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Composite selection signals can localize the trait
specific genomic regions in multi-breed
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Abstract

Background: Discerning the traits evolving under neutral conditions from those traits evolving rapidly because of
various selection pressures is a great challenge. We propose a new method, composite selection signals (CSS),
which unifies the multiple pieces of selection evidence from the rank distribution of its diverse constituent tests.
The extreme CSS scores capture highly differentiated loci and underlying common variants hauling excess
haplotype homozygosity in the samples of a target population.

Results: The data on high-density genotypes were analyzed for evidence of an association with either polledness or
double muscling in various cohorts of cattle and sheep. In cattle, extreme CSS scores were found in the candidate
regions on autosome BTA-1 and BTA-2, flanking the POLL locus and MSTN gene, for polledness and double muscling,
respectively. In sheep, the regions with extreme scores were localized on autosome OAR-2 harbouring the MSTN gene
for double muscling and on OAR-10 harbouring the RXFP2 gene for polledness. In comparison to the constituent tests,
there was a partial agreement between the signals at the four candidate loci; however, they consistently identified
additional genomic regions harbouring no known genes. Persuasively, our list of all the additional significant CSS
regions contains genes that have been successfully implicated to secondary phenotypic diversity among several
subpopulations in our data. For example, the method identified a strong selection signature for stature in cattle
capturing selective sweeps harbouring UQCC-GDF5 and PLAG1-CHCHD7 gene regions on BTA-13 and BTA-14,
respectively. Both gene pairs have been previously associated with height in humans, while PLAG1-CHCHD7 has
also been reported for stature in cattle. In the additional analysis, CSS identified significant regions harbouring
multiple genes for various traits under selection in European cattle including polledness, adaptation, metabolism,
growth rate, stature, immunity, reproduction traits and some other candidate genes for dairy and beef production.

Conclusions: CSS successfully localized the candidate regions in validation datasets as well as identified previously
known and novel regions for various traits experiencing selection pressure. Together, the results demonstrate the utility
of CSS by its improved power, reduced false positives and high-resolution of selection signals as compared to individual
constituent tests.
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Background
Genetics research has increased rapidly with availability
of high throughput molecular biology tools and analytical
approaches [1]. Recent molecular genetics techniques
combined with large scale in silico analysis of genetic poly-
morphism data have provided insights to many questions
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about the origin of species [2], evolution [3], co-evolution
and selection [4], domestication [5], genetic control of
adaptation and diseases [6-8], and genetic diversity [9,10]
for a wide range of species. More recently, identification
of chromosomal regions that contain signatures of selec-
tion has been helpful to understand various mechanisms
of adaptation, domestication and selection for important
traits of various domestic species [11-21].
Evidence of selection can be gained from the measures

of population differentiation, the allele frequency spectrum,
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linkage disequilibrium (LD) and haplotype structures
[22,23]. Multiple methods have been developed for
detecting selection signatures from genomic sequences
and single nucleotide polymorphism (SNP) data [24,25].
Popular methods to capture selection evidence among
populations from genetic polymorphism data include fix-
ation index (FST) [26,27], change in derived allele frequen-
cies (ΔDAF) [23], allele frequency differences [28], long
range haplotype (LRH) tests based on the extended
haplotype homozygosity (EHH) statistic [29] including
the across population extended haplotype homozygosity
(XP-EHH) [22] and Rsb [30]. The specificity of each
selection test statistic is limited to test certain aspects
of selective forces operating under various models of
natural and artificial selection. Hence, various selection
tests being used often provide differing results for the
same genomic dataset and likely none of these can
exclusively provide a definite conclusion about the
selective hypotheses [31].
Populations undergoing directional or divergent selec-

tion for specific traits are expected to exhibit signals of
selection at the underlying genomic regions when mea-
sured by several selection tests [32]. Therefore, a com-
bination of multiple strategies can be a robust approach
in localizing such selected regions and correlating them
with phenotypic variation. Several approaches to com-
bine multiple summary statistics have been implemented
that improve the power of detecting selection signatures
[16,23,31,33,34]. Grossman et al. [23] developed a
Bayesian estimator, composite of multiple signals (CMS),
that combines several statistics to localize causal variants
of positive selection. CMS requires extensive simulations
and knowledge of the population genetic history to
explore selection events under robust models with their
underlying assumptions [15]. Success of CMS depends on
the availability of very dense SNP data (for example, > 3
million SNPs in the human 1000 Genomes Project) re-
quired to approximate all the genome-wide functional
variants. Lin et al. [31] and Pavlidis et al. [33] used ma-
chine learning methods implementing boosting and
support vectors, respectively, which combines multiple
statistics to maximize their joint predictive performance.
They too require prior information from the estimates of
population genetic diversity along with powerful computa-
tion platforms. Other efforts have also been made by com-
bining selection signatures with association analysis in
multiple species, however, these require information of
phenotypes on individuals and in some cases also about
their progeny [12,34,35]. Recently, Utsunomiya et al. [16]
employed the Stouffer weighted Z-method [36] for
combining p-values of several selection tests in their so
called Meta-SS (meta-analysis of selection signals). Their
assumptions to retrieve p-values directly from the test sta-
tistics require that each constituent test follow (approxi-
mately) a normal distribution, centred on zero under the
null hypothesis if no selection. The implementation of
Meta-SS is, therefore, limited to selected tests and incom-
patible on some popular selection tests such as FST where
the distribution (under the null hypothesis) is not known.
The limitations and complexity of methods, prior in-
formation, high-density genotypes and powerful com-
putational resources required to implement available
combining approaches leaves researchers with limited
resources at a disadvantage.
Understanding the genetic control of heritable pheno-

types is decisive to implement strategies for the rapid
improvement in the qualitative and quantitative features
of any domesticated species. Owing to the high genetic
diversity in cattle and sheep, with over 800 and 1400
breeds, respectively, and substantive known factors for
shaping their genetic diversity, they have been exten-
sively used as model species for exploring selection sig-
natures [11-21,32,37-42].
In general, genetically alike populations are expected

to share genetic polymorphism at the genomic regions
carrying genes for common phenotypes, whereas, genet-
ically isolated populations may have uniquely positioned
or divergent patterns of polymorphism on the genome
[11,15,43]. Combining genotypic data on multi-population
panels for identical traits has been used successfully to es-
timate the genomic breeding values and genomic selection
[44,45], local adaptation [43], phylogeography and breed-
ing history [11,46], and association mapping [47]. There-
fore, detection of signatures of strong selection can be
boosted by combining samples from multiple breeds
based on known traits and compare such multi-breed
populations for the contrasting phenotypes [12,15,48].
Across phenotypic groups, the contrast in genetic vari-
ation at the putative genomic regions increases the likeli-
hood of capturing the selection signatures linked to the
traits of interest. Within groups, the genome-wide genetic
diversity between multiple breeds will lower background
noise (false positive signals) which have accumulated con-
founding genetic patterns due to the demographic history
of breeds or by the random genetic drift [47].
In principle, a simple method to combine outputs

from separate tests based on their statistical distributions
can be used to increase the accuracy of linking geno-
types (genomic regions) with phenotypes without prior
information on population history, individual pheno-
types or genetic relationships. Here we present an im-
provement in the trait-specific genome-wide scans based
on SNP data to map selection signatures by unifying
multiple information from: i) evidence of selection, and
ii) phenotypically alike populations. We developed a
composite index of selection signatures: composite
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selection signals (CSS), and tested this against pheno-
types controlled by known major genes in cattle and
sheep. In addition, we investigated European and African
Bos taurus cattle to identify the signatures of selection in
geographically isolated populations.
Methods
DNA samples and genetic polymorphism data
Utility of the composite selection signal was tested in
cattle and sheep by analyzing data available from various
published studies on both species. To add power by in-
creasing the sample size and to maximize the range of
breeds and animals within breeds, samples collected by
independent research groups were merged. Cattle data
consisted of 1,096 animals representing 56 cattle breeds
as described in previous studies [3,10,39,49]. Genetic re-
lationships from the genome-wide SNPs were estimated
by computing a genome-wide IBS matrix using PLINK
[50] to identify and remove duplicate samples across
multiple datasets of cattle. The sheep dataset consisted
of 2,803 animals from 74 breeds [11]. The samples and
breeds of cattle and sheep included in this study are
listed in (Additional file 1: Table S1) and (Additional file 2:
Table S2), respectively.
SNP genotypes generated in previous studies on cattle

[3,10,39,49] and sheep [11] genotyped with the Illumina
BovineSNP50 chip and Illumina OvineSNP50 chip assays,
respectively, were used in the present analysis. After
quality control, 38,610 and 47,502 autosomal SNPs
were retained for cattle and sheep, respectively (Additional
file 3: Table S3), and the final number of heterozygous
SNPs (minor allele frequency (MAF) > 0.01) in each data-
set is given in Table 1. Imputation of sporadic missing
genotypes and haplotype phasing was performed with
BEAGLE 3.3 [51]. Ancestral alleles were inferred for cattle
genotype data using information from Matukumalli et al.
[52] and, when possible, using information from the geno-
types of three out-group species (bison, buffalo and yak)
from Decker et al. [3]. All SNPs were mapped on the
UMD3.1 bovine genome assembly (http://www.cbcb.umd.
edu/research/bos_taurus_assembly) and OARv1.0 ovine
genome assembly (http://www.livestockgenomics.csiro.au/
sheep/oar1.0.php) for the corresponding species.
Phenotype data
Two subsets from both the cattle and the sheep data,
collectively called as validation datasets (A-D), were ex-
tracted based on traits known to be under control of a
major autosomal gene, namely double muscling (increased
skeletal muscle mass) and polled (absence of horns) phe-
notypes (Table 1). In cattle, the dataset A consisted of ani-
mals of seven polled breeds and seven horned breeds. The
dataset B of cattle consisted of animals from three double
muscle breeds and 14 normal muscle beef breeds. In
sheep, the dataset C contained animals from 37 naturally
polled sheep breeds and 36 horned sheep breeds and the
dataset D had data on animals from three breeds known
to be double muscled and 71 breeds without the double
muscle phenotype.
Candidate genes for the two traits in validation datasets

(A-D) of both species are described as follows:
Polledness in cattle
POLL locus is located at the proximal end of bovine
autosome 1 (BTA-1) at 1.65-2.05 Mb position. The
dominant alleles of causal mutations in the genes
harbouring the POLL locus cause the polledness in
cattle [15,17,20,47,52,53].
Double muscle in cattle
Bovine Myostatin (MSTN) i.e. growth and differentiation
factor 8 (GDF8) gene (BTA-2: 6213566 – 6220196 bp)
harbours various alike-in-state mutations in its third exon
that underlie the muscular hypertrophy (a partially reces-
sive trait) in some beef cattle breeds. For example, the
double muscles are linked to the loss-of-function substitu-
tion in Piedmontese (and rarely in other beef breeds) and
a frame-shifting 11 nucleotide deletion in Belgian Blue,
South Devon and Asturiana de los Valles [20,39,54,55].
Polledness in sheep
Relaxin/insulin-like family peptide receptor 2 (RXFP2) gene
on ovine autosome 10 (OAR-10: 29491481 – 29538132 bp)
is located in a known selected genomic region linked to
the horn morphology in sheep [11,56,57].
Double muscle in sheep
Ovine MSTN gene on OAR-2 (126318371 – 126323354 bp)
harbours a single loss-of-function mutation in its
3′-untranslated region (strongly selected in Texel)
that inhibits its translation resulting the double muscle
in sheep [11,55,58].
In addition, for dataset E, cattle breeds of European

(46 breeds, 847 animals) and African (7 breeds, 226 ani-
mals) origin were compared (Table 1). There were sev-
eral cattle breeds of small sample size (n < 20) in the
European group. Therefore, the effect of sample size on
the computation of our composite and constituent selec-
tion tests was also assessed by comparing results from
analyses by excluding and including the breeds with
small sample size (n < 10 and n < 20).

http://www.cbcb.umd.edu/research/bos_taurus_assembly
http://www.cbcb.umd.edu/research/bos_taurus_assembly
http://www.livestockgenomics.csiro.au/sheep/oar1.0.php
http://www.livestockgenomics.csiro.au/sheep/oar1.0.php


Table 1 Breeds, samples, genotypes (SNPs) and known genes in each group of cattle and sheep

Species Trait Groups Breeds
(n)a

Animals
(n)

Genome
assembly

SNPs
(n)a

SNP density
(kb)

Derived
SNPs (n)

Known
genes

Dataset
code

Cattle

Polledness
Poll head 7 85

UMD3.1 38,290 65.50 38,177 POLL locus A
Horn head 7 127

Double
muscling

Double
muscling

3 49

UMD3.1 38,520 65.15 38,407 MSTN B
Normal
muscling

14 308

Sheep

Polledness
Poll head 37 1489

OARv1.0 47,498 51.26 - RXFP2 C
Horn head 36 1290

Double
muscling

Double
muscling

3 149

OARv1.0 47,502 51.26 - MSTN D
Normal
muscling

71 2654

Cattle Geographic
location

African 7 226
UMD3.1 37,905 65.67 37,795 - E

European 46 847
aDetails of breeds and genotyping information about cattle and sheep is available in the (Additional files 1, 2 and 3: Table S1, S2 and S3, respectively).
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Test statistics for selection signatures
The signatures of recent positive selection are expressed
as a localized increase in allelic frequency of the benefi-
cial mutations towards fixation in the population. Non-
ancestral alleles at mutated loci are called “derived”
alleles and usually, the function-altering derived alleles
create the phenotypic diversity. The excess of recently
selected beneficial (ancestral or derived) alleles results in
a ‘hitchhiking’ of neighbouring polymorphisms which re-
sults in extended haplotype homozygosity in the region
of selection [22]. We selected three single test statistics
which capture the increase in highly differentiated loci
(FST), or increase in derived allele frequency (ΔDAF and
ΔSAF), or the increase in haplotype homozygosity (XP-
EHH) along the genome in each of the five datasets. A
brief implementation of each test statistic is described
below. The new method, which we term as composite
selection signal (CSS), combines the three estimates of
the single selection tests in a single index.
FST
The fixation index (FST) of population differentiation is
estimated from the deviation in allele frequency between
populations compared against the within population
polymorphic frequency [26]. It can detect selection sig-
natures using genetic polymorphism data by a pairwise
comparison between two contemporary populations.
SNP-specific FST values were computed for each pair of
phenotypically contrasting groups within all the sets of
cattle and sheep data using a custom R script available
upon request. Extreme positive values of FST for the par-
ticular locus are indicative of high levels of reproductive
isolation of the two populations and divergent selection
in both or strong positive selection in one of the popula-
tions and/or random drift.
ΔDAF
Highly differentiated SNPs with an excess of new muta-
tions (derived alleles) can be identified by the distribu-
tion of derived allele frequency (DAF). Change in the
DAF (ΔDAF) was calculated as the difference of DAF in
the putative selected population or group (DS) and the
DAF in the alternative non-selected populations or
groups (DNS), where ΔDAF =DS −DNS as given in
Grossman et al. [23]. ΔDAF scores have an approximate
normal distribution. We standardized ΔDAF to have a
zero mean and unit variance to identify the outlier SNPs.
The use of the ΔDAF statistic was restricted to cattle data
where the derived and ancestral allele could be inferred
unambiguously. In sheep, no such out-group was avail-
able; hence, the ancestral allele could not be inferred.
ΔSAF
To accommodate the lack of information on ancestral
allele in sheep, we developed a simple statistic based on
the allele frequency differences between the populations.
Based on the observed allele frequency distributions, we
calculated the directional change in the selected allele
frequency (ΔSAF) across two populations i and j, so that
ΔSAF ¼ fAi

−fAj
, where, fAi

is the frequency of allele A,

the major allele in the putatively selected population i;
similarly, fAj

is the frequency of allele A in non-selected
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population j. ΔSAF scores were also standardized to Z~
N(0,1). Since the estimates of ΔDAF and ΔSAF are a
function of the allele frequency distributions, a signifi-
cant association is expected for loci under strong selec-
tion and can be used alternatively depending on the
availability of required information about derived and
ancestral alleles. Comparison between ΔDAF and ΔSAF
to validate the latter using the cattle data has shown a
very strong correlation (r > 0.8) for the SNP scores at
candidate gene regions and genome-wide. Replacement
of ΔDAF by ΔSAF as input in CSS has shown no appre-
ciable difference in the results for the control regions of
cattle (data not shown).
XP-EHH
A multi-allelic (haplotype based) test has many advan-
tages in studying genome-wide patterns of divergence
over single locus (SNP) analyses, since the latter may be
less informative due to ascertainment bias in the SNP
discovery process [59]. Long-range haplotype (LRH)
tests can detect the signals of positive selection by find-
ing common alleles carried on unusually long haplo-
types. Due to LD, selection pressure on a beneficial
allele at a polymorphic locus can also affect the neigh-
bouring neutral loci, resulting in long haplotypes of low
diversity across extended regions [60]. Extended haplo-
type homozygosity (EHH) detects selection signatures by
comparing a base (core) haplotype, characterized by high
frequency and extended homozygosity, with other haplo-
types at the selected locus. EHH is the probability that
two randomly selected chromosomes carrying the candi-
date core haplotype are homozygous for the entire inter-
val spanning the target region for a given locus. The
EHH statistic depends on the allele frequency and the
strength of LD with neighbouring loci; hence, it is
applicable to an incomplete selective sweep when the
selected allele becomes very frequent but is not yet fixed
within a given population. EHH is less robust in a
situation where the selected alleles may have reached
fixation and their alternative alleles have disappeared
in a population i.e., a complete selective sweep [43].
Complete selective sweeps can be dealt with using the
across population EHH (XP-EHH) test, which compares
each population (breed) with the other population(s) on
corresponding haplotypes. XP-EHH has high power to
detect selection signatures in small sample sizes and
power may be gained by the grouping of genetically
similar breeds [22,23,29,43]. We calculated the XP-EHH
for each of the five datasets using the procedure de-
scribed by Sabeti et al. [22]. Further, XP-EHH scores
were standardized in each analysis so that a genome-
wide distribution of all scores has zero mean and unit
variance.
Composite Selection Signals (CSS)
Three selection tests (FST, XP-EHH, ΔDAF or ΔSAF)
were combined with the hypothesis that a common sig-
nal across the multiple test statistics would be detected
as an extreme CSS score at the trait specific genomic
positions. The following outlines the method used to
compute CSS scores from combining the three compo-
nent test statistics for the same SNP, as well as deter-
mining p-values for these composite tests, to test for the
existence of a common signal.
Let Tij be the test statistic using method i, (i = 1, …, m)

calculated at SNP j, (j = 1, …, n). Then for each test stat-
istic type i, obtain the rank of each observed test statistic
across all n SNPs, say Rij = rank(Tij), which takes values
1,…, n. Next, these ranks are converted to fractional ranks
by re-scaling them to lie between 0 and 1, i.e. R′ij = Rij/
(n + 1), giving values from 1/(n + 1) through n/(n + 1).
Note that the fractional rank does not use the magni-

tudes of the actual test statistics: this makes it inherently
robust, as in any other nonparametric procedures that
are based on ranks. However, there is therefore some
loss of information. Some of this information may be re-
covered by converting the fractional ranks to z-statistics,
Zij =Φ− 1(R 'ij), where Φ− 1(⋅) is the inverse cumulative
distribution function (CDF) for a standard normal, i.e.
maps values 0 through 1 to an underlying standard nor-
mal distribution, Z ~N(0,1). Once converted to normal
scores, the average z-values were calculated at each SNP
position, �Zj , j = 1, …, n, and p-values were directly ob-
tained from the distribution of means from a nor-

mal distribution, �Z e N 0;m−1ð Þ , i.e. p ¼ 1−Φ m
1=2 �Zj

� �
where Φ(⋅) is the CDF for a standard normal distribution.
The log-transformed p-values (−log10p) corresponding

to the set of mean Z values ( �Zj) were declared as the
composite selection signals (CSS) and these were plotted
against the genomic positions to identify the significant
selection signals. If there is a common signal across the
multiple test statistics, this will show up as an excess in
CSS at that point, otherwise, CSS may be dampened
down, i.e., regressed to the genome-wide average.

Significant SNPs under selection
The results from five datasets (Table 1) were compared
across three constituent tests and CSS. In the absence of
a known probability distribution for most cases of the
test statistics used in this study, SNPs with extreme test
scores (top 0.1%) in the genome-wide distribution were
considered significant [11]. Selected variants tend to
impose the selection pressure on neighbouring alleles
because of hitchhiking; therefore, significant signals are
expected to cluster together. Hence, in order to
minimize the spurious noise from single SNP tests with
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resultant false positives, the test statistics were averaged
(smoothed) over SNPs within 1 Mb sliding windows
centred at each SNP along the chromosomes.
Genomic regions and genes under selection
Clusters consisting of a multiple SNPs with the extreme
CSS test statistics (top 0.1%) spanning 1 Mb windows
around the SNP with most extreme value were selected.
This was termed as a significant cluster by each test and
its boundaries were defined by the first and last SNP.
Consecutive clusters spaced less than 1 Mb apart were
merged into a single cluster. Further, for mining candidate
genes, we define the genomic regions underlying the sig-
nificant clusters by including an additional 0.5 Mb on each
side, considering genome-wide uniform LD patterns.
For comparison across multiple tests, we identify the

genomic region by each test and count the numbers of
significant SNP scores in other selection tests within
each region. For example, at the first step, regions were
defined by CSS and significant SNPs were counted in
XP-EHH, FST and ΔDAF (or ΔSAF).
The significant genomic regions were investigated for

genes that mapped on the respective genome assembly
of both species for the candidate traits. For the genes in
non-candidate regions identified by CSS, we further in-
vestigated the respective subpopulation for any add-
itional phenotypes that might have been under positive
selection. Similarly, genes underlying the significant gen-
omic regions in geographic population groups of cattle
were also investigated to understand the historic and
commercial imprints of selection.
False discovery rate
The control of false positive signals in multiple hypoth-
eses testing is essential in genomic studies. The false dis-
covery rate (FDR) is considered a reliable statistical
method for correction in case of multiple comparisons.
The estimation of FDR is influenced by the accuracy
of the p-value estimations and the validity of their
underlying distributional assumptions. Correctly estimated
p-values from the null hypothesis are assumed to exhibit a
uniform distribution. Usually, on the other hand, observed
distribution of p-values from multiple tests consists of a
mixture of distributions of p-values from true null hypoth-
eses along with true alternative hypotheses. To improve
the accuracy of FDR estimation, empirical p-values from
non-smooth CSS were calibrated using the constrained
regression recalibration (ConReg-R) method so that the
observed p-values have the properties of an ideal empirical
p-value distribution [61]. The tail area based FDR
(q-values) were estimated from the calibrated p-values
using the R package “fdrtool” [62] with its default options
for “statistic = p-value”, when it uses the empirical data
below the 75th percentile to determine the null distribu-
tion of the test statistics.
FDR were computed against the calibrated p-values

for the raw CSS scores of each validation dataset ana-
lysis. Within the significant region boundaries, the per-
centages of SNPs having FDR ≤ 5% were calculated. To
differentiate the distribution of true null and true alter-
nate hypotheses, we compared the density distribution
of FDR (q-values) of SNPs within significant regions
against the rest of genome-wide SNPs.

Results
Identification of significant loci
The map of chromosomes containing highest empirical
CSS scores within each trait-wise dataset (A to D) is pre-
sented in Figure 1. Genome-wide comparisons of empirical
distributions of all the selection tests across the four valid-
ation datasets are shown in (Additional file 4: Figure S1),
(Additional file 5: Figure S2), (Additional file 6: Figures S3)
and (Additional file 7: Figure S4). A strategy of smoothing
SNP-wise empirical statistics was applied to three compo-
nent selection tests and composite selection signals: for
each case, the mean number of SNPs in genome-wide
1 Mb windows was 17 and 19 SNPs in cattle and sheep
data, respectively (Additional file 8: Figure S5). The win-
dows containing fewer than 5 SNPs were discarded from
further analysis. After pruning such low SNP density win-
dows, 38,211 (dataset A) and 38,441 (dataset B) sliding
windows were retained for polled and double muscle cat-
tle, respectively. Similarly, 47,438 (dataset C) and 47,442
(dataset D) sliding windows of averaged (smooth) test
statistics were used from the polled and double muscle
sheep analyses, respectively.
Genome-wide low to moderate correlations among the

pairs of three single tests suggest a partial concordance
among these tests; whereas, CSS has a high correlation
with its all component tests, which suggests capture of
information across multiple tests (Additional file 9:
Figure S6). The genome-wide map of empirical scores
(non-smoothed) and smoothed scores indicates a number
of genomic regions with clusters of SNPs with high scores
in each of the four analyses.
The magnitude of smoothed CSS in the significant

clusters was affected by the SNP density and extent of
LD between the SNPs within the sliding window. For
example, the POLL locus is located on the proximal end
(rich crossing over region) of BTA-1 where the high
recombination rate reduces the LD among neighbouring
SNPs (Table 1). In dataset A, highly significant raw CSS
scores were located in the candidate gene region on
BTA-1 (Figure 1-A), whereas existence of strong LD
(see Discussion) on BTA-14 has lifted this region to the
top of the smoothed distribution as shown in the



Figure 1 Composite selection signals (CSS) for validation datasets. Chromosome-wise plots of highest CSS scores are shown for trait-wise
datasets of cattle (A and B) and sheep (C and D). The dotted red horizontal lines in the CSS plots indicate the genome-wide 0.1% thresholds of
the empirical scores. Smooth lines are the smoothed CSS scores by averaging SNPs within each 1 Mb window. Vertical green lines indicate the
location of candidate genes at each chromosome as follows: A = POLL locus for polledness in cattle (dataset A), B = MSTN for double muscle in
cattle (dataset B), C = RXFP2 for polledness in sheep (dataset C), and D = MSTN for double muscle in sheep (dataset D).
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genome-wide distribution in (Additional file 4: Figure
S1-A). In datasets B, C and D, in contrast to dataset A,
the magnitude of raw as well as smoothed CSS scores
remained on top in the genome-wide distribution be-
cause their candidate regions were localized in cold-
spots of less frequent recombination (Additional files 5,
6, 7: Figure S2 to S4).

Significant genomic regions under selection in validation
datasets
Of the genome-wide smoothed test statistics, the top 39
and 48 SNPs (i.e. top 0.1%) in the cattle and sheep data-
sets, respectively were used to find significant regions
under selection. A number of selection signals were
found in each dataset by all the test statistics. Overall, 9,
12, 10 and 5 genomic regions were detected in datasets
A, B, C and D, respectively (Additional file 10: Table S4).
These multiple significant regions were the result of low
concordance between the component tests and their
power to capture slightly different characteristics of the
selective sweep. Note that across the four datasets, 15,
15 and 21 genomic clusters were captured by XP-EHH,
FST and ΔDAF/ΔSAF, out of which 4, 5 and 13 regions
were specific to individual tests. These 36 regions were
narrowed down to 12 significant regions with the CSS
approach (Table 2).
Regions identified through CSS were further investi-

gated to find specific genes associated with positive se-
lection. A number of genes were found in each region;
therefore, precise inferences about the specific target of
selection may be difficult. The results from the compo-
nent tests suggest a high concordance for significant
clusters in the candidate regions but also a number of
additional significant signatures located in genomic re-
gions of unrelated or unknown genes (Additional file 10:
Table S4). The concordance between the three distinct
tests statistics at the four control regions establishes the
support of CSS for detecting true selection signatures.
The CSS test has fewer significant clusters and most of
these are close (where SNPs are missing within genes) or
harbouring the genes associated with the traits of inter-
est in all datasets. We briefly describe the genomic



Table 2 Genomic regions under selection in cattle and sheep identified using composite selection signals (CSS)

Regiona Chr Positionb

(Mb)
Number of significant SNPs Total

genesc Known genesd Gene function
CSS XPEHH FST ΔDAF

A1 1 1.01-2.63 10* 9 1 - 15 POLL locus Polledness

A5 13 63.90-65.97 18 23* 1 5 26 UQCC, GDF5 Stature

A7 14 23.78-25.61 11 7 5* 10* 12 PLAG1, CHCHD7 Stature

B1 2 6.15-7.82 10* 11* 3 - 9 MSTN Double muscle

B2 6 66.55-68.11 11 8 - - 6 COX7B2, FRYL Reproduction

B6 16 44.49-46.05 11 11 1 - 12 NMNAT1, PIK3CD, SPSB1, SLC Embryonic growth, immunity

B8 18 13.34-15.03 5 3 1 - 33 MC1R Coat colour

C5 10 28.54-30.05 26* 17* 34* 5* 9 RXFP2 Polledness

C8 13 66.97-68.50 7 - 7 3 17 ASIP Coat colour

C10 25 6.67-8.29 14 10 - 2 16 LRP4 Bone growth

D2 2 119.62-122.30 20 11* 10 16 26 - -

D4 2 124.25-128.05 28* 22 27 27 47 MSTN Double muscle

Cluster of a minimum of three significant SNPs within a window spanning 1 Mb genomic locations centred on a core SNP above the threshold (top 0.1%) in CSS
(smoothed statistics) are reported and are compared with the constituent tests.
aPrefix (A, B, C and D) with each region number represents the dataset as defined in Table 1 and rows in bold indicate the genomic regions containing candidate
genes. A complete list of 36 genomic regions, their positions, range of all significant clusters (for each test) and genes under clusters of significant SNPs is shown
in [Additional file 10: Table S4].
bPosition of genomic regions includes a 0.5 Mb extension on both sides of boundaries of the main cluster identified by CSS to compare constituent tests and
count of genes (see Methods). Large sized (> 1 Mb) regions are formed by joining successive (<1 Mb apart) clusters.
cGenes mapped on bovine (UMD3.1) and ovine (OARv1.0) assemblies within the boundaries of genomic regions.
dCandidate genes with known functional/structural effects for a particular trait present in the contrasting panels of multiple breeds.
*Indicates the cluster of highest ranked SNPs (raw scores) for a particular selection test.
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regions under selection identified from each dataset by
CSS as follows:
Signatures of selection in validation datasets
The genome-wide map of empirical scores (non-smoothed)
indicates that the highest CSS above the 0.1% threshold
were in the candidate regions in all of the four analyses
(Figure 1). At least five significant SNPs for CSS were found
for each trait within the respective genic regions. The three
component tests (FST, ΔDAF or ΔSAF, and XP-EHH) were
found coinciding in the candidate gene regions but with
fewer and lower ranked SNPs as compared to the CSS test.
In dataset A, significant CSS scores were found in the

candidate region (BTA-1) harbouring the POLL locus for
polledness in cattle (Figure 1-A, and region A1 in
Table 2). Two additional significant clusters were found
on BTA-13 (region A5: UQCC-GDF5 genes) and BTA-14
(region A7: PLAG1-CHCHD7 genes) (Table 2, Additional
file 4: Figure S1-A).
In dataset B, the highest CSS scores were localized at

BTA-2 flanking MSTN, the gene responsible for double
muscling in cattle (Figure 1-B, and region B1 in Table 2).
Additional peaks of significant CSS were located on
BTA-6 (region B2: COX7B2 gene and near FRYL, PDGFRA
genes), BTA-16 (region B6: SLC25A33 and SLCC45A1
genes) and BTA-18 (region B8: MC1R gene) (Table 2,
Additional file 5: Figure S2-A).
In dataset C, the candidate region on OAR-10 har-
bouring the RXFP2 gene for polledness in sheep con-
tained the extreme CSS scores (Figure 1-C, and region
C5 in Table 2). In addition, OAR-13 (region C8: ASIP
gene) and OAR-25 (region C10: LRP4 gene) exhibit the
one significant peak each (Table 2, Additional file 6:
Figure S3-A).
In dataset D, extreme CSS scores were found flanking

the MSTN gene for double muscling in sheep on OAR-2
(Figure 1-D, and region D4 in Table 2). Notably, both
significant peaks are on OAR-2 and are in the candidate
region or in LD with the candidate gene region spanning
an 18 Mb region (Table 2, Additional file 7: Figure S4-A).
The non-candidate regions in datasets A, B and C,

contain genes that have been previously linked to vari-
ous phenotypes in several species. Some of these genes
were associated with phenotypes within our subpopula-
tions (see Discussion). Overall, presence of the signifi-
cant clusters of extreme CSS scores in the candidate
regions of the cattle and sheep cohorts indicates im-
proved power of CSS as compared to the constituent
individual tests.

False discovery rate (FDR)
While the distribution of p-values for regions without
evidence of selection is not uniform (Additional file 11:
Figure S7), there is nonetheless a clear ‘spike’ in the
frequency of very small p-values, lending support for
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evidence of selection signatures. Nonetheless, genome-
wide q-values were calculated for the calibrated p-values
to estimate the FDR for each analysis (Additional file 11:
Figure S7 and Additional file 12: Figure S8). Overall, the
top 0.1% of SNPs based on raw CSS scores of the four
datasets has considerably low FDR (q < 0.0001). Figure 2
shows a clear distinction between the density distribu-
tions of q-values for the SNPs in identified regions and
SNPs in the rest of the genome for each dataset. Table 3
further shows that the identified genomic regions have a
much higher proportion of SNPs with low q-values sug-
gesting strong evidence for selection signals in the data.
These proportions in the control regions in cattle are
85.7% (regions A1) and 90% (region B1) as compared to
genome-wide proportions of 9.8% (dataset A) and 6.2%
(dataset B), respectively. In sheep, 46.2% and 75.9% of
total SNPs have q ≤ 0.05 in candidate regions C5 and D4
as compared to much lower values of 5.3% and 2.4% for
datasets C and D, respectively for their neutral regions.
Similarly, in all the non-candidate regions in the four
datasets, the percentage of SNPs with q ≤ 0.05 is signifi-
cantly higher as compared to the rest of the genome
(Table 3).

Signatures of selection in geographically isolated multi-
breed populations of cattle
Finally, in dataset E, the smoothed scores from 37,827
sliding windows (after removing windows containing < 5
SNPs) were plotted along the genome in order to inves-
tigate the regions under selection. Figure 3 shows the
Manhattan plots of smoothed CSS scores for European
and African groups of Bos taurus cattle; complete list of
significant genomic regions and underlying genes in
both groups are listed in (Additional file 13: Table S5).
The comparison of each test by including and excluding
breeds with less than 10 and 20 animals showed negli-
gible differences for the effect of variable sample size
(especially low) of breeds in European group (Additional
file 14: Figure S9). It shows that breeds with a similar
history generally have shared patterns of genetic diver-
sity. In addition, it also provides evidence that computa-
tion of CSS is not sensitive to the individual sample size
of the participating breeds for outbred populations.
We note that, overall, CSS method identified clear

peaks of higher magnitudes in European group as com-
pared to the African cattle (Figure 3). The differences in
the historical and recent selection pressures can result in
genome-wide excess of rare, potentially derived, alleles
within a population as compared to a reference neutral
population. It was further evident from the genome-
wide average DAF (MAF) values of 0.38 (0.26) and 0.32
(0.20), respectively showing that European and African
cattle have experienced variable selection pressures. A
comparison of chromosome-wise average of DAF and
MAF shows a consistently higher selection in European
group (Additional file 15: Figure S10). Hence, we further
investigated the significant genomic regions of European
cattle for their underlying genes in relation to their
unique phenotypes. Significant genomic regions were
identified on BTA-1, BTA-13, BTA-14 and BTA-16 by
CSS (Figure 3-A). These regions have been generally
supported by the constituent selection tests and they
contain genes of known functional role in several traits
of economic importance in European cattle (Figure 4).
However, additional genomic regions identified individu-
ally by each of the constituent tests – other than com-
mon with CSS – did not capture any known genes as
candidates of selection signatures (Additional file 13:
Table S5).

Discussion
This study illustrated a new approach, the CSS, for dis-
covery of selection signatures in outbred populations,
which combines three commonly used test statistics into
a single index. As expected, each of individual tests (FST,
XP-EHH, ΔDAF/ΔSAF) can distinguish selection from
neutrality but targets slightly different characteristics in
the genetic polymorphism data that has been shaped by
the selection. Hence, there was only partial agreement in
the signals of selection (signatures) in these single tests
at the candidate loci. Individually, the three tests also
identified additional unique significant clusters with no
known candidate genes that indicate their lack of sensitivity
to localize real selection signature and high false selection
signals (Additional file 10: Table S4). Many earlier studies
in cattle and sheep reported selection signatures detected
based on these individual tests [11-13,18,32,39-42,64].
The strength of CSS is to combine the component

signals so that strongly selected regions harbouring a
common signal across the constituent test statistics can
be identified. The complementary signals from con-
stituent statistics resulted in increased magnitude of
CSS at target loci. For example, in dataset D, the high-
est CSS cluster was found at the candidate gene region
whereas, XP-EHH localized 5 Mb upstream and FST and
ΔSAF localized their top ranked signals at 4 Mb down-
stream of this target region (Additional file 7: Figure S4).
Overall, our results suggest that the CSS successfully lo-
calized candidate gene regions in both species and both
traits, thus providing a validation for this method (Figure 1,
Table 2).

Signatures of selection in traits specific groups of cattle
and sheep
Polled cattle
A cluster of significant SNPs was successfully localized
in the candidate region A1 on BTA-1 that flanks the
functional mutations in the POLL locus for polledness.



Figure 2 Density distribution of false discovery rate (q-values) of SNPs in significant clusters (orange) and the rest of the genome-wide SNPs
(gray). Density plots are shown for polled cattle (A), double muscle cattle (B), polled sheep (C) and double muscle sheep (D). Vertical dashed (−−−−−)
lines indicate q-values (FDR) = 0.05 in each subset. q-values were calculated from the calibrated p-values. Histograms of the mean Z, empirical and calibrated
p-values are shown in Additional file 7: Figure S4. Relationship between q-values and calibrated p-values is shown in Additional file 8: Figure S5.
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In addition, there were two significant clusters on BTA-13
and BTA-14. We further investigated dataset A for any
additional structure within the subpopulation of selected
cattle breeds. In fact, besides the polledness and horn
classification, there were also differences in the body
size (stature) between the two groups. The polled group
Table 3 False discovery rates within identified genomic regio

Region in
Table 2 Chromosome

Total SNPs

na

A1 1 14

A5 13 19

A7 14 11

B1 2 10

B2 6 11

B6 16 11

B8 18 12

C5 10 26

C8 13 9

C10 25 15

D2 2 23

D4 2 54
aTotal number of SNPs located within the boundaries of the main cluster identified
(shown in Table 2).
(Angus, Belted Galloway, Galloway, Murray Grey, Red
Angus, Red Poll and Romosinuano) contains breeds of
small to medium body size; whereas, in the horned
group all of the breeds were of medium to large size,
except Scottish Highland (7% of the horned group sam-
ples) which is a small body size breed (Additional file 1:
ns in each validation dataset of cattle and sheep

SNPs in region q ≤ 0.05 SNPs outside regions q ≤ 0.05

% % (in dataset)

85.7

9.8 (A)78.9

81.8

90.0

6.2 (B)
63.6

36.4

41.7

46.2

5.3 (C)44.4

60.0

87.0
2.4 (D)

75.9

by CSS and their position exclude 0.5 Mb additions for gene investigation



Figure 3 Composite selection signals (CSS) for geographically isolated cattle populations. Manhattan plots of -log10(p) of CSS are shown
for (A) European Bos taurus and (B) African Bos taurus. Genome-wide smoothed CSS scores for SNPs on consecutive chromosomes are shown in
various colours. Dotted red line in the CSS plots indicate the genome-wide 0.1% (upper cutoff) thresholds of the empirical smoothed scores. Gray
stars are shown for raw CSS scores in the genome-wide background and bold at the putative selection regions underlying the significant clusters.
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Table S1). Indeed, the significant cluster on BTA-13 is
located at the 66 Mb (region A5) which harbours a pair
of genes (UQCC-GDF5) that has been significantly associ-
ated with variation in human height [65-67] and body
measurement traits in cattle [68]. In European and East
Asian human populations, strong signals of recent selec-
tion have also been identified near the GDF5 gene [60].
Similarly, the second most significant additional cluster on
BTA-14 (region A7) in dataset A harbours the PLAG1 and
CHCHD7 genes which have been mapped for stature in
cattle and human [17,19,20,48,67,69,70].

Double muscle cattle
The highest CSS scores were found in the candidate
regions on BTA-2 (region B1) which harbours the
functional mutations in MSTN gene for double musc-
ling in cattle. In dataset B, several genes of interest
were found in four additional clusters at regions B2,
B6, and B8. Region B2 contains the FRYL gene within
the peak at 68.0 Mb position on BTA-6. Significant se-
lection signatures have previously been detected in
this region and its flanking gene PDGFRA. This gene
has been found connected to multiple molecular net-
works involving β-estradiol and is associated with
reproduction in cattle [13]. Region B6 harbours solute
carrier family genes, SLC25A33 and SLCC45A1 cover-
ing the 45.0-46.0 Mb position on BTA-16. This region
was reported as carrying highly differentiated loci and
extended haplotype homozygosity in multiple breeds
[71]. Region B8 contains the MC1R gene near the peak
at 14.0-15.0 Mb position on BTA-18, where strong selec-
tion signatures have previously been identified involving
several breeds that have also been used in the present
study [15]. The melanocortin 1 receptor (MC1R) gene is
the candidate for coat colour in cattle [13,15,20,72,73].

Polled sheep
In polled sheep, the regions with highest CSS scores
were on OAR-10 (region C5) near the RXFP2 gene for
polledness. In addition, OAR-13 (region C8) and OAR-
25 (region C10) exhibit the two significant peaks at posi-
tions 68.0 Mb and 8.0 Mb, respectively. At the peak on
OAR-13 the footprints of selection have previously been
reported for the ASIP gene [11] which controls black
and white coat colour in sheep [74]. Selection signatures
have also been reported for the cluster on OAR-25
(region C10) but the gene(s) and cause of selection were
unknown Kijas et al. [11]. However, the low density
lipoprotein-related protein 4 (LRP4) gene, located near
this region (C10), controls the inhibitory function on
bone growth in human [75], hence, it may have some
role in horn formation or it may play some role in the
body size by controlling the body bone mass in sheep.
Furthermore, this region contains a putative major gene/
QTL for wool quality and fibre diameter across a range
of breeds [76,77].



Figure 4 Circos plot of genome-wide composite (CSS) and constituent (XPEHH, ΔDAF and FST) smoothed test statistics in European Bos
taurus cattle. Significant selection signatures in each test are highlighted with the red dots. Genes of important functions underlying the significant
genomic regions identified by CSS are annotated and complete list of genes is available in (Additional file 13: Table S5). Circos plot was created using
modified functions from the R package “RCircos” [63].
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Double muscle sheep
The genomic region with highest CSS scores was found
on OAR-2 (region D4) near the MSTN gene for double
muscling in Texel sheep breeds. In dataset D, all the
additional significant peaks are also on OAR-2 and are
in the candidate region or in LD with the candidate gene
location spanning a region of almost 10 Mb. These re-
sults suggest that a very strong selection pressure would
identify a broad genomic region of selection signature,
which may limit the power of fine-mapping and identify-
ing the causal mutation in such a resource population.
However, the complementary signals from constituent
statistics at the target gene notably improved the magni-
tude of CSS.
Clearly across all traits in both species, composition of
the breed panel in which selection signatures are to be
detected may give rise to associations with more than
one trait, i.e. confounding, which could give rise to spuri-
ous signals open to misinterpretation. Hence, independent
validation or within-breed linkage studies may be required
for further confirmation of such selection signatures.
Signatures of selection in geographically isolated
Bos taurus
Strong selection signatures for several economically im-
portant traits in European cattle were identified at five
genomic regions (Figure 3-A, Figure 4). At the proximal



Randhawa et al. BMC Genetics 2014, 15:34 Page 13 of 19
http://www.biomedcentral.com/1471-2156/15/34
end of BTA-1, the POLL locus [53] was identified for the
whole group. While the polled phenotypes is not com-
mon in all the European breeds, due to the economics
of dehorning and increased demand for animal safety ac-
quired in the natural polledness, the POLL locus is being
introgressed in most of the commercial cattle breeds.
Moreover, our results can also be explained as the com-
mon haplotypes at the POLL locus found to be shared in
several polled and horned breeds [47].
On BTA-13, CDC123 and CAMK1D genes have been

reported to participate in various functions of pancreatic
beta-cell and genetic variants at this locus have been as-
sociated to type 2 diabetes susceptibility in human [78].
The associated gene pair has been known for its role in
insulin-related metabolic traits [79]. In European cattle,
these genes may be involved in several metabolic path-
ways for sufficient availability of energy for improved
growth, production and maintaining body temperature
in a temperate environment.
The prominent selection signal at the proximal end of

BTA-14 underlies the DGAT1 gene that has been re-
ported to have a significant role in several traits of dairy
and beef production [14,28,80-84]. At another location
on BTA-14, the stature (PLAG1-CHCHD7) genes (as
discussed above) were also identified for the European
group. The region on BTA-14 has been found to have a
significant enrichment for the runs of homozygosity
(ROH) – an indicator of strong LD – in the majority of
cattle breed types (beef, dairy, English, European etc.)
using the SNP data from the 50K and 800K BovineSNP
chip assays [46]. Cattle have extensive LD patterns com-
pared to human [85]. LD is likely to be even more exten-
sive in the vicinity of a selective sweep and hence the
frequency of selected alleles in these regions is likely to
be high, being driven towards fixation [86].
The extreme peak in CSS for European cattle was

found near the centre of BTA-16. The existence of a
huge CSS can be explained such that several genes at
this region have been reported as the candidate of
strong selection. Signatures of selection have identified
SLC25A33 and SLCC45A1 genes for their important role
in immunity related to tropical adaptation [71]. Simi-
larly, PIK3CD and SPSB1 genes were also identified
under selection respectively linked to immune response
and immune regulation in both Angus and Simmental
[17]. Signatures of selection have also been found in sev-
eral breeds for NMNAT1 [32] and RERE [17] genes
which have been associated with embryonic growth and
reproductive development. At the same location, the
KIF1B gene was identified under strong selection in
Holstein cattle [13]. In addition, another gene, AGTRAP,
which is located at 1 Mb upstream to the CSS peak, has
been identified for dairy production due to its role in
mammary glands [15].
Overall, in European cattle, we note that the mag-
nitude of CSS scores corresponded to the diversified
and extensive role of underlying candidate genes.
This provides further evidence for CSS to capture
trait-specific genomic regions as illustrated in valid-
ation datasets.
In the African Bos taurus, in general, the lack of pro-

nounced selective pressures as compared to the European
counterparts has resulted in localizing the significant CSS
in non-genic regions or regions harbouring genes of
unknown effects (Additional file 13: Table S5). Additional
limiting factors such as SNP ascertainment bias and high
admixture in African taurine due to excessive crossbreeding
with African indicine cattle could also have contributed to
the randomly dispersed signatures of selection.
The effects of SNP origin (ascertainment bias) on vari-

ous estimators of population genetic parameters and
some practical methods for correcting them have been
discussed elsewhere [87-90]. In cattle, the SNP panel
(50K BovineSNP chip) was designed predominately based
on the genetic polymorphisms in European breeds
[3,17,52] which resulted in low representation of rare
variants, thus a lower SNP diversity within some
non-European cattle breeds, especially in Bos indicus
or African Bos taurus. The SNP ascertainment bias
has been found to have profound effects in the com-
bined analysis of worldwide breeds [3,10,38]. The sig-
nificant SNPs clustering in composite tests partly
depend on the haplotype-based component tests, es-
pecially those that are derived from EHH [16,23,38],
which can be significantly affected by breeds used to dis-
cover SNPs [91].
We adopted a cautious approach by excluding the

indicine breeds from the available genotypic data of the
African cattle [10,38,49] to minimize diversity within the
African cattle group in dataset E. Generally, morpho-
logical and genetic data suggest a common origin for
African and European taurines [39]. That can be suitable
in analyses of multi-breed group comparison, i.e., assum-
ing that both populations are closely related, while
differentially selected at a few genomic regions. Never-
theless, phylogenetic investigations have shown early
divergence between the African and European taurine
cattle and high genetic relatedness between the African
taurine and indicine cattle [3,10]. Indicine allelic enrich-
ment in the African taurines Y-chromosome [92] and
autosomal SNPs has also suggested a high genetic ad-
mixture in several African breeds [10], that could have
swept out several taurine-specific genomic regions. Hence,
genome-wide high heterogeneity within the African co-
hort could not help resolve the mapping signature of
selection for various candidates of selection; for example,
climatic adaptation and resistance to various pathogens in
African Bos taurus [49,64].
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Comprehensive discovery analyses performed within
the African breeds are more likely to capture genomic
regions that have been targets of selection in those
breeds, as the genome-wide scans for selection signa-
tures comparing relatively close populations are least
confounded by common biases [93]. Moreover, add-
itional accuracy is also expected by using high-density
SNP panels such as the BovineHD SNPchip (800K SNPs)
that has been designed to be less sensitive to the ascer-
tainment bias for non-European cattle breeds [94].
Overall, despite the several confounding factors that

may have limited the localization of previously known
genes in the African cattle, the existence of significant
CSS in functionally unknown genes and noncoding
regions indicate putative regions under selection. In
several species, the non-coding DNA sequences have
been predicted for their multiple roles in structural and
regulatory mechanism of chromosomes including DNA
replication, epigenomic modifications, regulation of tran-
scription and translation. With the knowledge of incom-
plete genomic annotations and several genes of unknown
functions in cattle, the functional importance of noncod-
ing regions under evolutionary selective pressure cannot
be underestimated. Functional annotation approaches and
resources [95] such as, across species comparison for
conserved DNA sequences may help further elucidate the
uncharacterized selective sweeps of our results.

FDR and power of CSS
Considering all the individual regions as independent
events of selection in the genome, all the identified gen-
omic regions in validation datasets had a much higher
proportion of significant SNPs (q < 0.05) as compared to
the rest of the genome in each dataset (Figure 2, Table 3).
Overall, combining multiple test statistics reduced the
false signals of CSS as compared to individual constitu-
ent tests (Additional file 10: Table S4). The strategy of
grouping the phenotypically alike populations applied in
the present study could have further reinforced the se-
lection signals at the common trait’s candidate regions
while neutralizing the population specific patterns of
diversity elsewhere [15].
The power (sensitivity) of the individual methods to

discriminate between true positives (due to directional
selection) and false positives (due to the forces other
than selection) is a critical factor in the choice of selec-
tion tests. A combination of multiple statistics is ex-
pected to improve the power of composite statistics by
complementing the detectability of positive selection by
individual tests [96], e.g., the haplotype-based tests may
be affected due to the distribution of recombination hot-
spots across the genome [31]. Haplotypes, on the other
hand, being patterns of multiple SNPs, are less sensitive
to ascertainment schemes of the genome-wide panels of
SNPs. SNP-based tests localize in unknown and non-genic
regions more frequently and are less specific as compared
to haplotype estimates as shown in (Additional file 10:
Table S4) and Qanbari et al. [32]. CSS combines multiple
characteristics of the genetic diversity from the single
locus polymorphisms and haplotype patterns which makes
it less sensitive to the confounding effects of demography
and recombination [97,98]. However, CSS being a com-
posite of SNP and haplotype-based test statistic, can still
be sensitive to SNP density, SNP ascertainment bias and
the extent and variation of LD across the genome.
The power of most studies of genome-wide selection

scans is low because of the small sample sizes, SNP density,
SNP ascertainment scheme and the test statistics used.
Panels of outbred populations consisting of multiple breeds
can be used to increase the sample size and to enhance the
power of CSS. A large number of samples genotyped with
various SNP panels are becoming available in many species.
These data can be combined using imputation strategies
[99] to increase the power of CSS.
It is noteworthy to mention that without simulations,

qualitative evaluation of gain in power of CSS is not
possible for comparison with the constituent tests.
Similarly, a direct comparison of CSS with the previ-
ously published methods of combining multiple statis-
tics [16,23,31,33,34,100] requires simulation data from
robust models to depict the underlying dynamics of
the population of interest along with powerful compu-
tational tools for permutation iterations [15]. Such
comparisons are difficult for a real dataset where it is
almost impossible to subset contrasting populations
for a single event of selection. However, successful and
improved localization of candidate genes in cattle and
sheep, by simply combing rank distributions of con-
stituent tests, indicates the power of CSS. Moreover,
CSS can incorporate additional test statistics to add
power for localizing the selection signature. The choice of
additional tests to incorporate complementary evidence
may be based on their unique power under various as-
sumptions of selection, availability of data information
(phasing of ancestral and derived alleles) and a priori as-
sumptions about the dynamics of populations of interest.
Established selection tests, such as the across-population
Rsb [30] test and within-population estimates of positive
selection including integrated haplotype scores (iHS) [60],
haplotype allelic count statistics called Svd [97] and com-
posite log likelihood (CLL) [15], can also be included in
the CSS computation. However, combining too many
selection tests of similar specificity might bias the CSS
scores towards those characteristics of related tests.
This bias may be misleading when interpretations are
made to generalize the contribution of all the compo-
nent test statistics. Care is thus required to select
constituent tests of CSS.
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CSS is expected to be successful in identifying the can-
didate genes for complex networks and selection events
e.g., domestication, adaptation and production traits.
Complex traits are usually controlled by a very large
number of loci of small effects; consequently, selective
pressures on their causal mutations drive a very slow
change in the allele frequencies. This makes it more
challenging to discover such genetic variants of small ef-
fects. Comprehensive phenotypic records and robust trait-
wise classification are required to efficiently characterize
complex traits under selection. CSS can be further tuned
with additional selection tests appropriate to distinguish
genomic regions under selection for complex traits. To ro-
bustly map positive selection for complex traits, some spe-
cialized tests, such as birth date selection mapping [101]
designed to identify small changes in the allele frequency
due to selection of polygenic traits can be appropriate.
The biological functions underlying polygenic inheritance
are controlled by the interactions between large networks
of genes. Selective pressures depend on the degree of con-
tribution and the position of genes in the network [102].
The evolutionary properties of the complex traits can be
captured by exploring gene networks for the genes under
the selective sweeps. Overall, using CSS along with GWAS
[34], QTL mapping [100] and approaches including gene
pathways [103] can elucidate the mechanism underlying
diversity in complex traits.

Conclusion
We developed a method, composite selection signals
(CSS), which appears to be efficient in identifying selec-
tion signatures for traits and genes that have evolved
rapidly under various selection pressures. It is a very ro-
bust method for detecting selection signatures, as it does
not depend on any distributional assumptions (normal-
ity) of the constituent test statistics, and additional test
statistics can easily be included, if they become available.
The existence of strong signals linked to known candi-
date genes, even in the absence of any casual SNP in the
genotype data, validates the utility of the breed grouping
strategy and methodology for deriving composite selec-
tion signals. In addition, estimates of FDR also provide
clear evidence that any cluster of significant SNPs cap-
tured by CSS is highly likely to contain a strong candi-
date (gene or variant) of positive selection.
The majority of significant peaks outside the candidate

regions in validation subsets were linked to various add-
itional phenotypic classifications of cattle and sheep
cohorts. For example, implementation of CSS identified
UQCC-GDF5 as the plausible candidate genes for stature
which have known effects on development and skeletal
growth. Our results also replicated the previously re-
ported candidate locus containing PLAG1-CHCHD7
genes for stature in cattle. Other notable secondary
phenotypes include; coat colour, reproduction, bone
growth and multiple functioning transporters of the sol-
ute carrier family of genes.
In European cattle, the historical impacts of long-term

selection pressures for economically important traits
were identified for polledness, adaptation, metabolism,
growth rate, stature, immunity, reproduction and several
candidate genes related to dairy and beef production.
The presence of spurious selection signals is much

lower in CSS as compared to individual constituent tests
due to the unique signals of each constituent selection
test are reduced while combining multiple test statistics.
Taken together, CSS provides an improvement for the
predictions of positive selection and demonstrates that
probing the multiple pieces of evidence for positive se-
lection can provide important insights into understand-
ing trait-specific gene evolution.

Data availability
R scripts and high quality images are available from the
corresponding author on request.
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Additional file 1: Table S1. The information about the breeds, animals
and phenotype categories of cattle samples.

Additional file 2: Table S2. The information about the breeds, animals
and phenotype categories of sheep samples.

Additional file 3: Table S3. Chromosome wise information regarding
genotyping data of cattle and sheep.

Additional file 4: Figure S1. Manhattan plots of SNP-wise scores for
each selection test statistics (A: CSS, B: FST, C: XP-EHH, D: ΔDAF) for polled
cattle (dataset A). Gray dots in the background show raw scores and blue
and orange dots in the foreground show smooth scores, averaged over
SNPs within 1 Mb sliding windows. Red dotted lines indicate a threshold
of top 0.1 percentile of the genome-wide smoothed scores for each of
the selection test statistics. Red square dots in each plot show the
genome-wide highest raw signals.

Additional file 5: Figure S2. Manhattan plots of SNP-wise scores for
each selection test statistics (A: CSS, B: FST, C: XP-EHH, D: ΔDAF) for double
muscle cattle (dataset B). Gray dots in the background show raw scores and
blue and orange dots in the foreground show smooth scores, averaged
over SNPs within 1 Mb sliding windows. Red dotted lines indicate a
threshold of top 0.1 percentile of the genome-wide smoothed scores for
each of the selection test statistics. Red square dots in each plot show the
genome-wide highest raw signals. The square dots are in dark brown colour
in B plot as the highest FST signals is more than 3 Mb upstream from the
known candidate region on chromosome 2.

Additional file 6: Figure S3. Manhattan plots of SNP-wise scores for
each selection test statistics (A: CSS, B: FST, C: XP-EHH, D: ΔSAF) for polled
sheep (dataset C). Gray dots in the background show raw scores and blue
and orange dots in the foreground show smooth scores, averaged over
SNPs within 1 Mb sliding windows. Red dotted lines indicate a threshold
of top 0.1 percentile of the genome-wide smoothed scores for each of
the selection test statistics. Red square dots in each plot show the
genome-wide highest raw signals.

Additional file 7: Figure S4. Manhattan plots of SNP-wise scores for
each selection test statistics (A: CSS, B: FST, C: XP-EHH, D: ΔSAF) for double
muscle sheep (dataset D). Gray dots in the background show raw scores
and blue and orange dots in the foreground show smooth scores, averaged
over SNPs within 1 Mb sliding windows. Red dotted lines indicate a
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threshold of top 0.1 percentile of the genome-wide smoothed scores for
each of the selection test statistics. Red square dots in each plot show the
genome-wide highest raw signals. The square dots are in dark brown colour
in C and D plots where the highest XPEHH and ΔSAF signals are more than
3 Mb upstream and downstream, respectively, from the known candidate
region on chromosome 2.

Additional file 8: Figure S5. Distribution of the number of SNPs in
1 Mb sliding windows in cattle (A) and sheep (B). Bars in A and B
indicate the frequency of sliding windows containing various number of
SNPs out of the genome-wide distribution, i.e., 38,610 SNPs of cattle and
47,502 SNPs of sheep data, respectively (details in Table 1, S3). The bars in
red (black) colours show the mean ≈median (mode) numbers as 17 (18)
and 19 (20) of SNPs for cattle and sheep data, respectively.

Additional file 9: Figure S6. Genome-wide pairs plots (lower
diagonals), histograms (diagonals) and correlations (upper diagonals) for
constituent (XP-EHH, ΔSAF, FST) and composite selection signals (CSS) for
polled (A), double muscle (B), cattle polledness (C) and double muscling
(D) in sheep.

Additional file 10: Table S4. Complete list of genomic regions and
genes harbouring significant SNPs identified by four tests in four cohorts
of cattle and sheep data. Cluster of minimum three significant SNPs
within a window spanning 1 Mb genomic locations centred on a core
SNP above the threshold (top 0.1%) in multiple tests (smoothed statistics)
are reported and are compared with each other.

Additional file 11: Figure S7. Histograms of Mean Z, raw p-value and
calibrated p-values distributions of the CSS: Histograms (top to bottom in
each column) for polled cattle (column 1, red), double muscle cattle
(column 2, green), polled sheep (column 3, purple) and double muscle
sheep (column 4, blue).

Additional file 12: Figure S8. False discovery rate (FDR) against p-values:
q-values were calculated from the calibrated p-values. Vertical dotted (……)
and dashed (−−−−−) lines indicate calibrated p-values at 0.01 and 0.05,
respectively. Horizontal dotted and dashed lines indicate q-values (FDR)
at 0.05 and 0.1, respectively.

Additional file 13: Table S5. Selection signatures in European and
African Bos taurus cattle populations. Complete list of selection signatures
identified by composite (CSS) and constituent (XPEHH, FST, ΔDAF)
selection tests.

Additional file 14: Figure S9. Genome-wide comparison of using SNP
genotype data from all breeds (Total: 46 breeds and N = 847), breeds
with minimum 10 samples (Total: 26 breeds and N = 753) and breeds
with minimum 20 samples (Total: 20 breeds and N = 652) for computing
CSS (A), XP-EHH (B), ΔDAF (C) and FST (D) for European Bos taurus cattle.

Additional file 15: Figure S10. Chromosome-wise comparison of
average derived allele frequencies (A) and average minor allele frequencies
(B) between European and African Bos taurus cattle breeds.
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