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Abstract

Background: Genetic improvement of beef quality will benefit both producers and consumers, and can be
achieved by selecting animals that carry desired quantitative trait nucleotides (QTN), which result from intensive
searches using genetic markers. This paper presents a genome-wide association approach utilizing single nucleotide
polymorphisms (SNP) in the Illumina BovineSNP50 BeadChip to seek genomic regions that potentially harbor genes
or QTN underlying variation in carcass quality of beef cattle.
This study used 747 genotyped animals, mainly crossbred, with phenotypes on twelve carcass quality traits,
including hot carcass weight (HCW), back fat thickness (BF), Longissimus dorsi muscle area or ribeye area (REA),
marbling scores (MRB), lean yield grade by Beef Improvement Federation formulae (BIFYLD), steak tenderness by
Warner-Bratzler shear force 7-day post-mortem (LM7D) as well as body composition as determined by partial rib
(IMPS 103) dissection presented as a percentage of total rib weight including body cavity fat (BDFR), lean (LNR),
bone (BNR), intermuscular fat (INFR), subcutaneous fat (SQFR), and total fat (TLFR).

Results: At the genome wide level false discovery rate (FDR < 10%), eight SNP were found significantly associated
with HCW. Seven of these SNP were located on Bos taurus autosome (BTA) 6. At a less stringent significance level
(P < 0.001), 520 SNP were found significantly associated with mostly individual traits (473 SNP), and multiple traits
(47 SNP). Of these significant SNP, 48 were located on BTA6, and 22 of them were in association with hot carcass
weight. There were 53 SNP associated with percentage of rib bone, and 12 of them were on BTA20. The rest of the
significant SNP were scattered over other chromosomes. They accounted for 1.90 - 5.89% of the phenotypic
variance of the traits. A region of approximately 4 Mbp long on BTA6 was found to be a potential area to harbor
candidate genes influencing growth. One marker on BTA25 accounting for 2.67% of the variation in LM7D may be
worth further investigation for the improvement of beef tenderness.

Conclusion: This study provides useful information to further assist the identification of chromosome regions and
subsequently genes affecting carcass quality traits in beef cattle. It also revealed many SNP that acted pleiotropically
to affect carcass quality. This knowledge is important in selecting subsets of SNP to improve the performance of
beef cattle.
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Table 1 Distribution of animals among six major breeds

% of breed AN SM CH PI LM GV

50-70 296 142 50 127 15 15

>75 17 2 0 0 0 0

100 1 0 3 12 0 0

AN Angus, SM Simmental, CH Charolais, PI Piedmontese, LM Limousin,
GV Gelbvieh.
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Background
Beef quality and consumer satisfaction are important to
the beef industry. Beef quality contributes to consumers’
decision to purchase beef. An improvement of beef quality
can increase demand, benefiting both producers and con-
sumers [1]. Leading beef quality defects and subsequent
lost carcass value include insufficient marbling and low
quality grades, lack of cattle uniformity, inadequate beef
tenderness, high yield grades, and excessive carcass weight
[2,3]. Standards for beef quality have been set out and car-
casses not meeting the standards are discounted [2].
Efforts to improve beef quality have been made through

conventional beef cattle breed improvement programs
using pedigree and performance records to estimate ex-
pected progeny differences (EPD). Although Real-time
ultrasound imaging has been used on live animals to
measure a number of traits, such as Longissimus dorsi
muscle area, and backfat, it evaluates marbling through
ultrasound intramuscular fat, and cannot measure tender-
ness. These two traits, tenderness and marbling, can only
be obtained after the animal has been slaughtered. Thus
there exists a time-delay in identifying elite animals before
they can be widely used, and is the major limitation to im-
proving current rates of genetic improvement [4]. Selec-
tion programs that incorporate either subsets of markers
on select regions of the genome, for instance markers for
growth and feed efficiency, as well as carcass quality [5],
or double-muscling DNA test [6], or a large number of
markers covering the whole genome in genomic selection
that has been reported to result in a 32% improvement in
accuracy compared to parental average breeding values
[7], have drawn the attention of both beef researchers and
producers. In beef cattle, American Angus Association
has started incorporating genetic marker information
from a 50,000 marker panel into their weekly carcass
EPD evaluation program [8], American Simmental As-
sociation has applied marker assisted EPD for beef ten-
derness [9], and North American Limousin Foundation
announced its commencement of genomic-enhanced
EPDs as of December 2012 [10].
As for multi-breed beef cattle, which constitute a large

proportion of the beef population, genomic selection is
still in the development stage. However, immediate appli-
cations of the 50K panel can include searching the gen-
ome for regions that may contain causative mutations
underlying genetic variation of the carcass quality traits.
The study reported here was designed for this purpose.

Methods
Animals and phenotypic data
Seven hundred and forty-seven animals were genotyped,
using the Illumina BovineSNP50 BeadChip, including 713
males born between 1998 and 2006, and 34 feedlot heifers
born between 1999 and 2005. These 747 animals consisted
of 16 purebreds and 731 crossbreds. Number of animals
with at least 50% of one of the six major breeds (Angus –
AN, Charolais – CH, Simmental – SM, Piedmontese – PI,
Limousin – LM, Gelbvieh – GV) are presented in Table 1.
The rest of the animals, 97 individuals, were made of other
breed combinations. The 747 animals were parented by
160 sires (maximum 17 progeny per sire) and 554 dams.
The extended pedigree of these 747 animals contains
3,116 individuals, and the longest ancestral path was 11.
The test animals were born in one of the three cooperat-

ing herds: Elora Beef Research Centre (EBRC), New
Liskeard Agriculture Research Station (NLARS), and Agri-
culture and Agri-food Canada Kapuskasing Experimental
Farm (KAP). Cows at these three herds were bred to
mostly purebred sires through the extensive use of artifi-
cial insemination. Calves were raised with their dams ei-
ther on pasture or in group pens. NLARS and KAP cattle
were transported to EBRC at weaning around 200 days of
age to be fed under feedlot conditions typical of the
Ontario beef industry.
The animals were slaughtered at an average age of

452 days, at a federally inspected abattoir operated by
the University of Guelph. This facility does not use elec-
trical stimulation, which can increase muscle tenderness.
Hot carcass weight (HCW, kg) is the weight of carcass
after harvest and removal of the head, the fore-shank
below the knee joint, the hind-shank below the hock
joint, gastrointestinal tracts and internal organs. Back fat
thickness (BF, mm) was measured perpendicular to the
outside surface at the 12th- and 13th-rib interface, three-
fourths of the length of the Longissimus muscle from the
backbone. Ribeye area (REA, sq.cm) was the measure of
Longissimus muscle area at the 12th- and 13th-rib inter-
face using a tracing of the muscle with the area quanti-
fied using an electronic planimeter (MOP-3; Carl Zeiss
Canada LTD., Toronto, ON.). Longissimus muscle was
assessed for subjective marbling score (MRB) from a
scale of 1 (devoid marbling) to 10 (abundant marbling)
based on the size and distribution of flecks of intramus-
cular fat in the Longissimus muscle at the 12th- and
13th-rib interface. Lean yield grade by Beef Improvement
Federation formulae (BIFYLD) was calculated using the
following formula Yield Grade = 2.50 + (2.5 × Adj. fat
thickness, in.) + (0.2 × Kidney, pelvic, and heart fat, %) +
(0.0038 × Hot carcass wt., lb.) – (0.32 × REA, sq. in.).
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Low BIFYLD values mean higher yields of retail product
yield.
Steak tenderness was determined using Warner-

Bratzler shear force to measure the amount of force (kg)
required to cut through cooked Longissimus dorsi that
had been aged for 7 days post-mortem (LM7D). Steaks
were thawed for 48 hours at 1.5°C, trimmed of external
fat and epimysium, and weighed prior to cooking. Steaks
were cooked to an internal temperature of 70°C on a
Garland Grill (ED-30B broiler, Garland Commercial Range
Ltd., Mississauga, ON). Steak temperature was continually
monitored by a Type K flexible high temperature thermo-
couple (Omega, Laval, Que) inserted into the geometric
centre of each steak. Steaks were turned when they reached
an internal temperature of 40°C. Cooked steaks were
weighed, placed into individual bags, and immediately
chilled in ice water to stop the cooking process. Steaks were
then transferred to a chill cooler where they were stored at
1.5°C for 24 hours prior to coring. After equilibrating to
room temperature, approximately eight cores of 1.5 cm
were removed parallel to the muscle fibres from each
steak using a drill press mounted corer. Cores were
sheared using a Warner-Bratzler blade on a TA-XT
Plus texture analyzer (Texture Technologies Corp.,
Scarsdale, NY) with crosshead speed set at 3.3 mm s-1.
Peak shear force was determined using a custom macro
program in Stable Microsystems Exponent software,
with the average of the eight peak force values used in
data analysis as the shear force value for each animal.
Carcass composition was assessed based on complete

separation of a 21 cm rib section into body cavity fat
(BDFR), lean (LNR), bone (BNR), intermuscular fat
(INFR), subcutaneous fat (SQFR), while total fat (TLFR)
was the sum of BDFR, INFR, and SQFR, following a
modification of the procedure originally developed by
Hankins and Howe [11]. The traits were expressed as
proportions of the total rib weight.

Genotypic data
DNA extracted either from blood or meat samples was ge-
notyped using the Illumina BovineSNP50_v1 Beadchip at
the Alberta Bovine Genomics laboratory. All 51,620 SNP
in this panel went through quality control that excluded
SNP with spurious position, low call rates (< 95%), parent-
age error, out of Hardy Weinberg equilibrium (P < 0.01) or
less than 10% minor allele frequency (MAF). A total num-
ber of 38,745 SNP on 29 Bos taurus autosomes (BTA)
remained for further analysis. The number of SNP varied
among the chromosomes, with BTA1 having the highest
number of SNP (2,082) and BTA28 having the fewest
(608); the longest SNP interval was identified on BTA5
(1.53 Mbp). However average SNP intervals were relatively
consistent among the chromosomes, and the overall aver-
age distance between two adjacent SNP was 70 kbp.
Statistical analysis
Heritabilities and genetic correlations among the traits
were estimated utilizing analytical gradients [12] in the
REMLVCE 6.0 package [13] with the model below exclud-
ing the allele substitution effect. To account for population
stratification in association analysis, the animals were clus-
tered into groups, using pair-wise population concordance
test (PPC) at significance level of 0.05 from PLINK v1.07
[14]. A univariate animal model to estimate the allele sub-
stitution effect at each locus, yijkmnpl = + γ1(ageijkmnpl) +

γ2(hijkmnpl) + sexi +
X6

j¼1

βjbj + tk + gm + hyn + ap + αlxl +

eijkmnpl was used, where yijkmnpl was the phenotype, the
overall mean, γ1 and γ2 the regression coefficients for fixed
effects age (ageijkmnpl) and individual’s heterosis (hijkmnpl),
respectively, being fit as covariates, sexi the fixed effect of
sex (male or female), βj the linear regression coefficients of
the jth breed, bj the breed proportion of the jth breed
(six major breeds being Angus, Charolais, Simmental,
Piedmontese, Limousin, Gelbvieh) in the p animal, tk the
fixed effect of the kth trial treatment (57 groups), gm the
fixed effect of the mth clusters (75 clusters), hyn the ran-
dom effect of the nth herd of origin by year group (28
groups), ap the random additive genetic effect of individual
p, xl the number of copies of the 2nd allele (0, 1, 2) in the
genotype for the lth marker, αl the linear regression coeffi-
cient (which is also the allele substitution effect) for the lth

marker, s the total number of SNP (38,745) included in the
analysis, eijkmnpl the random residual effect. Age, heterosis,
sex, trial treatment and cluster were assumed to affect all
animals equally. Markers were assumed in linkage disequi-
librium with quantitative trait loci (QTL) controlling the
trait under investigation. Random effects hy, a, and e were
assumed uncorrelated with each other. Covariance matri-

ces of the effects were equal to Iσ 2
hy ; Aσ2a; and Iσ2e , re-

spectively, where I was an identity matrix, and A the
additive numerator relationship matrix among the ani-
mals. ASREML [15] was used to estimate the allele substi-
tution effect, polygenic variance and residual variance.

Type I error rate was controlled by the false discovery
rate (FDR) proposed by Benjamini and Hochberg [16].
The calculation of FDR thresholds was derived from the
method proposed by Storey [17], who estimated the pro-
portion of the p-values, of true null hypotheses, follow-
ing a uniform distribution on the interval (0, 1).
However the numbers of true null hypotheses in this
study were estimated using the histogram of p values.
The interval (0, 1) was equally partitioned into 20 bins
(e.g. bin1 had p values in (0, 0.05], bin2 (0.05, 0.10]…
bin20 (0.95,1]). For each trait, n tests were conducted
with observed p values distributed as follows: n1, n2 …
n19, n20 in bin1, bin2… bin19, bin20, respectively, and



Lu et al. BMC Genetics 2013, 14:80 Page 4 of 10
http://www.biomedcentral.com/1471-2156/14/80
n ¼ ∑2o
t¼1ni ; nk was the least number of p values among

the bins, then 20nk was the estimated number of true

null hypotheses, and the FDR threshold was n−20nkð Þ100%
n .
Results and discussion
Estimated genetic parameters
Trait means, heritabilities, genetic and phenotypic correla-
tions, estimated from 747 animals, are presented in Tables 2,
3 and 4. Heritability estimates for HCW, BIFYLD, BF, REA,
LM7D, and MRB were 0.27, 0.44, 0.35, 0.37, 0.31, and
0.62, respectively; and appeared moderate for all rib dis-
section traits. Back fat thickness appeared to have strong
genetic correlations with other traits in Table 3 except
LM7D. Yield grade had strong positive genetic correla-
tions to fat related traits (0.65 and 0.66, BF and MRB re-
spectively), and a slight negative correlation with REA
(−0.18), because yield grade is a function of BF, MRB and
REA. Genetic correlations between shear force at 7 days of
post-mortem aging and other traits varied from almost
null to low. This suggests that selection for back fat thick-
ness and yield grade may not affect beef tenderness; while
selection to increase carcass weight or ribeye area will po-
tentially increase shear force at 7 days, whereas an in-
crease in marbling score will improve beef tenderness. In
our study, marbling score accounted for 8.8% of the vari-
ation in the shear force, which is close to the reports from
Wulf et al. [18], who found that sire means for marbling
accounted for 5% of the variation in sire means for tender-
ness; and Jones and Tatum [19], who reported a 9% of
variation in tenderness was due to marbling. The esti-
mated heritabilities for these six carcass quality traits
agreed well with the estimates reported in the current lit-
erature [20].
As for rib dissection traits, heritability estimates were

moderate (0.30-0.48), genetic correlations among fat re-
lated traits varied from low (0.21, BDFR and SQFR; 0.11,
Table 2 Number of observations, trait means and standard d

Trait Number of observations Trait

BIFYLD 605

BF (mm) 740

HCW (kg) 746

REA (sq. cm) 746

MRB 704

LM7D (kg) 679

BDFR 741

SQFR 741

INFR 741

LNR 741

BNR 741

TLFR 741
SQFR and INFR) to moderate (0.31, BDFR and INFR),
and high (e.g. 0.52, TLFR and BDFR). Since the rib dis-
section traits are intrinsically related, an increase in lean
component decreases fat component, and vice versa.
Genetic correlation can suggest the level of similarity in
genetic mechanisms between traits, where a higher cor-
relation may be attributed to more positive and less
negative contributions from the same loci than a lower
correlation [21].

Association analysis
The FDR thresholds for BF, BIF, HCW, REA, MRB,
LM7D, BDFR, BNR, INFR, LNR, SQFR, TLFR were 5.12,
6.80, 6.72, 5.40, 4.92, 5.72, 7.19, 7.88, 7.19, 5.13, 5.24, and
5.18%, respectively. Number of significant SNP at different
significance levels are presented in Table 5. No SNP was
found significantly associated with any of the traits except
for HCW at genome-wide FDR < 10%. Seven and eight
SNP were in significant association with HCW at FDR <
6.72% and FDR < 10%, respectively. Seven of these SNP
were positioned on chromosome 6 at 33-35 Mbp, the
eighth SNP was on chromosome 13 at 61 Mbp. At a less
stringent significance level of P < 0.001, 520 SNP were
found significantly associated with mostly individual traits
(473 SNP), and also multiple traits (47 SNP). This lends
the emphasis to the point of moving from single trait
SNP associations to multiple trait SNP associations. The
P values of SNP in association with HCW were plotted in
Figure 1. The P values of SNP in association with other
traits were presented in Additional files 1, 2, 3, 4, 5, 6, 7, 8,
9, 10 and 11.
The allele substitution effect of significant SNP (P <

0.001), and size of the effect in terms of percentage of
phenotypic variance are presented in (Additional file 12:
Table S6) and (Additional file 13: Table S7), respectively.
The phenotypic variance was derived as σ2p ¼ 2pqα2 þ σ2

a

þσ2
e , where σ2p is the phenotypic variance, p the
eviation

mean SD Min. Max.

1.89 0.82 −1.50 3.90

7.72 3.06 1.00 20.00

360.31 54.10 209.00 561.00

97.51 16.03 57.90 164.50

4.78 0.78 1.00 7.00

5.12 1.41 2.20 11.30

3.03 1.11 0.00 7.70

9.01 2.56 0.60 16.30

9.17 3.46 0.00 20.50

55.19 12.03 15.30 81.20

19.48 2.28 9.80 34.10

21.22 5.97 2.30 38.50



Table 3 Estimated heritability (diagonals), genetic (above the diagonal) and phenotypic (below the diagonal)
correlations for carcass quality

BIFYLD BF HCW REA MRB LM7D

BIFYLD 0.44 ± 0.02 0.65 ± 0.06 0.09 ± 0.08 −0.18 ± 0.09 0.66 ± 0.06 0.04 ± 0.07

BF 0.65 ± 0.03 0.35 ± 0.04 0.42 ± 0.08 0.46 ± 0.09 0.43 ± 0.08 0.04 ± 0.07

HCW 0.16 ± 0.04 0.28 ± 0.03 0.27 ± 0.05 0.89 ± 0.02 −0.16 ± 0.10 0.21 ± 0.07

REA −0.67 ± 0.03 −0.08 ± 0.03 0.55 ± 0.03 0.37 ± 0.03 −0.28 ± 0.10 0.15 ± 0.07

MRB 0.24 ± 0.04 0.42 ± 0.03 −0.25 ± 0.04 −0.21 ± 0.04 0.62 ± 0.09 −0.17 ± 0.09

LM7D −0.06 ± 0.04 −0.04 ± 0.03 0.18 ± 0.04 0.15 ± 0.04 −0.25 ± 0.04 0.31 ± 0.08
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frequency of allele1, q the frequency of allele2, α the al-
lele substitution effect, σ2

a the multiple additive genetic
variance, σ2e the residual variance. Forty-eight of these
520 SNP were located on chromosome 6, and 22 of
them were in association with hot carcass weight. There
were 53 SNP associated with percentage of rib bone,
and 12 of them were on chromosome 20. The rest of the
significant SNP were scattered over other chromosomes. In
terms of effect size, these SNP accounted for 1.90 - 5.89%
of the phenotypic variance, with marker ARS-BFGL-NGS-
45457 on chromosome 6 explaining 5.89% of variation in
HCW. Within 1.3 Mbp of this SNP were 17 others that all
significantly affected HCW (P < 0.001).
Marker CAPN1_1 in the Calpain gene on chromosome

29 was significantly associated with shear force in this ana-
lysis, explaining 4.28% of the variation in LM7D. Similarly
HAPMAP48825-BTA-60019 (BTA-60019 hereafter) on
chromosome 25 accounted for 2.67% of variation in shear
force but has not been documented in the literature for this
trait though it is in close proximity to a QTL for beef ten-
derness described by Gutierrez-Gil et al. [22]. CAPN1_1 on
BTA29 is well known for its association with tenderness, e.
g. the presence of allele G at this position increased Warner
Bratzler shear force in crossbred beef cattle [23,24], and in
Brangus and Angus beef cattle [25]. In the current study,
the presence of one copy of allele G at this location in-
creased the Warner-Bratzler shear force by 0.50 kg. This al-
lele was found associated with an increase in average daily
gain in Brangus and Angus beef cattle [25]; and hormonal
growth promotants that promote muscle growth increase
Table 4 Estimated heritability (diagonals), genetic (above the
correlations for rib dissection traits

BDFR SQFR INFR

BDFR 0.30 ± 0.02 0.21 ± 0.03 0.31 ± 0.0

SQFR 0.32 ± 0.03 0.48 ± 0.02 0.11 ± 0.0

INFR 0.25 ± 0.04 0.18 ± 0.03 0.44 ± 0.0

LNR −0.33 ± 0.03 −0.35 ± 0.03 −0.73 ± 0.0

BNR −0.05 ± 0.03 −0.04 ± 0.03 −0.18 ± 0.0

TLFR 0.55 ± 0.03 0.68 ± 0.02 0.81 ± 0.0
the activity of the Calpastatin gene [26], resulting in less
tender meat [27,28].
Kuehn et al. [29] estimated the frequency of allele G at

CAPN1_1 in Angus (average of Angus and Red Angus),
CH, GV, LM, and SM as 0.64, 0.91, 0.95, 0.92, and 0.92, re-
spectively. The frequency of G among the 747 animals
used this study was 82.48%, given that this SNP was in
Hardy Weinberg equilibrium, indicating that CAPN1_1
has not been selected for in this research population. The
minor allele had the highest frequency at CAPN1_1 in
Angus [29], thus Angus could potentially be a good source
of the minor allele to increase tenderness. Meanwhile al-
lele T of BTA-60019, one copy of which reduced shear
force by 0.32 kg in the current study, had frequencies of
0.36, 0.50, 0.10, 0.22, and 0.35 in AN (average of Angus
and Red Angus), CH, GV, LM, and SM, respectively [29].
Its frequency among the 747 animals used in the current
study was 30.91%. Therefore, Angus, Charolais and Sim-
mental breeds may be used to increase the frequency of al-
lele T at BTA-60019.
Marker CAPN1_1 on chromosome 29 was covered by

three QTL for beef tenderness [30-32], and close to two
QTL for tenderness [33,34]. This SNP and CAPN1_2 (at
37,544,057 bp on chromosome 29) have been described as
CAPN1-316 and CAPN1-4751, respectively, by [35] in the
Calpain gene. In the current study, CAPN1_2 was not sig-
nificantly associated with LM7D (P > 0.05). Meanwhile
marker BTA-60019 (P < 0.001) was near a QTL for tender-
ness reported by [30]. CAPN1_1, CAPN1_2, and BTA-
60019 together explained 5% of the variation in LM7D [36].
diagonal) and phenotypic (below the diagonal)

LNR BNR TLFR

3 −0.14 ± 0.05 −0.06 ± 0.03 0.52 ± 0.02

3 −0.31 ± 0.04 −0.07 ± 0.03 0.65 ± 0.02

2 −0.66 ± 0.04 −0.26 ± 0.04 0.81 ± 0.02

2 0.38 ± 0.04 −0.26 ± 0.04 −0.64 ± 0.04

3 −0.19 ± 0.03 0.33 ± 0.02 −0.23 ± 0.04

2 −0.73 ± 0.02 −0.15 ± 0.03 0.41 ± 0.02



Table 5 Number of significant SNPs and their mean effect
at various significance levels

FDR* FDR < 0.1 P < 0.001 P < 0.01 P < 0.05

BF 0 0 52 (2.53) 410 (1.75) 1986 (1.16)

BIF 0 0 54 (3.19) 433 (2.17) 1971 (1.44)

HCW 7 (4.90) 8 (4.80) 56 (3.06) 451 (1.85) 2084 (1.22)

REA 0 0 45 (2.63) 446 (1.78) 2060 (1.19)

MRB 0 0 34 (2.68) 391 (1.73) 1752 (1.16)

LM7D 0 0 55 (3.03) 421 (1.98) 2004 (1.30)

BDFR 0 0 52 (2.60) 392 (1.80) 1898 (1.19)

BNR 0 0 53 (2.68) 417 (1.83) 1955 (1.21)

INFR 0 0 59 (2.54) 462 (1.72) 2157 (1.14)

LNR 0 0 27 (2.63) 392 (1.69) 1864 (1.15)

SQFR 0 0 47 (2.39) 408 (1.66) 1786 (1.12)

TLFR 0 0 45 (2.51) 426 (1.67) 1988 (1.12)

* Calculated FDR threshold; Values in the parentheses are average size of SNP
effect as proportion of phenotypic variance.
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Given LM7D is 31% heritable in the current study, these
three SNP together explain approximately 16% of the addi-
tive genetic variance for this trait.
There appears to be clusters of significant SNP on

chromosome 8 (37 Mbp - 40 Mbp), and 20 (4 Mbp - 5Mbp)
controlling yield grade and rib eye area, as well as percen-
tage of rib bone, respectively. In addition there was a
cluster of 18 SNP on chromosome 6 (36 Mbp - 40 Mbp)
significant for carcass weight and rib eye area. Twelve of
them were significantly associated with birth weight and
weaning weight in a separate study of the same beef
cattle population [37]. Five of them (BTC-036670, BTC-
Figure 1 Distribution of observed P values of SNP in association with
034283, BTC-057761, ARS-BFGL-NGS-45457, BTC-
041023) were also found to be significant for carcass
weight in Japanese Black cattle [38]. This region of
chromosome 6, when entered onto NCBI Map Viewer,
contains 42 genes and candidate genes, involved in vari-
ous functional networks, for instance nucleic acid and
carbohydrate metabolism, including candidate genes
ABCG2 that affects milk production [39,40], and SPP1
that affects yearling weight, post weaning weight gain,
and HCW [41]. The chromosome 6 region was also cov-
ered by QTL for carcass weight, yearling weight and
ribeye area, as well as weight gain as reported by Casas
et al. [28], McClure et al. [42], and Nkrumah et al. [43],
respectively.
Seven SNP (UA-IFASA-6538, BTC-034283, BTC-057761,

ARS-BFGL-NGS-45457, BTC-041097, BTC-041023, BTC-
060891) all on chromosome 6 at 37-39 Mbp, significant
for HCW in this study were confirmed significant for post-
weaning gain and yearling weight (P < 0.001, P < 0.001, re-
spectively) in the USDA crossbred beef cattle population
[44]. Six of these SNP (except for UA-IFASA-6538) were
also in significant association with birth weight and
weaning weight (both at P < 0.001), in the same USDA
crossbred beef cattle data. Given high genetic correla-
tions between carcass weight and weight gain (0.79,
[45]), as well as between carcass weight and ribeye area
(0.89), the 36-40 Mbp region on chromosome 6 might
be a potential candidate for a search for genes influen-
cing growth.
At less stringent significance levels, significant SNP

spread out across the genome and the size of their effect
shrank as the significance threshold eased up (Table 5).
HCW.



Figure 2 Correlation of t-test values of SNP for pairs of traits; (A) carcass quality traits; (B) rib dissection traits.
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Correlation of t-test values among traits
Investigating the correlations among the traits at SNP
level revealed that highly correlated traits as shown in
Tables 2 and 3 tend to share more SNP in same effect
direction than traits with low correlation. Figure 2A and
2B show SNP correlations among the traits when all SNP
are included. Strong correlations were observed between
BIFYLD and BF, BIFYLD and REA, as well as HCW and
REA. Most of pairs among rib dissection traits show
trends (e.g. BDFR and INFR, SQFR and BNR) or strong
correlations (e.g. INFR and TLFR, LNR and TLFR) in their
relationships. This could be attributed to the intrinsic
part-whole relationships among them. For pairs of traits
that show strong, clear relationships, if genomic selection
is applied to either trait in them, the corresponding trait
would respond in the expected direction.
For pairs of traits where the genetic correlations are

close to zero, such as BIFYLD and LM7D, BF and LM7D,
BIFYLD and HCW, their scatter plots in Figure 2A show
no trend at all. However there appeared to be two groups
of significant SNP (P < 0.05) involved in the relationship in
those trait pairs. To demonstrate this point, Figure 3
shows 92 SNP significant for both BF and LM7D (P <
0.05). Twenty-nine of them (presented in blue crosses) af-
fected the two traits in same direction; the rest (63 SNP
presented in red circles) increased one trait while decreas-
ing the other trait. The 63 SNP contributed negatively to
the covariance between BF and LM7D. Bohren et al. [21]
suggested that this negative contribution, together with
Figure 3 Correlation of t-test values of significant SNP (P < 0.05) for B
having gene frequencies other than 0.5, is the most com-
mon factor that causes asymmetrical correlation among
traits, leading to asymmetry in selection responses. Where
this applies, selection of subsets of SNP for any applica-
tions should be carried out with cautions because chosen
SNP may affect multiple traits.

Conclusions
This study took a genome-wide association approach to
seek regions across the bovine genome that could poten-
tially lead to the identification of causative mutations
underlying variation in carcass quality traits in beef cat-
tle. Apart from SNP found significantly associated with
the twelve traits reported in this study, chromosome 6
appeared to contain regions for future investigations into
quantitative trait nucleotides that control growth and
weight in beef cattle. Marker BTA-60019 on chromo-
some 25 needs further research into its contribution to
the variation in beef tenderness.
Single nucleotide polymorphisms that were significantly

associated with the traits may hold real association with
genes controlling those traits. Genomic regions containing
such SNP, if densely genotyped or sequenced, could be
used to identify causal mutations underlying trait vari-
ation, and thus help facilitate the selection process to im-
prove the trait of interest. An example for this is the
validation of the effect of the CC at CAPN1 gene resulting
more tender meat than homozygous TT in a diverse range
of breeds.
ack fat and Shear force at 7th day post-mortem.
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Traits analyzed in the current study had heritability es-
timates from low to high, thus genetic improvement of
the trait using traditional selection would be possible
where phenotypes are readily available as part of main-
stream recording. For traits that show very low genetic
correlations, the current study revealed that such traits
may be mainly controlled by two groups of genes, one
increasing both traits, the other increasing one trait
while decreasing the other trait at the same time. Where
this applies, a carefully chosen subset of SNP during se-
lection may lead to improvement in both traits.
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