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Abstract

Background: On thinking quantitatively of complex diseases, there are at least three statistical strategies for
analyzing the gene-gene interaction: SNP by SNP interaction on single trait, gene-gene (each can involve multiple
SNPs) interaction on single trait and gene-gene interaction on multiple traits. The third one is the most general in
dissecting the genetic mechanism underlying complex diseases underpinning multiple quantitative traits. In this
paper, we developed a novel statistic for this strategy through modifying the Partial Least Squares Path Modeling
(PLSPM), called mPLSPM statistic.

Results: Simulation studies indicated that mPLSPM statistic was powerful and outperformed the principal component
analysis (PCA) based linear regression method. Application to real data in the EPIC-Norfolk GWAS sub-cohort showed
suggestive interaction (γ) between TMEM18 gene and BDNF gene on two composite body shape scores (γ = 0.047 and
γ= 0.058, with P = 0.021, P = 0.005), and BMI (γ = 0.043, P = 0.034). This suggested these scores (synthetically latent traits)
were more suitable to capture the obesity related genetic interaction effect between genes compared to single trait.

Conclusions: The proposed novel mPLSPM statistic is a valid and powerful gene-based method for detecting gene-gene
interaction on multiple quantitative phenotypes.

Keywords: Thinking quantitatively for complex diseases, Gene-based gene-gene interaction, Quantitative traits,
mPLSPM statistic
Background
In search of novel loci influencing complex traits in humans,
successes in genome-wide association studies (GWAS) have
been well-documented [1]. While these have greatly im-
proved our understanding of the genetic architecture of
complex traits, often implicating biological pathways pre-
viously went undetected, most genetic components for
complex traits are still to be revealed. One can attribute
this to the sub-optimality of their study designs, but in-
appropriate statistical data analysis strategy, including
methods for gene-gene interaction analysis, may also play
a role.
Although discussed extensively in the literature, a not-

able issue remains in GWAS using case–control design
[2,3]. Given phenotypes of most complex diseases (obesity,
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hypertension, diabetes, to name a few) are actually quan-
titative [4], a case–control design is usually furnished by
dividing particular continuous quantitative measurement
into case and control groups with a cut off which might
not relate so well with genetic variation. Assigning cutoff
to a continuous variable can lead to loss of information,
and decrease the statistical power caused by selection bias.
A proposal revived recently is to treat common disorders
as quantitative traits in a framework of thinking quanti-
tatively such that GWAS should be conducted using a
population cohort with multiple quantitative traits [4]. In
this framework, a complex disease is caused by multiple
genes with small effect and their interaction, as well as
their interaction with multiple environmental factors. The
quantitative phenotype (trait) is expected to be continuous
and normally distributed [4-6]. While for some diseases
such as body mass index (BMI, weight (in kilograms)/
height (in meters)2) for obesity, blood pressure for hyper-
tension, and mood for depression the relevant quantitative
his is an Open Access article distributed under the terms of the Creative
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traits seem obvious, the relevant quantitative traits may
not be entirely clear for diseases such as arthritis, autism,
cancers, dementia and heart disease for which limited bio-
markers are available. Even with obesity, BMI is only a
proxy since it crudely measures the mean weight under
given body surface area and varies with the amount of
body fat and not a representation of its distribution. Vari-
ous studies have shown that people with abdominal fat
(with more weight around the waist) face more risks of
cardiovascular diseases [7,8] and other related diseases
(such as hypertension, type 2 diabetes, and high cholesterol)
[9-11] than those with hip obesity (with more weight
around the hip) [10], suggesting that the phenotype of
obesity might be more appropriately a synthetically latent
trait (SLT) combined from disease-related manifest vari-
ables (BMI, waist circumference, hip circumference and
neck circumference etc.). This serves as a contrast with
most GWASs either using case–control designs [2,3] or
using quantitative variables [12-15] with simple linear
regression and single SNP-SNP interaction.
To detect gene-gene interaction, at least three statis-

tical strategies can be considered for quantitative phe-
notypes, including single SNP-SNP interaction on single
trait, gene-gene (with multiple SNPs) interaction on sin-
gle trait and gene-gene (with multiple SNPs) interaction
on multiple traits. The first strategy is most susceptible
to high false positive rate and low power in detecting mod-
est effects owing to the ignorance of the linkage disequi-
librium (LD) information between SNPs [16,17]. Moreover,
genes are the functional units in living organisms, analysis
by focusing on a gene as a system could potentially yield
more biologically meaningful results. In view of this, LD
information is used in the second strategy, and some
methods aimed at gene-based gene-gene interaction de-
tection exist [18-22]. Based on a gene-based association
test –ATOM by combining optimally weighted markers
within a gene [18], He et al. extend it to analysis gene–
gene interactions [19]. First, they derive the optimal
weight for both quantitative and binary traits based on
pair-wised LD information and use the principal com-
ponents (PCs) to summarize the information in each
gene. Then, test for interactions between the PCs. In the
work of Li and Cui, they conceptually propose a gene-
centric framework for genome-wide gene–gene inter-
action detection [20]. They treat each gene as a testing
unit and derive a model-based kernel machine method
for two-dimensional genome-wide scanning of gene–
gene interactions. Recently, Ma et al. combine marker-
based interaction tests between all pairs of markers in
two genes to produce a gene-level test for interaction
between the two, to test the gene-based gene–gene
interaction [21]. The tests are based on an analytic for-
mula derived for the correlation between marker-based
interaction tests due to LD. Although, aforementioned
methods are proposed to detect the gene-based gene-
gene interaction, they fall short of consideration on
multiple traits or SLT, especially when the traits are
genetic related. It is, therefore, desirable to develop new
method to detect gene-gene (with multiple SNPs) inter-
action on multiple traits.
In this paper, we attempted to develop a novel model

for detecting the effect of gene-gene interaction on the
SLT summarized by multiple manifest traits. The pro-
posed model was constructed by adding a product term of
combined multiple SNPs effect within two genes (genes A
and B) via Partial Least Squares Path Modeling (PLSPM)
[23,24]. Thus, a structural equation model (SEM) was built
between two genes and multiple manifest traits linked by
the latent variables of gene A, gene B, gene A × gene B, and
multiple traits, so that the gene-gene interaction statistic
was defined based on the path coefficient between the
latent variables of gene A × gene B and multiple traits.
As the path coefficient in proposed statistic was calcu-
lated by modifying the Lohmöller PLSPM algorithm
[25], we called it the modified PLSPM (mPLSPM) based
statistic. Simulation studies were conducted to evaluate
its type I error rate and power, and to compare its per-
formance with the PCA-based linear regression model
[26-28]. The method was also applied to a real data to
evaluate its utility.

Methods
Statistical model
Our model is motivated from the original PLSPM which
developed from structural equation models (SEM). SEM
are complex models allowing the study of real world
complexity by taking into account a whole number of
causal relationships among latent concepts (i.e. the la-
tent variables (LVs)), each measured by several observed
indicators usually defined as manifest variables (MVs).
Each path-modeling-based statistic is formed by 2 sub-
models: structural (Inner) model and measurement (Outer)
model. The structural model indicates the relationships
among the latent variables, both of which are inferred
from the observed SNPs (from different genes) and traits
(e.g. waist, hip, BMI) respectively in this study. The meas-
urement model formulation depends on the direction of
the relationships between the latent variables and the
corresponding manifest variables. As a matter of fact,
different types of measurement model are available: the
reflective model (or outwards directed model), the for-
mative model (or inwards directed model) and the MIMIC
model (a mixture of the two previous models). The reflective
model has causal relationships from the latent variable to
the manifest variables in its block. In contrast to reflective
(or effects) model, the formative (causal) model has causal
relationships from the manifest variables to the latent vari-
ables, namely the LV is caused (formed) by the MVs. Its
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construction is combination of observed (manifest)
variables with multidimensional form and aims at min-
imizing residuals in structural relationships to explain
the unobserved (latent) variable with higher R2 [23].
More detailed interpretation for the original PLSPM
see Additional file 1.
Figure 1 illustrates the framework for our mPLSPM

statistic. Let X1 = (x11, x12,…, x1p) and X2 = (x21, x22,…, x2q)
denote the genotypes of p SNPs within gene A and q SNPs
within gene B, respectively, and Y = (y1, y2,…, yk) the mul-
tiple quantitative measures underlying specific disease,
such as the waist circumference, hip circumference and
BMI for measuring the human body shape. In this model,
latent variables ξ1 and ξ2 from the two genes can be
derived as with ξ3 from the quantitative traits. A product
term ξ1 × ξ2 added to the PLSPM is used to measure the
interaction between gene A and gene B, then we can get
the structure model: ξ3 = β0 + β31ξ1 + β32ξ2 + γξ1ξ2 + ε. More-
over, path coefficients β31, β32, and γ are the main and
interaction effects of gene A and gene B on the phenotype
score or SLT (ξ3) respectively, while loadings (λ′s) quantify
the relationship between manifest variables (MVs) and
their latent variables (LVs). Parameters in the model can
be estimated with Lohmöller’s algorithm [23,25], which
include the latent variable scores (genetic scores ξ1, ξ2,
and phenotype score ξ3), path coefficients (β31, β32,
and γ) and loadings (λ′s). Specifically, latent variable
scores are estimated using linear combinations of their
MVs, obtained by an iterative algorithm based on simple/
multiple least squares regressions. The path coefficients
are derived by regression between dependent LV (ξ3) and
independent LVs (including ξ1, ξ2 and their product term
ξ1 × ξ2) obtained by least squares regression or partial least
squares regressions (with higher multicollinearity between
independent LVs). Loadings are gotten using regressions
of each block of MVs with its LV, obtained by least squares
Figure 1 The modified PLSPM-based gene-gene interaction model.
regressions. Since the aim of mPLSPM statistic is mainly
to capture the association between effect of SNPs set (gen-
ome region) and effect of traits (body shape), and after
using “Cronbach’s alpha” tool for checking [24], the blocks
meet homogeneity and unidimensionality. Therefore the
reflective model is used to set up the measurement model.
At the same time, the impact of multicollinearity between
manifests can be alleviated.
In this paper, we modify the Lohmöller’s PLSPM algo-

rithm to estimate the parameters. In details, the specific
modified procedure is as follows: 1) working on standard-
ized manifest variables and giving initial values on weights
wij, iteratively alternating the outer and inner estimation
steps; 2) specifically in the outer estimation step, the
values of the latent variables ξ1, ξ2, and ξ3 were estimated

by ν1 ¼
Xp

j¼1

ω1jx1j , ν2 ¼
Xq

j¼1

ω2jx2j and v3 ¼
Xk
j¼1

ω3jyj , re-

spectively; 3) in the inner estimation step, the endogenous
latent variable ѵη were updated with ν3 = cov(ν3, ν1)ν1 +
cov(ν3, ν2)ν2 + cov(ν3, ν1ν2)ν1ν2, furthermore the exogenous
latent variables ѵ1 and ѵ2 by ν1 = cov(ν1, ν3)ν3 and ν2 =
cov(ν2, ν3)ν3; 4) updating weights before moving to the
next step: w1j = cov(x1j, ν1), w2j = cov(x2j, ν2) and w3j =
cov(yj, ν3). Steps 2)-4) were repeated until convergence
(max (wij − new − wij − old) < Δ, where Δ is a convergence
tolerance usually set at 0.0001 or less), and the outer
weights were obtained. In addition, significant test of
path coefficients and loadings were furnished by boot-
strap procedures [24,25].
Statistical significance

The modified statistics (mPLSPM) is defined as U ¼ γ−0j j
se γð Þ ,

where se (γ) denotes the standard deviation of γ. Signifi-
cance of parameter γ under the null hypothesis (H0): γ = 0
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and the alternative hypothesis(H1): γ ≠ 0 is tested via a

normal statistic in the form U ¼ γ−0j j
se γð Þ, where se(γ) is calcu-

lated by the bootstrap procedures [29,30], since the distri-
bution of parameters from modified PLSPM is unknown.
The testing stages are as follows: 1) A large, pre-specified
number of bootstrap samples (e.g. 1,000), each with the
same number of subjects as the original sample, are
generated via re-sampling with replacement. 2) Parameter
estimation is done for each bootstrap sample using above
modified algorithm, whose path coefficients or loadings
can be viewed as drawings from their sampling distribu-
tions. All bootstrap samples together provided empirical
estimators for the standard error of each parameter.
3) The result of bootstrapping procedure permits a U-test
to be performed for the significance of the path coeffi-

cients or loadings, Uemp ¼ w−0j j
se wð Þ (for example U inter ¼ γ−0j j

se γð Þ
in Figure 1), where Uemp represents the empirical U-value,
w (for example γ in Figure 1) denotes the original path
coefficient or loading, and se(w) (for example se(γ) in
Figure 1) indicates its bootstrapping standard error. The
normal distribution provides the critical U-values at given
α-levels. The histogram of the statistic was shown in
Additional file 1: Figure S2.

Simulation
Simulation was conducted similar to a previous paper
[31] as follows. Genotype data was generated by software
gs2.0 [32] according to phase 1 and 2 HapMap data.
Multiple phenotypic data were created to mirror the
European Prospective Investigation of Cancer (EPIC)-
Norfolk study [33,34] for which the waist circumference,
hip circumference, and BMI were defined as multiple
quantitative traits to reflect the body shape as the SLT.
As noted earlier [31], the influence of body fat distribution
has been linked with body shape named crudely after the
fruits and vegetable(s) they resemble most (chilli, apple,
Figure 2 Pair-wise r2 among the selected FTO region and NEGR1region
minor allele frequencies.
pear, and pear apple) [35,36]. People with a larger waist
have higher risks of hypertension, type 2 diabetes and
high cholesterol than those who carry excess weight on
the hips [10,11]. The combination of BMI, waist and hip
circumferences is also a good predictor of cardiovascu-
lar risk and mortality [11,35,37]. In this paper, the simu-
lated phenotype data was created based on abdominal
obesity population from the EPIC-Norfolk study. The
simulation procedure was detailed as follows:
(1) Phased haplotype data were downloaded from the

HapMap web site (http://snp.cshl.org) on regions involved
FTO (Chr16:52426867..52430604 with eight SNPs) and
NEGR1 (Chr1:71803870..71811085 with seven SNPs) on
CEU population. Information on pair-wise r2 and minor
allele frequencies is shown in Figure 2. Additive models
were used for these SNPs. Based on the phased haplo-
types, a large CEU population of 100,000 individuals was
obtained via gs2.0 [32] with the 4th SNP of each region
as the causal variants (called SNP1 and SNP2). In line
with the current GWAS which are map-based rather than
sequence-based, we removed the causal SNPs from simu-
lated data to assess their indirect interaction effect on
obesity related traits via correlated markers.
(2) As waist and waist to hip ratio (WHR) were com-

monly used to predict the type-II diabetes and cardio-
vascular disease [10,11,38,39], we created an abdominal
obesity data set based on abdominal obesity sample
(N = 355) in EPIC-Norfolk study. Multiple quantitative
phenotypes with three traits (waist, hip, BMI) were gener-
ated from a trivariate normal distribution Y ~N(μ, Σ) to
assess our proposed statistic, where Y = (y1, y2, y3) was
the random vector (waist, hip, BMI) for abdominal
obesity types in EPIC-Norfolk study, with their sample
mean �Y = (105.2746, 106.0051, 29.2172) and covariance

Σ ¼
52:1991 36:8688 16:9545
36:8688 37:1419 13:7969
16:9545 13:7969 8:3859

0
@

1
A. The QQ-plots of the
. The values to the right of the dbSNP IDs (rs# IDs) are the corresponding

http://snp.cshl.org/
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three variables (waist, hip, BMI) among the abdom-
inal obesity groups are seen in Additional file 1. Sup-
posed the causal SNPs’ interaction effect only on waist
not on hip, under H0, the causal SNP1 and SNP2
had no interaction effect but main effect on BMI,
thus μ ¼ waist̂ ; 106:0051; 29:2172þ 0:32� SNP1þ�
0:09� SNP2Þ , where SNP1, SNP2 = 0, 1, 2 for three
genotypes (GG, GA, and AA) at both loci, the main
effect of SNP1 (0.32) and SNP2 (0.09) were assigned
according to real data [40], and waist was estimated by
an empirical model waist̂ ¼ 10:20345þ 0:62138 � hipþ
0:99947 � BMI F ¼ 568:25; P < 0:0001;R2 ¼ 0:7635

� �
.

Under H1, the interaction effect of two causal SNPs
(SNP1 and SNP2) on BMI was δ kg/m2, thus μ= (waist̂ ,
106.0051, 29.2172 + 0.32 × SNP1 + 0.09 × SNP2 + δ× SNP1 ×
SNP2). The range of the interaction effect δ= (0.10, 0.20,
0.30, 0.40, 0.50) was estimated by published data [41]. All
simulation was performed by the R “mvtnorm” package
available from CRAN (http://cran.r-project.org/).
(3) Under H0, 1,000 simulations given various sample

sizes (N = 1000, 2000, 3000, 4000, 5000) were conducted
to assess the type I error. Under H1, given δ, we repeated
1, 000 simulations under various sample sizes at two sig-
nificant levels (α = 0.05, α = 0.01) to assess power of the
mPLSPM statistic. The power of the proposed statistic
for waist, WHR, and SLT was also estimated at given
interaction effect δ under various sample sizes to com-
pare their performance.
(4) To assess the performance of our proposed statistic,

we compared it with a PCA-based linear regression model
based on the ideas of three published work [20,26,28]. The
PCA-based linear regression model was defined as η ¼ bþ
XP
i¼1

β1iU
1
i þ

XQ
j¼1

β2jU
2
j þ

XP
i¼1

XQ
j¼1

γ ijU
1
i U

2
j where η denoted

the PCs of the three traits (waist, hip, and BMI), U1
i ;U

2
j

represented the PCs for gene 1 and gene 2 respectively,
and P,Q are the number of PCs in gene 1 and gene 2
chosen based on the proportion of variation explained.
The pre-specified fraction of the total variance was 85%
in this study.
Application
Obesity is related to obstruction of food intake and
energy balance regulation. The neurocenter in control
of the food intake, hunger, and energy balance locates
at hypothalamus and brainstem, and involves in a compli-
cated neurochemical regulatory mechanism. The roles of
both TMEM18 gene and BDNF gene in the food intake
and energy balance as with their association with obesity
were shown [42-44]. Here we assess interaction of these
two genes on obesity related quantitative traits. The geno-
type data of TMEM18 (13 SNPs), BDNF (31 SNPs) and
phenotype data (waist, hip, BMI) are from GWAS in the
EPIC-Norfolk study (N = 2417). The EPIC-Norfolk study
is a population-based, ethnically homogeneous, white
Europe cohort study of 25,631 residents living in the
city of Norwich, United Kingdom, and its surrounding
area. Participants were 39–79 years old during the base-
line health check between 1993 and 1997. Of these, 2417
individuals had complete genotype data for 2,500,000
SNPs on the whole genome [31,33]. The interaction be-
tween TMEM18 and BDNF for waist, hip, BMI, WHR,
body shape score 1 (BSS1, latent variable with waist,
hip, and BMI as its manifest variables), and body shape
score2 (BSS2, latent variable with BMI and WHR as its
manifest variables) were detected using our proposed
mPLSPM statistic at nominal level of α = 0.05.

Results
Simulation
Type I error rate
We first set out to verify the type I error rates of the
mPLSPM statistic. In each simulation, a random sample
of N individuals is drawn with N varying from 1000 to
5000 and consider two nominal significance levels, 0.01
and 0.05. For each parameter setting, we evaluate the
type I error rate from 1,000 simulations. As shown in
Figure 3a and 3b, type I errors of the mPLSPM statistic
consistent with the nominal levels as a function of
sample sizes.

Statistical power
To evaluate the statistical power of the mPLSPM statistic,
we repeat simulations with various interaction effect δ and
sample sizes. As expected, it monotonically increases with
sample size and interaction effect (δ) under two given
nominal levels (α = 0.05, α = 0.01) (Figure 3c and 3d).
Figure 4 shows power of the proposed statistic for waist,

WHR, and SLT with given interaction effect δ =0.03 under
various sample sizes. The power for body shape score is
much higher than that for WHR or waist.
Because of the first PCs of two genes explained a pre-

specified fraction of the total variance (>85%), we use the
first PC in the PCA-based test when comparing with the
mPLSPM statistic. Figure 5 show the performances of
the mPLSPM statistic and PCA-based linear regression
as a function of different sample sizes and a fixed inter-
action effectand as a function of different interaction
effect sizes and a given sample size of 3000 respectively.
It can be seen that power increases monotonically with
sample size and interaction effect size. Figure 6 gives
their power given different causal SNPs with different
minor allele frequencies and LD patterns, with the seven
SNPs defined as the causal variant in turn. In all simulated
scenarios, PCA-based test, which takes the approach of
first collapsing markers in each of the two genes, is less

http://cran.r-project.org/


Figure 3 Simulation results of type I error and power for the proposed mPLSPM statistic. Type I error of mPLSPM statistic given different
sample sizes under nominal level 0.05 (a) and 0.01 (b); Power of mPLSPM statistic given different interaction effects and different sample sizes
under nominal level 0.05 (c) and 0.01 (d).

Li et al. BMC Genetics 2013, 14:89 Page 6 of 9
http://www.biomedcentral.com/1471-2156/14/89
powerful than the mPLSPM statistic (Figure 5, Figure 6),
which may be due to a combination of the PCs not fully
capturing the underlying interaction signals and the mul-
tiple degrees of freedom associated with that test statistic.
As one reviewer suggested additional simulations under

the case that different SNPs affecting different phenotypes
have also been conducted. Similar performance can be
found (see Additional file 1: Table S2).
Figure 4 Power of mPLSPM statistic for body shape score, WHR,
and waist.
Application
We apply above two statistics to real quantitative traits data
in the EPIC-Norfolk study. Different kinds of TMEM18-
BDNF interactions on obesity using different modified
PLSPM under standardization are shown in Figure 7.
The interaction effect between the two genes on BSS1
(γ = 0.047), BSS2 (γ = 0.058) and BMI (γ = 0.043) are statis-
tically significant with P = 0.021, P = 0.005, and P = 0.034
respectively (Figures 6d and 7a, 7f ) though not for
waist (P = 0.113), hip (P = 0.371), and WHR (P = 0.645)
(Figure 7b, 7c, and 7e). Also available from Figure 7a,
interaction between the two genes on single trait can
be obtained as a product of the path coefficient (γ) and
response loadings (λ), with 0.047 × 0.440 on BMI, 0.047 ×
0.294 on waist, and 0.047 × 0.367 on hip, respectively.
PCA-based method has been also applied to detect

different kinds of TMEM18-BDNF interactions on obesity.
None showed statistical significance when using the first
PC of each gene, while only interaction on BSS1 (P = 0.012)
and BMI (P = 0.008) are statistically significant when using
the first two PCs (explained over 85% of the total variance).

Discussion
Under the hypothesis of thinking quantitatively [4], we
have considered a general framework for gene-gene inter-
action on quantitative phenotype, which includes single
SNP-SNP interaction on single trait, gene-gene (each with
multiple SNPs) interaction on single trait and gene-gene
(each with multiple SNPs) interaction on multiple traits,
which was the most reasonable in genetic mechanism for
multiple quantitative traits underlying complex diseases.



Figure 5 Power of two methods under different sample sizes and different interaction effect. (a) Power of mPLSPM statistic given an
interaction effect of 0.3 and different sample sizes. (b) Power of mPLSPM statistic given different interaction effects and a sample size of 3,000.
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In this paper, we furnished a novel mPLSPM statistic to
detect the third of interaction. The mPLSPM statistic
should alleviate the burden of single SNP- single trait
paradigm which inevitably has high false positive rate
due to multiplicity problem, as well as its reduction of
power due to the underuse of the LD information [16,17].
Furthermore, the new approach does not have the draw-
back of gene (multiple SNPs)-single trait paradigm for
reasons mentioned earlier, and for most complex diseases
(type II diabetes, obesity, disturbance of consciousness),
although their quantitative phenotype could in principle
Figure 6 Power of two methods under different causal SNPs.
Note: i (i = 1, 2, …, 7) denotes the causal SNPs are the i-th SNP in
gene FTO and the i-th SNP in gene NEGR1.
be measured, they might not be used for practical rea-
sons (quantitative phenotypes are “really there” but hid-
den). Our proposed statistic uses the framework of SLT
as a quantitative phenotype which was inferred from
observed variables (multiple SNPs within gene regions,
and multiple traits of a specific complex disease). Through
simulation it was shown that the proposed novel mPLSPM
statistic to be not only powerful (Figure 3c, 3d) but
superior to the PCA-based linear regression method
(Figure 5a, 5b, 6).
After applying the novel statistic to the real data, a

significant TMEM18-BDNF interaction has been shown
for body shape score as a SLT but not for its individual
components (waist, hip, and WHR) (Figure 7a-7f), sug-
gesting that the SLT (body shape score) to be more suitable
to capture the interaction effect than any single trait.
The biological significance in the food intake and energy
balance regulation system is in line with the literature,
and these two genes have been confirmed to be associ-
ated with obesity [42-44].
Our approach shares similarity with traditional SEM,

available as either covariance-based or component-
based [25,45,46]. However, gene-based multiple SNPs
with high LD in genomic data and multiple high corre-
lated traits, the covariance-based SEM suffers from the
strong multicollinearity between them. Our use of PLSPM
is a component-based with the following advantages:
1) use of reflective measurement model to avoid the
impact of high multicollinearity among multiple SNPs,
and among multiple traits; 2) as a “soft modeling” ap-
proach (very few distribution assumptions, variables can
be numerical, ordinal or nominal, and no need for
normality assumptions) suitable for any genetic model
(additive, recessive, dominant, etc.) [23,24,47]. However,



Figure 7 Different models forTMEM18-BDNF interactions on obesity of the real data. Different kinds of TMEM18-BDNF interactions on BSS1 (a),
waist (b), hip (c), BMI (d), WHR (e), and BSS2 (f). Note:*P < 0.05.
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the usual PLSPM cannot handle the interaction between
latent variables straightforwardly, the modified PLSPM
has a product term of combined multiple SNPs effect
within two genes (gene A and gene B).
A reviewer has also indicated that another way to test

interaction would be to add a new latent variable for
all the pair-wised SNP × SNP interactions to the path
modeling and test whether the path coefficient from
this interaction latent variable to the latent trait vari-
able is significant [48]. We compared this method with
our proposed statistic, and results showed they have simi-
lar performance (see Additional file1: Table S1). However,
when the number of SNPs is large, there will be so many
SNP × SNP terms and undoubtedly bringing us higher
computation burden. Our method seems more practical
in real data analysis. It is worth mentioning that our
proposed method should only be used for testing the
interaction, but not for detecting main effect. Testing
multiple-traits may only be superior if pleiotropic SNPs
and genetic related traits exist, and when the number of
traits is large or the correlation (or LD) structure among
the traits is small, the power of our statistic will decrease.
A possible drawback of the proposed approach is the

computing time spending on bootstrap test used to evalu-
ate the standard deviation of path coefficients. Ideally, a
parametric statistic can be developed in the near future.
Our findings on the interaction also call for replications
by other studies.

Conclusions
The proposed novel mPLSPM statistic is a valid and power-
ful gene-based method for detecting gene-gene inter-
action on multiple quantitative phenotypes. Further work
is needed to make its use in GWAS more practical.

Additional file

Additional file 1: Introduction for Partial least squares path model
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results which the reviewers indicated us to add.
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