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Abstract

Background: In a natural population, the alleles of multiple tightly linked loci on the same chromosome co-segregate
and are passed non-randomly from generation to generation. Capitalizing on this phenomenon, a group of mapping
methods, commonly referred to as the linkage disequilibrium-based mapping (LD mapping), have been developed
recently for detecting genetic associations. However, most current LD mapping methods mainly employed
single-marker analysis, overlooking the rich information contained within adjacent linked loci.

Results: We extend the single-marker LD mapping to include two linked loci and explicitly incorporate their LD
information into genetic mapping models (tmLD). We establish the theoretical foundations for the tmLD mapping
method and also provide a thorough examination of its statistical properties. Our simulation studies demonstrate that
the tmLD mapping method significantly improves the detection power of association compared to the single-marker
based and also haplotype based mapping methods. The practical usage and properties of the tmLD mapping method
were further elucidated through the analysis of a large-scale dental caries GWAS data set. It shows that the tmLD
mapping method can identify significant SNPs that are missed by the traditional single-marker association analysis and
haplotype based mapping method. An R package for our proposed method has been developed and is freely available.

association analysis.

Conclusions: The proposed tmLD mapping method is more powerful than single marker mapping generally used
in GWAS data analysis. We recommend the usage of this improved method over the traditional single marker
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Background

Most economically, biologically and clinically important
traits, such as those linked to poplar growth, cancer de-
velopment and dental caries risk, are inherently complex
in terms of their polygenic control and sensitivity to the
environment [1]. The number of genes involved in these
traits is typically large, each exerting a small effect and
acting singly or interactively with others in a complicated
network. For this reason, the genetic analysis of complex
traits has been very difficult. However, a profound under-
standing of the genetic control mechanisms of complex
traits is crucial to economy and life. Therefore, the devel-
opment of more powerful and complex genetic mapping
methods has become increasingly urgent.
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In recent years, with the advancement of new DNA-
based biotechnologies, such as single-nucleotide poly-
morphism (SNP) arrays, genome-wide association studies
(GWAS) have become feasible to dissect the phenotypic
variation of a complex trait into individual genetic compo-
nents. Particularly, SNP arrays have gained popularity due
to their cost-effectiveness: in year 2011 alone, 1068 GWAS
were performed, each with at least 100,000 SNPs geno-
typed (www.genome.gov/gwastudies). Based on the most
recent summary data of dbSNP database (www.ncbi.nlm.
nih.gov/projects/SNP), there are ~$38 million (about 1
percent of the total genome) of validated SNPs in human
genome. However, even the densest SNP array on the
market can only accommodate ~1 million SNPs, and
hence a great percentage of SNPs is not able to be sam-
pled in a real genetic study. Fortunately, SNPs in the gen-
ome are not independent from each other, ie. they are
locally connected and form the so-called linkage disequi-
librium (LD) blocks. Because of this unique correlation
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structure, the sampled genetic markers carry partial infor-
mation about the unsampled SNPs and may be used for
genomewide association analyses.

LD is a phenomenon arising from the co-inheritance
of alleles at nearby loci on the same chromosome, and is
defined as the deviation of the observed frequency of a
haplotype from random association [2]. Historically, LD
analysis was developed to quantify the genetic structure
and the diversity of natural populations [3-5]. Many efforts
have been put into developing dense maps of molecular
markers for a wide variety of species. For example, LD
structures have been estimated in human [6] as well as
Holstein cattle [7], sheep [8] and dog [9]. With some re-
gularity conditions [2], it can be shown that a LD value
between any two loci decays with generations at the re-
combination rate between them:

DY) = (1-r)DY) (1)

where D“? is the LD value at generation ¢+ 1 and r is
the recombination rate between the two loci. Therefore,
the LD value approaches to zero gradually at a geomet-
ric rate of 1-r. The larger the r, the faster the rate of
convergence. According to Equation (1), if a significant
D1 value can be detected in the current generation, it
implies r must be very small, almost close to 0, under
the assumption that the initial LD was generated long
time ago (i.e. t is large). This assumption is plausible be-
cause it does take a long time for mutations/LD to be
spread in a population. Therefore, the principle of link-
age disequilibrium decaying with generation builds up
an alternative mapping strategy [10,11], which provides
an important tool for the fine mapping of genes affect-
ing a quantitative trait.

The LD mapping based on a single marker has been
greatly studied [12-14]. However, little effort has been put
on the LD mapping with multiple markers. Motivated by
the seminal work of interval mapping proposed by Lander
and Botstein in 1989 [15], in which genetic mapping was
performed based on two neighboring genetic markers in
controlled experiments, we propose to develop a new LD
mapping framework that utilizes two SNP markers in a
natural population. The new model explicitly incorporates
the LD information between two markers into the map-
ping analysis, and thus we expect the analysis based on
two markers is more powerful than that based on a single
marker in a natural population just as Lander and Botstein
have discovered in the controlled experiment. In the fol-
lowing sections, we first laid out the modeling framework
for the two-marker LD mapping (tmLD), with details on
parameter estimation and hypothesis testing. We then fur-
ther elucidated our method through extensive simulation
studies. Finally, we applied our method to a GWAS dental
caries data set, followed by some discussions.
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Methods

Two-marker LD (tmLD) mapping

In the tmLD mapping framework, we assume a dichot-
omous quantitative trait locus (QTL, Q) of alleles Q and
q that is causal but unobserved, and the allele frequen-
cies of Q and g are expressed as p, and 1-p,. Suppose
that this QTL is genetically associated with two geno-
typed SNP markers, -4, and .4, of two alleles M; and 1,
and M, and m,, with corresponding frequencies of p; and
1-p;, and ps; and 1-ps, respectively. Further suppose the
three linked SNPs in a tandem order, .4, Q and .4, at loci
1, 2 and 3, and the recombination rates between .4, and
Q, between Q and .#,, and between .4, and ¥, are r;,,
ry3 and ry3, respectively. The three SNPs form 8 possible
haplotypes: M;QM, (111), M;Qm, (110), MqM, (101),
Mgm; (100), m,QM, (011), m1Qm;, (010), mygM, (001),
myqmy (000). To describe the linkage disequilibrium
among them, their frequencies can be represented as fol-
lows using four trigenic disequilibria parameters D5, Dys,
D;5 and D;,3 (Additional file 1):

P =P (1-p1)" " pl(1-py)"7 pX(1-p3)" ™ + D
(2)

and Dy =1[(-1)"'Dyy + (-1)V*Dy3 + (-1)" ¥ Dy5-
(—1)‘i+’+k_1|D123] where i,j,k=0,1, Dy, Dy3, Di3 have
exactly the same meaning as those in digenic disequilib-
ria models for loci at positions 1/2, 2/3 and 1/3; and
D53 is an additional trigenic disequilibria parameter for
three loci together. Model (1) implies that D;5, Do3, D13
all geometrically decay with generations. It can be shown
that with some reasonable assumptions, the D;,3; decreases
with generations at a rate of (1-r;3) and therefore also
changes very slowly with time (Additional file 2). Hence,
significant D19, Dy, and Dja3 at current generation imply
ripand rp3 are very small, which form the basis for LD
mapping using two genetic markers.

Likelihood function

Suppose there is a random sample of size n drawn from
a natural human population at Hardy—Weinberg equilib-
rium. In this sample, multiple polymorphic sites, e.g. single
nucleotide polymorphism (SNP), are genotyped, aiming at
the identification of QTL affecting a continuous trait. The
relationship between the observed phenotypic values and
their expected means, determined by QTL genotypes, can
then be described by the following model,

2 .
yi = Z}:OEU!J/ +ei, 1= 1,...,7[ (3)

Where y; is the phenotypic values for subject i, & is
an indicator variable defined as 1 if subject i, which con-
tains markers (-, -#;,), has a QTL genotype j (j = 2 for
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QQ, 1 for Qg and 0 for gg) and 0 otherwise, 4; is the ex-
pected phenotypic value for QTL genotype j, and ¢; is the
error term reflecting the polygenic effects of other unlinked
genes and the environmental effect, which can be assumed
to follow N(0, o) if y is continuous. The conditional prob-
ability of subject i with its given markers carrying a certain
QTL genotype j, 7jji—p(Q—j|.«y..u») OF P(§;=1), can be cal-
culated from Table 1. Therefore, the likelihood of the quan-
titative trait (y) and molecular markers (.4, .4,) for one
putative QTL (Q) and can be constructed by a mixture
model:

n 2
L(Qp, Qqly, My, M) = Hzﬂjlif/(yi|gq)7

i=1 j=0

where Q,, is a vector of the population genetic parame-
ters (p1, Pa, P3, D12, D23, D13, D153) that is used to describe
frequencies of haplotypes formed by markers and QTL
and subsequently 7z;; s, Q, is a vector of the quantitative
genetic parameters that define genotype-specific traits,
which contains (4, j =1, 2,3, and o) for a continuous trait
that is assumed to be normally distributed, and f() is the
probability density function for QTL genotype j.

The likelihood function provides a model for obtaining
the maximum likelihood estimates of the unknown param-
eters (€, Q,), which can be achieved by differentiating
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the log-likelihood with respect to each unknown param-
eter, setting the derivatives equal to zero and then solving
the equations. The log-likelihood function of the pheno-
typic values is given by

n 2
€ = 10g[L(Qy, Quly, Ay, Ay)] = > log {Zﬂ;uf,(yilﬂq)]
=1 =0

Computational algorithms

Within the maximum likelihood estimation framework,
an efficient EM algorithm can be implemented to obtain
the MLEs of (€, Q,), and is summarized into the fol-
lowing steps:

Step 1. Give initial values for the unknown parameters
(th Qq);

Step 2. E step — Calculate the posterior probabilities for
each subject i to carry a particular QTL genotype j

i omif) (1[0

Step 3. M step — Solve the log-likelihood equations for
each parameter based on observed data and IT; to
obtain its estimate. To estimate the quantitative
genetic parameters (), their expressions in closed
forms can be derived based on the estimation
equations. For the estimates of the population genetic

using the equation IT;; =

Table 1 Joint zygote probabilities of the QTL genotypes at QTL Q and two-marker genotypes at markers M1 and M2,
as expressed in terms of zygote configurations in a natural population

Marker Joint marker-QTL genotype frequency
Genotype Frequency qq (0) Qq (1) QQ ((2)
mimi;m,m- (00) P Phoo 2Po10Pooo Péio
(Nooo) (no10) (No20)
mymiMom, ©omn 2po1Poo 2poo1Pooo 2po11Pooo + 2Po10Po0n 2poioPonn
(noor) (no1) (No21)
mymiMsM, 02) P Por 2P011P001 Pan
(Noo2) (no12) (No22)
Mimimam; (10) 2pooPio 2p100Pooo 2p110Pooo + 2P100Po10 2p110Po1o
(Moo) (n110) (M20)
MymiMom, an 2p11poo 2p101P00o0 + 2P100Poon 2p111Pooo + 2P110Po0n 2p111Poro+ 2P110Ponn
+ 2P1oPor +2P101Po10 + 2P100Po1
(Mmor) (n111) (M)
MymiMoM, (12) 2p11po1 2p101Poon 2p111Poor + 2P101Pon 2p111Ponn
(n102) (M) (M22)
MiMymym; (20) p%o D%oo 2P110P100 p%m
(N200) (n210) (N220)
MiMiMom; 21 2p11pio 2p101P100 2p111P100 + 2P110P100 2p110P1
(N201) (n211) (N221)
MM MM, 22) P Pior 2p111P101 P
(n202) (n212) (n222)
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parameters (£,), another inner layer of EM algorithm
can be employed.

Step 4. Repeat the E and M steps until the estimates
converge to stable values. The estimates at
convergence are the MLEs of parameters.

The detailed derivation for the EM algorithm is given
in Additional file 3.

Hypothesis testing

In general, the hypothesis testing of QTL mapping in-
cludes two steps: (1) the existence of QTL and (2) their
locations. The focus of this study is on the second step,
assuming that sufficient evidences for the existence of
QTL have been collected to enable a large-scale geno-
typing study. Then the hypotheses for the tmLD method
can be formulated as follows:

Hj : The QTL is not associated with two SNP markers,
i.e. D1=D,3=D;,3=0: H; : Not H

The estimates of the parameters under the null hy-
potheses can be obtained with the same EM algorithm
derived for the alternative hypotheses, but with a constraint
that all subjects have the same posterior probability. A like-
lihood ratio test (LRT) statistics can be constructed and
computed to draw the inference about whether a QTL
may be associated with given markers. Under the Hy, the
LRT statistics asymptotically follows a y*-distribution with
three degrees of freedom.

Results

Simulation settings

Extensive Monte Carlo simulation experiments were per-
formed to examine the statistical properties of the proposed
tmLD mapping method. Since in a genome-wide scan, a
QTL must be located between some pair of markers, in the
experimental design of simulations, we considered two sce-
narios as illustrated in Figure 1: (1) the QTL is assumed to
be unobserved, but it is in LD with two adjacent SNPs; and
(2) the QTL is assumed to be one of the genetic markers
and therefore genotyped.

QTL
QTL

e .

Figure 1 Two simulation settings. (1) QTL is unobserved but in
linkage equilibrium with two adjacent SNPs. (2) QTL is observed as
one of the SNP markers.
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Let us randomly choose a sample of # subjects from a
human population at Hardy-Weinberg equilibrium. In this
population, one QTL is segregating and is inferred by a pair
of markers. The allele frequencies of the markers (.4, and
At) and QTL (Q) and their linkage disequilibria values are
given as follows: p; = 0.5 for allele M, of .#,; p, = 0.5 for
allele Q of Q; p3=0.5 for allele M, of .#,. The LD pa-
rameters among the markers and QTL loci are given as:
D;5=0.05,D;5=0.15, D53 = 0.05 and D;53 = 0.04. For sub-
jects who carry QTL genotype j, their phenotypic values
were simulated based on Model (3), with y, =10, y; =5,
to = 0. The variances in phenotypic values were calculated
based on different heritability values (H?). H* quantifies
the genetic contribution from the QTL to the overall trait
and H” = 0 implies that the means for three QTL genotype
groups are the same, which are set to be 0. With the above
given parameters and design, we simulated the phenotypic
and marker information by assuming different sample
sizes (N'=100, 250, 500, 1000, 1500, 2000, 2500, 3000),
and different heritability values (H* = 0, 0.05, 0.1, 0.2, 0.3,
0.4). Each simulation setting is carried out 1000 times for
the evaluation of power and type I error.

Type | error evaluation and power comparison

Simulated data were used to compare our proposed tmLD
method with single-marker based association analyses, in-
cluding the single-marker LD mapping method (smLD)
and single-marker based association test (smAT), and two-
marker based haplotype analysis (haplo). The smLD was
performed as described in Additional file 4. The smAT is a
simple linear regression model with phenotypic trait as re-
sponse variable and marker genotypes as categorical inde-
pendent variable. The haplotype analysis was conducted as
described in [16]; briefly, the haplotype that yields the best
model fitting among those formed by two markers is used
in comparison with tmLD.

Under the simulation scenario 1, where the QTL is in
LD phase with both markers, the results suggest that the
association analysis based on two markers is significantly
higher than the single- marker based and also haplotype
based methods. Figure 2 shows that as the heritability
increases, the power of each method increases corres-
pondingly as expected. When H” = 0, which suggests no
QTL effects, all methods maintained the nominal type I
error (0.05); when H?=0, the two-marker association
performed consistently better than others, and as ex-
pected, the power increased with the sample size.

Under the simulation scenario 2, where the QTL is set to
be the marker 1, the most powerful test is the single marker
association method using marker 1, and the power of the
single marker association based on marker 2 is significantly
lower (Figure 3). However, the tmLD analysis is almost as
powerful as the optimal test, particularly when the sample
size is reasonably large (N >1000). This demonstrates that
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Figure 2 Power comparison when QTL is in linkage disequalibria with both marker 1 and marker 2. The power curves were constructed
under different heritability (H?). smAT_m1 and smAT_m2 denote the single-marker association analyses for marker 1 and marker 2, respectively;
smLD_m1 and smLD_m2 denote single-marker LD mapping using marker 1 and marker 2, respectively; and haplo is for the two-marker based
haplotype analysis.

even when the QTL is indeed sampled in a genomic study,
our proposed model is as good as the optimal test. These
simulation results demonstrate the power advantage and
robustness of our proposed method comparing with exist-
ing methods based on single marker. Its practical usage was
further elucidated in a real GWAS data set.

Real data example

Dental caries or cavities, more commonly known as
tooth decay, is one of the most common chronic disor-
ders in humans, affecting approximately 40% children
and adolescents and 90% adults in the US. The etiology
and pathogenesis of dental caries have been determined
to be multifactorial, such as environmental factors re-
lated to social behaviors [17]. However, it is also appar-
ent that some individuals are very susceptible to caries
while some others are more resistant, almost irrelevant
to the environmental risk factors they are exposed to,

suggesting that genetic factors may play prominent roles
in the caries development. Supported by evidence in
both human and animal studies [18-21], the caries herit-
ability has been estimated to be between 30-60%. The
most compelling evidence come from the twin studies
that the significant resemblance of dental caries lies
within monozygotic but not dizygotic twin pairs [22,23].
So it is without question that in addition to environmen-
tal factors, genetic components also profoundly influ-
ence the dental caries trait. To understand the genetic
mechanisms of the dental caries, a GWAS study has
been conducted and the dataset has been deposited in
dbGaP (Study Accession: phs000095.v2.p1). Here we will
apply our proposed model to analyze this caries GWAS
dataset, in which 1843 adults were genotyped with a
large panel of SNPs (610,000). We carried out the ana-
lysis using the caries outcomes that have been well de-
fined in other GWAS studies, i.e. the DIMFT index
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Figure 3 Power comparison when QTL is at the exact position of the marker 1. The power curves were constructed under different
heritability (H?). The tmLD model performs almost identically with the true model even when the QTL is the marker 1. smAT_m1 and smAT_m2
denote the single-marker association analyses for marker 1 and marker 2, respectively; smLD_m1 and smLD_m2 denote single-marker LD mapping
using marker 1 and marker 2, respectively; and haplo is for the two-marker based haplotype analysis.

which quantifies the total permanent tooth caries with
white spots.

smAT, smLD, haplo and tmLD association methods
were applied to the data. After removing SNPs that do
not satisfy HWE (p-values < 107) and also SNPs with
minor allele frequency less than 0.1, the number of SNPs
that were included in the analysis is 443,175. To com-
pare the performance of all methods, we plotted out the
association signals at each SNP locus. Figures 4 and 5
show the Manhattan plots of the -log10(p-values) from
smAT and tmLD methods, respectively, and the dashed red
line corresponds to the genome-wide Bonferroni threshold
(1.1E-7). SNPs that passed this threshold are considered to
be significant and were tabulated in Table 2. For the haplo
and smLD methods, since no significant SNP was identified
by these two methods, their Manhattan plots were not
shown. Particularly, the tmLD model identified two signifi-
cant genes, CNTN5 and COL4A2, which have been shown

from other studies to be associated with dental related
phenotypes in other studies [24], validating the findings of
our model biologically. None of the other three methods
(smAT, smLD or haplo) found these two genes. The smAT
identified another significant locus. However, gene anno-
tation shows that it is not related to any known genes, so
its biological implication remains unclear.

Discussion

It is well recognized that naturally occurring variations in
most complex disease traits have a genetic basis and conse-
quently many GWAS studies have been conducted in the
past few years. In analyzing these data, a phenomenon,
called “missing heritability”, has been observed that the de-
tected genetic variants can explain only a small portion of
the heritability of phenotypic traits while a majority part re-
mains mysterious [25]. Part of the reason may be attributed
to the lack of power in current methods. Thus, developing
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Figure 4 The Manhattan plot for GWAS scanning using the single marker association analysis. The x-axis displays the genomic coordinate
of SNPs and the y-axis shows the negative base-10 logarithm of the association p-value for each SNP.

novel and powerful methods to better detect significant
genes has been of great interest. Currently the routine
GWAS analyses seek single-marker association between
SNPs and phenotype, and when a significant association is
detected, it implies that there might be some SNP(s) in
linkage that are causal. Note that it cannot imply the test
SNP itself is causal because there is no guarantee that the
truly causal SNPs would have been genotyped. Since the

interpretation of a significant association relies on the link-
age concept, it is sensible to directly incorporate the LD in-
formation into association models. Additionally, due to the
structure of LD blocks, a causal SNP is usually in linkage
with multiple neighboring SNPs, all of which carry partial
information about it. So in this sense, a new model that
can incorporates more genetic information of linked SNPs
should draw better inferences about the causal SNP.

tmLD
T .
—_ *
2
o {
e Y
o
|
7 8 16 17 18 19 20 2122
Chromsome
Figure 5 The Manhattan plot for GWAS scanning using the two-marker LD mapping analysis. The x-axis displays the genomic coordinate
of SNPs and the y-axis shows the negative base-10 logarithm of the association p-value for each SNP.
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Table 2 List of significant SNPs with p-value < 1.1e-7 in the Caries dataset

SNP ID Gene Chr Coordinate Allele MAF PsmaT Psmip Phaplo PimLD
157607421 - 2 220500564 [@2) 0.390 3.2E-08" 2.1E-04 2.0E-06 6.9E-05
rs10790497 CNTN5 1" 98539071 A/G 0.346 8.8E-01 8.2E-01 1.7E-03 2.6E-08*
rs7319311 COL4A2 13 109828579 A/G 0.326 5.8E-02 2.7E-02 2.8E-02 1.0E-07*

PsmaT Psmis Phaplor Pemip: P Values for corresponding methods. *Significant SNPs identified by smAT. *Signiﬁcant SNPs identified by tmLD.

In this article, we proposed a novel statistical method
by considering two SNPs simultaneously. Our model is
built upon the general LD mapping framework, and ex-
tends the previous methods based on single-marker
LD. The simulation studies demonstrated that our new
methods dramatically improved the detection power of
the underlying QTLs. This is intuitively reasonable since
our model can capture the linkage information between
SNP markers, and hence has more power to detect the
particular QTL that are in LD with both markers. Further-
more, the simulation studies indicated that even when the
underlying QTL is indeed genotyped and is one of the
markers, the performance of the tmLD analysis is nearly
identical to that of the optimal test resulting from the
causal SNP, suggesting the robustness of our model.

We applied our model to a GWAS date set that aimed
to understand the genetic mechanisms of the dental car-
ies. The data set contains a large cohort of 1,843 subjects
as well as a very large number of SNPs (443,175). This
shows that both our proposed method and the corre-
sponding software package in R can be well applied to a
typical GWAS data set. In addition, we also observed
that the association analyses based on the single-marker
and the two-marker models yielded different profiles of
significant SNPs. This is somewhat expected since their
assumptions are different. For the tmLD method, we as-
sume that both markers must obey HWE and have to be
in LD with the casual SNP. It might be possible that
some SNPs would violate these assumptions and become
unsuitable to the tmLD. In this sense, the single and
two-marker analyses may be complementary to each other,
and therefore it might be beneficial to use both methods in
analyzing a real data set.

Sometimes population structure may be a concern in a
GWAS analysis if subpopulations indeed exist in the
sample, as it may lead to spurious associations. Several
well-known methods developed to account for population
structure [26] can be incorporated into our LD mapping
framework to address this issue. For instance, the principal
component analysis (PCA) can be applied to correct for
stratifications [27]. That is, we may first apply PCA on the
genotype data and then choose the first few large principal
components to be included in the Model (3) as additional
covariates. With slight modifications, the computation al-
gorithms and hypothesis testing described in the Method
section can be readily applied.

In this work, we generalized the single marker LD ana-
lysis to a more general LD mapping framework using
two adjacent markers. There are several ongoing works
worthy of further investigation. First, the model can be
easily extended to other types of phenotypic data, such
as case—control binary and count data. Second, currently
the two adjacent markers were used for the analysis;
however, it is possible that another two markers in the
same LD block might have better power, so it would be
very interesting to determine how to choose the best SNP
pair. Third, typically, one LD block may contain several
SNPs, and if there exists one causal SNP within the LD
block, it would be very interesting to see if we can
summarize all SNPs in one LD block to make even better
inference about the unobserved QTL.

Conclusions

The proposed tmLD model is a novel mapping method
that can simultaneously consider two linked SNPs in a nat-
ural population. Through the extensive simulation studies,
the tmLD method demonstrates better power than single-
marker mapping strategies traditionally used in GWAS as-
sociation analysis. The practical usage of the tmLD method
was also shown in the analysis of a large-scale dental
GWAS dataset. Hence, we recommend the usage of this
improved method over the traditional single-marker asso-
ciation analysis.
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