we simulated the construction of rice

eight-way IRIPs and discovered that even with a relatively
small number of cycles, recurrent crossing effectively
produces a highly recombinant and chimeric genome struc-
ture and therefore improves the power to detect QTLs. Al-
though recurrent crossing is effective, its efficiency depends
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on factors such as the population size and the number of
cycles. Because our simulation was performed under a
range of conditions, the results will be useful for deter-
mining the optimal IRIP design for a given experimental
objective. Although we designed our study for application
of the IRIP approach to rice, the results can be ap-
plied to other crops with similar characteristics (e.g.,
self-pollinating species in which quantitative genetic
studies have been conducted mainly with inbred lines
derived from a bi-parental cross).

Conclusion
In the genetic analysis of agronomic traits, linkage
among QTLs can complicate the detection of each indi-
vidual QTL. By using information for rice, we simulated
the construction of an eight-way population followed by
cycles of recurrent crossing and inbreeding, and investi-
gated the resulting genome structure and its usefulness
for detecting linked QTLs as a function of the number
of cycles of recurrent crossing. Our results indicated that
even when the population is derived from eight parental
lines, the use of fewer than two cycles does not improve
the power to detect linked QTLs. However, increasing to
six cycles dramatically improved the detection power, sug-
gesting that advanced intercrossing can help to resolve the
problems derived from linkage among QTLs.

Additional files

Additional file 1: Distribution of PVEs of the simulated QTLs. A to E
correspond to the distribution of PVEs of the simulated QTLs used in
Figure 5A and B, C, D, E and F, respectively.

Additional file 2: Distribution of PVEs of the simulated QTLs. A and
B correspond to the distribution of PVEs of the simulated QTLs used in
Figure 6A and B.

Additional file 3: Distribution of PVEs of the simulated QTLs.
Experiment 1 to 3 correspond to those in Table 8.
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