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Abstract

Background: Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction
might improve reliability of genomic estimates for these low-heritability traits. Semen from 550 Holstein bulls of
high (≥ 1.7; n = 288) or low (≤ −2; n = 262) daughter pregnancy rate (DPR) was genotyped for 434 candidate SNPs
using the Sequenom MassARRAY® system. Three types of SNPs were evaluated: SNPs previously reported to be
associated with reproductive traits or physically close to genetic markers for reproduction, SNPs in genes that are
well known to be involved in reproductive processes, and SNPs in genes that are differentially expressed between
physiological conditions in a variety of tissues associated in reproductive function. Eleven reproduction and
production traits were analyzed.

Results: A total of 40 SNPs were associated (P < 0.05) with DPR. Among these were genes involved in the
endocrine system, cell signaling, immune function and inhibition of apoptosis. A total of 10 genes were regulated
by estradiol. In addition, 22 SNPs were associated with heifer conception rate, 33 with cow conception rate, 36 with
productive life, 34 with net merit, 23 with milk yield, 19 with fat yield, 13 with fat percent, 19 with protein yield, 22
with protein percent, and 13 with somatic cell score. The allele substitution effect for SNPs associated with heifer
conception rate, cow conception rate, productive life and net merit were in the same direction as for DPR. Allele
substitution effects for several SNPs associated with production traits were in the opposite direction as DPR.
Nonetheless, there were 29 SNPs associated with DPR that were not negatively associated with production traits.

Conclusion: SNPs in a total of 40 genes associated with DPR were identified as well as SNPs for other traits. It
might be feasible to include these SNPs into genomic tests of reproduction and other traits. The genes associated
with DPR are likely to be important for understanding the physiology of reproduction. Given the large number of
SNPs associated with DPR that were not negatively associated with production traits, it should be possible to select
for DPR without compromising production.
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Background
There is a negative genetic correlation between milk
yield and fertility in dairy cattle [1-3]. Partly as a result,
the large improvement in milk yield over the last 40 years
was accompanied by a decline in fertility [4-6]. Genetic
selection for fertility is hampered by low heritability. For
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reproduction in any medium, provided the or
example, the heritability for daughter pregnancy rate
(DPR), the fertility trait most widely measured in the
United States, has been estimated at 0.04% [2]. Genetic
estimates of fertility can be improved by genome-wide
single nucleotide polymorphism (SNP) arrays. Utilization
of the BovineSNP50 chip from Illumina (San Diego, CA,
USA) improved reliability for DPR [7,8] but the low her-
itability and polygenic nature of the trait has meant that
improvements in reliabilities achieved by incorporation
of genomic information was less than for other traits.
Thus, while the incorporation of information from the
SNP50 chip increased reliability of DPR by 17% in
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Holsteins, this improvement was one of the lowest of
the 12 traits examined [8].
One possible way to improve the accuracy of genomic

estimates of fertility is to incorporate SNPs for specific
genes involved in reproduction into SNP panels. The bo-
vine genome contains over 20,000 genes, and over
14,000 of those do not contain a single SNP on the
BovineSNP50 chip [9]. Incorporation of candidate gene
SNPs into genomic tests for reproduction would allow
selection of causative SNPs or SNPs physically more
close to causative SNPs. Such an approach has been suc-
cessful for improving ability to detect genomic associa-
tions with disease [10].
Many genes have been associated with reproduction in

the dairy cow. Among these are SNPs related to in vitro
fertilization or development, such as STAT5A [11], FGF2
[12,13] and PGR [14]), DPR (CAST [15]), sire conception
rate including STAT5A [16], FGF2 [16], and ITGB5 [17],
calving interval (GHR [18]), superovulation response
(FSHR [19]), twinning rate (IGF1 [20]) and incidence of
still birth (NLRP9 [21] and LEP [22]). In beef cattle,
SNPs related to reproductive function include those in
HSPA1A, associated with calving rate [23], and PAPPA2,
associated with calving interval [24].
The previously mentioned SNPs only represent a small

portion of the genes involved in reproductive processes.
Recent studies have revealed genes whose expression in
tissues or cells of importance to reproduction vary with
reproductive status; these genes are candidates for
containing SNPs that impact fertility. For example, genes
were identified that were differentially regulated in the
brain of cows displaying strong estrus compared to those
displaying weak estrus [25], in the endometrium of
heifers which produced viable embryos compared to
those which produced non-viable embryos [26], and in
biopsies from embryos that resulted in live calves as
compared to embryos that died following embryo trans-
fer [27]. Genetic variants in the genes differentially
expressed in the aforementioned studies and others may
be responsible for differences in fertility among animals.
The goal of the current study was to identify SNPs in

candidate genes affecting reproductive processes. The
approach was to evaluate effectiveness of SNPs in candi-
date genes for explaining genetic variation in DPR.
Three types of SNPs were evaluated: SNPs previously
reported to be associated with reproductive traits of
dairy or beef cattle or physically close to genetic markers
for reproduction, SNPs in genes that are well known to
be involved in reproductive processes, and SNPs in
genes reported to be differentially expressed between
physiological conditions in a variety of tissues associated
in reproductive function. As an additional goal, SNPs
were also evaluated for their relationship to other traits.
Given the negative genetic correlation between milk
yield and reproduction [1-3], it was hypothesized that
some SNPs associated with DPR would have an antagon-
istic relationship with production traits.

Methods
Selection of bulls
Straws and ampules of semen were obtained from 550
Holstein bulls born between 1962 and 2010. Bulls were
chosen based on their predicted transmitting ability
(PTA) and reliability for DPR. In particular, bulls were
chosen to have either a high PTA for DPR (≥ 1.7) or
low PTA for DPR (≤ −2) with reliability as high as pos-
sible. The PTA for the low DPR group (n = 262) ranged
from −5.9 to −2 (average = −3.5), and the PTA for the
high DPR group (n = 288) ranged from 1.7 to 5.3 (aver-
age = 2.87). Reliabilities ranged from 0.46 to 0.99 (3
bulls < 50%, 17 between 50 and 60%, 150 between 60
and 70%, 213 between 70 and 80%, 47 between 80 and
90%, and 120 greater than 90%). The distribution of re-
liabilities was similar between the low (average = 79%)
and high (average = 77%) DPR groups. Predicted trans-
mitting abilities for a variety of traits of the bulls are
presented in Additional file 1: Table S1. Semen was
obtained from the Cooperative Dairy DNA Repository
[CDDR (Beltsville, MD, USA; 445 bulls)], Alta Genetics
(Watertown, WI, USA; 38 bulls), Genex Cooperative
Inc. (Shawano, WI, USA; 31 bulls), Taurus-service Inc.
(Mehoopany, PA, USA; 26 bulls), Foundation Sires Inc.
(Listowel, ON, CAN; 5 bulls), Accelerated Genetics
(Baraboo, WI, USA, 2 bulls), Interglobe Genetics
(Pontiac, IL, USA, 2 bulls), and Nebraska Bull Service
(McCook, NE, USA, 1 bull). Five bulls were born in
the 1960s, 15 in the 1970s, 54 in the 1980s, 154 in the
1990s, and 322 in the 2000s.

SNP discovery
The choice of 434 SNPs to be used for genotyping was
made using a three-step process: candidate gene selection,
SNP identification, and SNP selection. A list of candidate
genes affecting reproduction was compiled using two
methods. The first was to include genes commonly known
to affect reproductive processes such as steroidogenesis
(STAR, HSD17B3, etc.), follicular development (LHB,
FSHB, etc.), oocyte maturation (BMP15, GDF9, etc.), and
early embryonic development (CSF2, IGF1, etc.), as well as
nutritional genes including orexins (NPY, HCRT, etc.) and
anorexins (CCK, LEP, etc.). Furthermore, genes that were
in physical proximity to SNPs related genetically to inter-
val to insemination (IGFBP7, IRF9, etc. [28]) and 56 d
non-return rate (BAIAP2, SCRN1, etc. [29]) were included.
In addition, genes reported to be differentially expressed
between physiological conditions in a variety of tissues as-
sociated with reproductive function were incorporated.
This list included genes differentially regulated in the
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following conditions: the brain of cows displaying strong
vs. weak estrus (CALCR, POMC, etc. [25]), embryos after
cryopreservation (BAX, DSC2, etc. [29]), superovulated
embryos compared to embryos from unstimulated dams
(GOLGA4, KIT, etc. [30]), embryos which survived to term
compared to embryos that died in vivo after embryo trans-
fer (ATP5A1, OCLN, etc. [27,31]), embryos treated with
CSF2 (CACNA1G, MADD, etc. [32]) or IGF1 (COQ9,
CREG1, etc. [33]) compared to control embryos, embryos
cultured in vitro in the well-of-the-well system compared
to embryos cultured in groups (CSNK1E, ZP4, etc. [34]),
oocytes compared to 8-cell embryos (CLIC4, PDGFR, etc.
[35]) and blastocysts (GJA1, TAF9, etc. [36]), oocytes at
different stages of oocyte maturation (CPS1F, ZP2, etc.
[37]), endometrium related to embryo survival (DGKA,
BSP3, etc. [26]), endometrium in lactating cows compared
to non-lactating cows (APBB1, ST13, etc. [38]) or preg-
nant cows compared to non-pregnant cows (ASL, GPLD1,
etc. [38]), cumulus cells regulated by the LH surge
(DHCR24, HAS2, etc. [39]), at different stages of oocyte
maturation (AP3B1, CLU, etc. [40]), or from embryos pro-
duced in vivo embryos compared to embryos produced
in vitro [LPL, MAGED1, etc. [41]), dominant follicles
compared to subordinate follicles (CYP19A1, FST, etc.
[42-45]), liver during the transition period (ACLY, PCCB,
etc. [46]), mammary tissue during lactation (ABCA1,
INSR, etc. [47]), and oviduct at diestrus compared to es-
trus (C3, OVGP1, etc. [48]).
Using the procedures described above, a total of 1532

candidate genes were identified. The SNPs in each of
these genes were identified by querying the SNP data-
base maintained by the National Center for Biotechnol-
ogy Information (dbSNP; http://www.ncbi.nlm.nih.gov/
snp). Then, SNPs were screened to only include those in
the coding region of the gene which resulted in a non-
sense, frameshift, or missense mutation. Of the 1532
genes screened, 553 genes containing a total of 1644
SNPs fit those criteria. In addition to these markers,
SNPs previously linked to fertility were considered for
inclusion. That list of candidate SNPs included CAST
[15], FGF2 [16], FSHR [19], GHR [18], HSPA1A [23],
ITGB5 [17], LEP [22], NLRP9 [21], PAPPA2 [24], PGR
[14], SERPINA14 [49], and STAT5A [11,16].
In order to determine the final list of SNPs to be used

in the assay, each SNP was graded based on primer
designability and predicted change in protein function.
Each SNP causing an amino acid change was evaluated
for the likelihood that the SNP would change the struc-
ture of the encoded protein using an exchangeability
matrix [50]. The average exchangeability value was cal-
culated for each substitution of pairs of amino acids, and
SNPs were ranked in order of exchangeability. For final
selection of 434 SNPs, a maximum of one SNP per gene
was selected. Nonsense mutations were selected first,
then frameshifts, followed by SNPs with the lowest score
in the exchangeability matrix (those most likely to cause
a change in protein function). The selection criteria were
also applied to SNPs already linked genetically to
reproduction. Of the final selected SNPs, 5 were the
exact SNPs used in the literature: STAT5A [11], FGF2
[16], PGR [14], HSPA1A [23], and PAPPA2 [24], and 7
SNPs were replaced with the best option using the cri-
teria mentioned above (ITGB5, GHR, FSHR, NLRP9,
LEP, CAST, and SERPINA14). The final list of genes used
in the assay is shown in Additional file 1: Table S2 and
the SNPs that were chosen from those genes are shown
in Additional file 1: Table S3. The SNP panel included
10 nonsense, 22 frameshift, 397 missense, 1 synonym-
ous, 3 intron region, and 1 promoter region SNPs.

SNP genotyping
Total DNA was extracted from each straw of semen
using the DNeasy Blood and Tissue kit (Qiagen, Valencia,
CA, USA) according to the manufacturer’s instructions.
Amount of double-stranded DNA was assessed using the
Quant-itTM Picogreen® dsDNA kit (Invitrogen, Grand
Island, NY, USA), and DNA was resuspended to a concen-
tration of 50 ng/μL. Genotyping was performed by
GeneSeek Inc. (Lincoln, NE, USA) using the Sequenom
MassARRAY® system (iPLEX GOLD; Sequenom, San
Diego, CA, USA) according to the manufacturer’s instruc-
tions. The technique is based on the analysis of DNA
products using matrix-assisted laser desorption ionization
time-of-flight mass spectrometry [51]. The region of DNA
containing the SNP was amplified by PCR, a primer ex-
tension reaction was performed to generate allele-specific
DNA products, and the size and amount of each allele-
specific product was determined using chip-based mass
spectrometry.

Quality control
Samples with call rates < 70% were removed from all
analyses. The average call rate prior to removing those
samples was 88.2%. After removing the failed samples,
the average call rate was 91.2%. Reliability was assessed
by duplicating 18 SNPs for every DNA sample, and by
assaying 63 DNA samples twice. Of the duplicated SNPs,
16 were selected based on interest (CAST, CSF2,
CYP19A1, FGF2, GHR, HSPA1A, IFNT, ITGB5, LEP,
LHCGR, NALP9, PAPPA2, PGR, POU5F1, STAT5A, and
UTMP) and the other two were selected based on poor
primer designability (ETF1 and POMC). The primers for
the duplicated SNPs were designed based on the se-
quence of the opposite DNA strand of where the ori-
ginal primer was designed. The duplicated DNA samples
were randomly selected. There was 99.2% identity be-
tween SNPs duplicated within an assay and 98.6% iden-
tity between duplicated samples. After quality control
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Table 1 Effect of daughter pregnancy rate class (high or
low) on predicted transmitting ability for selected traits
of bulls used for genotyping

Least-squares
means

Standard
error

Trait P-value High Low High Low

Daughter pregnancy rate <.0001 2.86 −3.49 0.04 0.04

Heifer conception rate <.0001 1.20 −1.00 0.08 0.09

Cow conception rate <.0001 3.20 −4.16 0.11 0.11

Productive life <.0001 3.51 −2.96 0.13 0.13

Net merit <.0001 232.97 −156.40 13.32 13.97

Milk yield <.0001 −332.21 394.10 42.81 44.90

Fat yield <.0001 −2.70 16.04 1.60 1.68

Percent fat 0.0008 0.04 0.01 0.01 0.01

Protein yield <.0001 −3.90 9.90 1.18 1.23

Percent protein <.0001 0.02 −0.01 0.00 0.00

Somatic cell score <.0001 2.83 3.07 0.01 0.01
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was assessed, duplicated samples were merged. If any
genotype at a given SNP did not match between sam-
ples, both genotypes were deleted and treated as a no
call. Duplicated SNPs were merged in the same manner.
The call rate after merging samples and SNPs was
91.5%.

Statistical analysis
Minor allele frequency (MAF) was determined using the
FREQ procedure of SAS (V9.3; SAS Institute Inc., Cary,
NC). Distributions of genotypes were tested for devi-
ation from Hardy-Weinberg equilibrium (HWE) using a
chi-square test. In addition, chi-square was used to de-
termine whether MAF differed between high and low
DPR bulls.
The association of genetic variants with each trait was

evaluated using the MIXED procedure of SAS. The full
model included:

Yi ¼ byrj þ βSNPk þ POLYi þ εi

where Yi is the deregressed PTA of the trait of interest
for the ith bull (i = 1, 2, …, 550) , byrj is the fixed effect
of the jth birth year (j = 1, 2, …, 5; where birth year is
grouped by decade: 1960 to 2010) of the ith bull, β is the
linear regression coefficient for the kth SNP, SNPk is the
number of copies (k = 0, 1, or 2) of the major allele,
POLYl is the random polygenic effect (including all
available pedigree information) of the ith bull, and εi is
the random residual effect. The POLYl ~Aσa

2 and εi ~
Iσe

2, where A is the numerator relationship matrix, I is
an identity matrix, σa

2 is the additive genetic variance of
the trait of interest, and σe

2 is the residual error variance.
All of the available pedigree information for each bull
was used when modeling the covariance among the
polygenic effects [52].
SNP effects were estimated using two analyses. In the

first, genotype was considered a continuous variable to
determine the allele substitution effect (the linear effect
of the number of copies of the major allele; least-squares
means represent values for 0,1 and 2 copies of the major
allele). In the second, genotype was considered a categor-
ical variable, and an orthogonal contrast was used to esti-
mate dominance effects [(AA + aa)/2 vs. Aa]. SNPs in
which the linear or dominance effect was P < 0.05 were
noted. To control for multiple testing, false discovery rate
was controlled for by calculating the Q value using the
Q-value package in R [53]. The acceptable false discov-
ery rate for the Q value analysis was chosen as 0.05.

Pathway analysis
The list of genes significantly related to DPR was subjected
to pathway analysis using Ingenuity Pathway Analysis
(IPA) software (Ingenuity Systems, www.ingenuity.com).
The reference set was the Ingenuity Knowledge Base
(genes only) and both direct and indirect relationships that
were experimentally observed were included. Three ana-
lyses were conducted. The first was to identify canonical
pathways in which 2 or more genes were overrepresented.
The program was also used to build customized networks
of genes based on direct and indirect relationships. Finally,
upstream regulators in which genes related to DPR were
overrepresented were identified. A P value of 0.05 or less
was considered significant for all analyses.

Results
Genetic characteristics of bulls used for genotyping
The range of PTAs for bulls are shown in Additional file 1:
Table S1, while the effect of DPR class (high or low) on
PTAs are shown in Table 1. Daughter pregnancy rate
class had a significant effect on all other traits exam-
ined. In particular, bulls in the high DPR class had
higher PTAs for heifer conception rate (HCR), cow
conception rate (CCR), productive life (PL), net merit
(NM), fat percent (FPC), and protein percent (PPC)
and lower PTAs for milk yield (MY), fat yield (FY),
protein yield (PY), and somatic cell score (SCS) than
bulls in the low DPR class (Table 1). Correlations
among PTAs are shown in Additional file 2: Table S4.
Daughter pregnancy rate was significantly and posi-
tively correlated with HCR (0.61), CCR (0.91), PL
(0.81), NM (0.49), FPC (0.16), and PPC (0.31) and was
significantly and negatively correlated with MY
(−0.45), FY (−0.35), PY (−0.34), SCS (−0.55), and birth
year (BY; -0.15). These results are consistent with cor-
relations reported earlier [54] for traits included in the
lifetime net merit selection index. Since the bulls were
selected from the two extremes of DPR, correlations

http://www.ingenuity.com
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within DPR class (DPRC) were also examined (Additional
file 2: Table S5). Within the high DPRC, DPR was posi-
tively correlated with HCR and CCR and negatively
correlated with NM, MY, FY, PY, and BY. Within the
low DPRC, DPR was positively correlated with CCR,
PL, and NM and was negatively correlated with SCS
and BY.

Minor allele frequencies
Of the 434 SNPs, only 107 had MAF ≥ 5% and only 98
of those that had MAF ≥ 5% and had a call rate > 70%.
Nine SNPs had MAF ≥ 5% but failed the genotyping
process (call rate < 70%; AHCYL2, APBB1IP, FXC1,
HSF1, PHGDH, POMC, SLC1A5, ST13, and TTF1) and
were removed from all further analyses. The probability
that the MAF was ≥ 5% was dependent upon the type of
SNP. Four of the 5 genes in which the SNP was in the
non-coding regions or was synonymous had a MAF ≥ 5%
(80%) whereas only 20% (2/10) of the nonsense, 25% of
the missense (99/397), and 9% (2/22) of the frameshift
mutations had ≥ 5% MAF (χ2 for non-coding/synonym-
ous vs others, 8.34, P < 0.01).

Hardy-Weinberg equilibrium
Characteristics of the 98 SNPs in which MAF ≥ 5% and call
rate was > 70% are shown in Additional file 2: Table S6. A
total of 26 SNPs were not in equilibrium (AVP, BOLA-
DMB, C17H22orf25, CCDC88B, CCT8, CD2, CFDP2,
COQ9, DEPDC7, DTX2, FUT1, HSD17B6, IBSP, IFNT2,
MARVELD1, NEU3, RALGPS1, SEC14L1, SREBF1, STAT5A,
SYTL2, TAF9, TSPYL1, UHRF1, WBP1, and ZP2). All but
one of these SNPs caused a missense mutation. The
exception was for UHRF1, which was a frameshift mu-
tation where the mutation causing the frameshift had a
frequency of 91.7%. The genes most out of equilibrium
were CCT8, MARVELD1 and SYTL2, in which the
number of minor allele homozygotes was lower than
expected, CD2, DTX2, NEU3, and RALGPS1, in which
the number of heterozygotes was lower than expected,
and TAF9 and TSPYL1, in which the number of hetero-
zygotes was greater than expected.

SNP effects on daughter pregnancy rate
Each of the 98 SNPs with MAF ≥ 5% and a call rate >
70% were analyzed for effects on DPR and other genetic
traits. Two types of analyses were performed: a regres-
sion analysis to determine the allele substitution effect of
each SNP (0, 1 or 2 copies of the major allele) and use
of an orthogonal contrast to determine the dominance
effect (heterozygote vs. the average of the two homozy-
gotes). Both P values and Q values corrected for mul-
tiple testing were determined. Since the Q value
correction for multiple testing is highly conservative in
cases where few tests are significant, both the P value
and the Q value were used to identify SNPs associated
with genetic traits.
Results for DPR are shown in Table 2. Allele substitution

effects were different from 0 for 40 genes [ACAT2, AP3B1,
APBB1, BSP3, C17H22orf25 (interim symbol TANGO2),
C1QB, C7H19orf60, CACNA1D, CAST, CCDC86, CD14,
CD40, CFDP2, COQ9, CPSF1, CSNK1E, CSPP1, DEPDC7,
DSC2, DYRK3, FUT1, GPLD1, HSD17B12, HSD17B7,
LDB3, MARVELD1, MON1B, MRGPRF, MS4A8B, NEU3,
NFKBIL1, NLRP9, OCLN, PARM1, PCCB, PMM2, RABEP2,
TBC1D24, TDRKH, and ZP2]. These effects were signifi-
cant based on both P and Q values. In addition, there were
4 genes exhibiting dominance based on P values, includ-
ing two in which the allele substitution effect was signifi-
cant (CD14 and FUT1) and two in which the allele
substitution was not significant (ARL6IP1 and TSHB).
After correcting for multiple testing, none of the domin-
ance effects achieved significance.

SNP effects on other fertility traits
For HCR, there were allele substitution effects for 19
SNPs (AP3B1, APBB1, C1QB, CACNA1D, CD14, CPSF1,
CSNK1E, DEPDC7, DSC2, FSHR, FYB, GPLD1, HSD17B7,
LDB3, MS4A8B, NFKBIL1, PARM1, TDRKH, and ZP2)
and dominance effects for 5 SNPs (ARPL6IP1,CACNA1D,
CD14, DZIP3, and GOLGA4; Table 3). None of the dom-
inant effects remained significant after correcting for mul-
tiple testing. The only SNPs significant after correcting for
multiple testing were allele substitution effects for
DEPDC7, LDB3, MS4A8B, PARM1, and TDRKH.
For CCR, there were allele substitution effects for 29

SNPs (ACAT2, AP3B1, APBB1, BCAS1, C1QB, CAST,
CCDC86, CCT8, CFDP2, COQ9, CPSF1, CSNK1E,
CSPP1, FUT1, GPLD1, HSD17B7, LDB3, MARVELD1,
MON1B, NEU3, NFKBIL1, OCLN, PARM1, PMM2,
RABEP2, TBC1D24, TDRKH, WBP1, and ZP2) and domin-
ance effects for 4 SNPs (ARL6IP1, SEC14L1, SERPINE2,
and SLC18A2; Table 4). All but one of the allele substitu-
tion effects were significant after correction for multiple
testing, the exception being for ARL6IP1, but none of
the dominance effects were significant based on Q
values.

SNP effects on productive life and net merit
For PL, there were allele substitution effects for 33
SNPs (ACAT2, AP3B1, ASL, CCDC86, CD40, CFDP2,
COQ9, CSPP1, DEPDC7, DSC2, FSHR, FUT1, GPLD1,
HSD17B12, HSD17B6, HSD17B7, HSPA1A, LDB3,
LHCGR, MARVELD1, MON1B, MS4A8B, NEU3, OCLN,
PARM1, PCCB, PMM2, RABEP2, SYTL2, TBC1D24,
TDRKH, WBP1, and ZP2) and dominance effects for 5
SNPs (ARL6IP1, AVP, CSPP1, DEPDC7, and IBSP;
Table 5). After correcting for multiple testing, none of
the dominant effects were significant.



Table 2 SNPs associated with daughter pregnancy ratea

SNP Gene Least-squares means (SEM) Linear Dominance

0 1 2 Effect P value Q value P value Q value

rs109967779 ACAT2 0.85 (.58) 0.33 (0.36) −0.98 (0.37) −1.00 0.0015 0.0040 0.4072 0.5155

rs133700190 AP3B1 1.67 (1.04) 0.46 (0.42) −0.70 (0.32) −1.17 0.0026 0.0058 0.9680 0.5492

rs41766835 APBB1 0.20 (1.05) 0.78 (0.44) −0.63 (0.31) −0.95 0.0163 0.0175 0.1417 0.5155

rs110541595 ARL6IP1 −0.40 (0.58) 0.63 (0.37) −0.92 (0.41) −0.50 0.1337 0.0849 0.0079 0.4213

rs110217852 BSP3 −1.82 (0.73) −0.21 (0.37) 0.24 (0.35) 0.81 0.0169 0.0176 0.2764 0.5155

rs133455683 C17H22orf25 0.83 (0.53) −0.16 (0.37) −0.76 (0.40) −0.77 0.0150 0.0166 0.6773 0.5155

rs135390325 C1QB −3.43 (3.62) −1.23 (0.53) 0.25 (0.28) 1.51 0.0061 0.0091 0.8484 0.5155

rs109332658 C7H19orf60 −1.40 (0.84) −0.37 (0.39) 0.20 (0.34) 0.69 0.0558 0.0478 0.6871 0.5155

rs135744058 CACNA1D 0.29(0.88) 0.69 (0.37) −0.81 (0.32) −1.03 0.0038 0.0072 0.1000 0.5155

rs137601357 CAST −1.35 (0.52) −0.45 (0.35) 0.79 (0.41) 1.09 0.0004 0.0015 0.6970 0.5155

rs109447102 CCDC86 −1.48 (1.10) −0.74 (0.44) 0.33 (0.31) 1.00 0.0125 0.0153 0.8179 0.5155

rs109621328 CD14 6.90 (2.10) 0.65 (0.63) −0.28 (0.28) −1.66 0.0043 0.0072 0.0291 0.5155

rs41711496 CD40 −0.76 (0.45) 0.03 (0.35) 0.73 (0.45) 0.74 0.0150 0.0166 0.9815 0.5510

rs41857027 CFDP2 −2.53 (0.80) 0.04 (0.57) 0.34 (0.30) 0.92 0.0029 0.0058 0.1016 0.5155

rs109301586 COQ9 −1.42 (0.44) −0.16 (0.39) 1.16 (0.42) 1.29 <0.0001 0.0006 0.9458 0.5426

rs134432442 CPSF1 −1.90 (0.94) −0.36 (0.41) 0.24 (0.33) 0.82 0.0255 0.0239 0.4347 0.5155

rs133449166 CSNK1E 0.60 (0.55) −0.22 (0.36) −0.86 (0.40) −0.72 0.0224 0.0226 0.8492 0.5155

rs109443582 CSPP1 −0.61 (3.63) −1.68 (0.65) −1.68 (0.29) 1.61 0.0131 0.0155 0.4607 0.5155

rs110270752 DEPDC7 −2.66 (0.94) −0.69 (0.43) 0.31 (0.31) 1.25 0.0010 0.0031 0.4458 0.5155

rs109503725 DSC2 −1.06 (0.45) −0.14 (0.35) 0.52 (0.45) 0.79 0.0099 0.0136 0.7673 0.5155

rs109561866 DYRK3 −1.58 (2.06) −1.06 (0.51) −0.06 (0.29) 0.95 0.0538 0.0473 0.8323 0.5155

rs41893756 FUT1 −1.08 (0.95) −1.51 (0.44) 0.61 (0.30) 1.47 0.0001 0.0006 0.0448 0.5155

rs109516714 GPLD1 −1.60 (0.57) −0.22 (0.36) 0.38 (0.40) 0.92 0.0043 0.0072 0.4062 0.5155

rs109711583 HSD17B12 0.76 (0.52) −0.04 (0.34) −0.69 (0.42) −0.72 0.0258 0.0239 0.08603 0.5155

rs110828053 HSD17B7 0.79 (1.09) 0.80 (0.42) −0.62 (0.31) −1.12 0.0044 0.0072 0.2996 0.5155

rs111015912 LDB3 2.43 (1.03) 0.80 (0.39) −0.74 (0.31) −1.51 <0.0001 0.0006 0.9462 0.5426

rs134011564 MARVELD1 −0.33 (3.63) 0.07 (0.32) −1.76 (0.67) −1.75 0.0107 0.0141 0.5477 0.5155

rs41859871 MON1B 4.57 (2.06) 0.78 (0.49) −0.47 (0.29) −1.50 0.0019 0.0047 0.2680 0.5155

rs109248655 MRGPRF N/A N/A −1.42 (0.63) 0.03 (0.28) 1.45 0.0288 0.0260 N/A N/A

rs109761676 MS4A8B −1.78 (0.88) −0.77 (0.37) 0.65 (0.34) 1.31 0.0004 0.0015 0.7240 0.5155

rs133762601 NEU3 −1.51 (0.60) −1.39 (0.94) 0.07 (0.30) 0.84 0.0064 0.0091 0.4928 0.5155

rs133497176 NFKBIL1 −1.22 (1.38) −1.31 (0.50) 0.11 (0.28) 1.14 0.0117 0.0149 0.3687 0.5155

rs109383758 NLRP9 0.57 (0.45) −0.22 (0.34) −0.78 (0.45) −0.67 0.0253 0.0239 0.7887 0.5155

rs134264563 OCLN 0.92 (0.80) 0.31 (0.36) −0.81 (0.34) −0.98 0.0048 0.0075 0.6312 0.5155

rs111027720 PARM1 2.21 (0.47) 0.11 (0.34) −2.38 (0.40) −2.31 <0.0001 0.0006 0.6458 0.5155

rs109813896 PCCB 1.51 (0.62) 0.11 (0.36) −0.71 (0.37) −1.02 0.0014 0.0040 0.5355 0.5155

rs109629628 PMM2 1.43 (0.61) 0.03 (0.35) −0.99 (0.38) −1.16 0.0004 0.0015 0.6895 0.5155

rs133729105 RABEP2 −1.36 (0.57) −0.38 (0.36) 0.53 (0.37) 0.94 0.0027 0.0058 0.9448 0.5426

rs110660625 TBC1D24 1.21 (0.65) 0.32 (0.37) −0.89 (0.36) −1.10 0.0006 0.0021 0.7474 0.5155

rs110805802 TDRKH −6.62 (1.59) −1.64 (0.49) 0.67 (0.29) 2.70 <0.0001 0.0006 0.1513 0.5155

rs132789482 TSHB −3.05 (1.49) 0.50 (0.56) 0.40 (0.33) 0.60 0.2270 0.1145 0.0493 0.5155

rs110883602 ZP2 −1.83 (0.56) −0.11 (0.42) 1.09 (0.40) 1.42 <0.0001 0.0006 0.6224 0.5155
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information data base SNP.
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Table 3 SNPs associated with heifer conception ratea

SNP Gene Least-squares means (SEM) Linear Dominance

0 1 2 Effect P value Q value P value Q value

rs133700190 AP3B1 3.74 (1.59) 2.72 (0.63) 1.24 (0.46) −1.38 0.0204 0.1290 0.8236 0.9592

rs41766835 APBB1 2.37 (1.40) 2.49 (0.61) 1.13 (0.44) −1.02 0.0288 0.1410 0.4152 0.9592

rs110541595 ARL6IP1 1.28 (0.87) 3.36 (0.53) 0.50 (0.59) −0.85 0.0977 0.2380 0.0010 0.0713

rs135390325 C1QB 2.37 (1.40) 2.49 (0.61) 1.13 (0.44) 1.87 0.0224 0.1290 0.7779 0.9592

rs135744058 CACNA1D 2.00 (1.30) 3.42 (0.56) 0.95 (0.49) −1.51 0.0041 0.0519 0.0229 0.5439

rs109621328 CD14 12.97 (3.16) 2.34 (0.95) 1.65 (0.41) −2.05 0.0192 0.1290 0.0068 0.2153

rs134432442 CPSF1 −0.61 (1.44) 1.18 (0.61) 2.35 (0.48) 1.31 0.0212 0.1290 0.7404 0.9592

rs133449166 CSNK1E 2.82 (0.82) 2.15 (0.53) 0.86 (0.59) −1.03 0.0321 0.1410 0.6649 0.9592

rs110270752 DEPDC7 −1.71 (1.44) 0.64 (0.65) 2.66 (0.47) 2.10 0.0003 0.0095 0.8625 0.9592

rs109503725 DSC2 0.88 (0.67) 1.76 (0.51) 2.79 (0.66) 0.95 0.0386 0.1438 0.9054 0.9592

rs133175991 DZIP3 6.52 (1.77) 1.76 (0.63) 1.44 (0.45) −1.18 0.0556 0.1677 0.0435 0.6897

rs43745234 FSHR −0.38 (1.14) 1.52 (0.53) 2.53 (0.51) 1.27 0.0149 0.1290 0.5717 0.9592

rs109262355 FYB 1.17 (0.87) 0.94 (0.53) 2.77 (0.55) 1.04 0.0302 0.1410 01484 0.7832

rs42339105 GOLGA4 −17.26 (5.65) 1.73 (0.87) 1.78 (0.40) 0.95 0.3028 0.3760 0.0015 0.0713

rs109516714 GPLD1 0.42 (0.85) 1.63 (0.53) 2.52 (0.59) 1.02 0.0369 0.1438 0.8243 0.9592

rs110828053 HSD17B7 1.74 (1.64) 3.15 (0.62) 1.17 (0.44) −1.27 0.0334 0.1410 0.1038 0.6897

rs111015912 LDB3 4.41 (1.57) 2.72 (0.59) 1.16 (0.46) −1.59 0.0067 0.0707 0.9491 0.9592

rs109761676 MS4A8B −0.58 (1.29) 0.94 (0.55) 2.95 (0.50) 1.88 0.0006 0.0127 0.7764 0.9592

rs133497176 NFKBIL1 −1.09 (2.07) 0.82 (0.74) 2.04 (0.42) 1.35 0.0474 0.1580 0.7885 0.9592

rs111027720 PARM1 3.78 (0.72) 2.19 (0.52) −0.28 (0.62) −2.06 <0.0001 0.0057 0.5129 0.9592

rs110805802 TDRKH −6.06 (2.48) 0.90 (0.77) 2.53 (0.44) 2.42 0.0010 0.0158 0.0673 0.6897

rs110883602 ZP2 0.48 (0.81) 1.76 (0.61) 2.45 (0.59) 0.94 0.0433 0.1524 0.6904 0.9592
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information database SNP.
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For NM, there were allele substitution effects for 30
SNPs (ACAT2, AP3B1, ASL, C17H22orf25, CCT8, CD2,
CD40, COQ9, CSNK1E, DEPDC7, EPAS1, FST, FUT1,
HSD17B12, HSD17B6, HSPA1A, IBSP, LDB3, LHCGR,
MON1B, MRPL48, MS4A8B, NEU3, OCLN, PARM1,
PCCB, PMM2, RABEP2, TBC1D24, and TDRKH) and
dominance effects for 6 SNPs (SNPs in ARL6IP1, CD14,
DEPDC7, FGF2, IBSP, and SLC18A2; Table 6). Except
for HSPA1A, the allele substitution effects were signifi-
cant after correcting for multiple testing, but dominance
effects were not significant.

SNP effects on production traits
There were fewer effects on production traits compared
to fertility traits, which is consistent with the conclusion
of Cole et al. [55] that yield traits generally are consist-
ent with an infinitesimal model, in which the trait is
controlled by many alleles of small effect. For MY, there
were allele substitution effects for 18 SNPs and domin-
ance effects for 6 SNPs (Table 7). Only linear effects of
CD14, CPSF1, FAM5C, and PARM1 were significant
after correcting for multiple testing. For FY, there were
allele substitution effects for 13 SNPs and dominance ef-
fects for 7 SNPs (Table 8). Only the linear effects of
CPSF1 and PARM1 were significant after correcting for
multiple testing. For FPC, there were allele substitution
effects for 10 SNPs and dominance effects for 4 SNPs
(Table 9). After correcting for multiple testing, only lin-
ear effects of CPSF1, DEPDC7, FAM5C, MS4A8B, and
SREBF1 were significant.
For PY, there were allele substitution effects for 17 SNPs

and dominance effects for 4 SNPs (Table 10). None of the
effects were significant after correcting for multiple test-
ing. For PPC, there were linear effects of 21 SNPs and 1
SNP with a dominance effect (Table 11). After correcting
for multiple testing, only the linear effects of BSP3, CPSF1,
FAM5C, FCER1G, FUT1, HSPA1A, MS4A8B, PARM1,
and TDRKH were significant.
Results for SCS are shown in Table 12. There were al-

lele substitution effects of 8 SNPs and dominance effects
for 6 SNPs. After correcting for multiple testing, the linear
effects of CFDP2, CPSF1, DSC2, FST, PMM2, SEC14L1,
TXN2 and the dominance effect of NFKBIL1 were
significant.



Table 4 SNPs associated with cow conception ratea

SNP Gene Least-squares means (SEM) Linear Dominance

0 1 2 Effect P value Q value P value Q value

rs109967779 ACAT2 1.89 (1.09) 1.03 (1.03) −0.61 (−0.61) −1.34 0.0216 0.0334 0.6559 0.3915

rs133700190 AP3B1 3.89 (1.95) 1.93 (0.78) −0.82 (0.59) −2.58 0.0004 0.0023 0.7487 0.3915

rs41766835 APBB1 2.78 (1.98) 1.64 (0.84) −0.19 (0.60) −1.67 0.0255 0.0361 0.7889 0.3915

rs110541595 ARL6IP1 −0.23 (1.09) 1.90 (0.69) −0.97 (0.76) −0.84 0.1781 0.1081 0.0059 0.1180

rs109669573 BCAS1 −1.68 (1.00) 1.01 (0.67) 1.16 (0.76) 1.24 0.0359 0.0421 0.1387 0.3915

rs135390325 C1QB −2.74 (6.74) −2.20 (0.99) 1.26 (0.51) 3.35 0.0012 0.0058 0.6761 0.3915

rs137601357 CAST −1.33 (0.98) 0.06 (0.65) 2.01 (0.76) 1.71 0.0032 0.0086 0.7283 0.3915

rs109447102 CCDC86 −2.22 (2.06) −0.40 (0.82) 1.14 (0.57) 1.60 0.0324 0.0408 0.9181 0.3992

rs137673698 CCT8 −10.00 (9.38) 0.18 (0.52) 4.14 (1.66) 4.16 0.0120 0.0204 0.5150 0.3915

rs41857027 CFDP2 −3.70 (1.31) 0.78 (0.93) 0.87 (0.48) 1.65 0.0068 0.0128 0.0517 0.3915

rs109301586 COQ9 −1.53 (0.83) 0.51 (0.73) 2.58 (0.79) 2.06 0.0002 0.0014 0.9796 0.4125

rs134432442 CPSF1 −3.08 (1.77) −0.14 (0.76) 1.26 (0.60) 1.77 0.0111 0.0199 0.5051 0.3915

rs133449166 CSNK1E 2.02 (1.03) 0.77 (0.67) −1.42 (0.75) −1.80 0.0026 0.0086 0.5917 0.3915

rs109443582 CSPP1 1.04 (6.88) −2.44 (1.23) 0.97 (0.56) 3.01 0.0026 0.0086 0.5917 0.3915

rs41893756 FUT1 −1.16 (1.79) −1.29 (0.82) 1.56 (0.57) 2.10 0.0033 0.0086 0.2157 0.3915

rs109516714 GPLD1 −2.36 (1.06) 0.67 (0.68) 1.40 (0.75) 1.67 0.0055 0.0110 0.1921 0.3915

rs110828053 HSD17B7 1.96 (2.01) 2.17 (0.78) −0.55 (0.57) −2.10 0.0039 0.0091 0.2472 0.3915

rs111015912 LDB3 4.74 (1.94) 1.56 (0.74) −0.28 (0.59) −2.12 0.0029 0.0086 0.5836 0.3915

rs134011564 MARVELD1 2.54 (6.20) 0.72 (0.54) −2.83 (1.13) −3.48 0.0029 0.0086 0.7852 0.3915

rs41859871 MON1B 7.15 (3.85) 1.56 (0.92) −0.01 (0.54) −1.96 0.0296 0.0387 0.3455 0.3915

rs133762601 NEU3 −2.06 (1.13) −1.56 (1.76) 1.03 (0.56) 1.62 0.0050 0.0106 0.5700 0.3915

rs133497176 NFKBIL1 −2.45 (2.57) −1.24 (0.93) 0.81 (0.54) 1.90 0.0251 0.0361 0.7873 0.3915

rs134264563 OCLN 1.70 (1.49) 1.11 (0.68) −0.57 (0.63) −1.37 0.0352 0.0421 0.5920 0.3915

rs111027720 PARM1 4.31 (0.89) 0.39 (0.64) −2.30 (0.77) −3.25 <0.0001 0.0010 0.4499 0.3915

rs109629628 PMM2 3.09 (1.13) 1.10 (0.64) −1.29 (0.71) −2.24 0.0002 0.0014 0.8245 0.3915

rs133729105 RABEP2 −1.44 (1.07) −0.14 (0.67) 1.79 (0.70) 1.68 0.004 0.0091 0.7211 0.3915

rs136746215 SEC14L1 −1.70 (1.02) 3.44 (1.23) 0.83 (0.72) 0.98 0.0988 0.0819 0.0037 0.1180

rs43321188 SERPINE2 4.29 (1.51) 0.09 (0.73) 0.24 (0.60) −1.10 0.0972 0.0819 0.0389 0.3890

rs110365063 SLC18A2 7.68 (2.61) 0.44 (0.86) 0.41 (0.57) −1.15 0.1468 0.0998 0.0197 0.2627

rs110660625 TBC1D24 2.36 (1.21) 1.49 (0.69) −0.90 (0.67) −1.86 0.0021 0.0086 0.4047 0.3915

rs110805802 TDRKH −10.71 (3.00) −2.18 (0.92) 1.66 (0.53) 4.53 <0.0001 0.0010 0.1826 0.3915

rs134282928 WBP1 3.78 (5.57) −1.21 (0.89) 1.16 (0.58) 2.03 0.0296 0.0387 0.2062 0.3915

rs110883602 ZP2 −2.77 (1.10) 0.94 (0.81) 2.76 (0.78) 2.62 <0.0001 0.0010 0.3468 0.3915
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information database SNP.
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Relationship between allele substitution effects for SNPs
related to DPR with effects on other traits
It was determined whether SNPs affecting DPR had as-
sociation with other traits and, if so, whether the allele
substitution effect was in the same or opposite direction
as for DPR. Results are shown in Figure 1. As expected,
many SNPs associated with DPR were also associated
with HCR and CCR and in the same direction as for
DPR. Of 40 SNPs in which there was a linear effect on
DPR (Q < 0.05), 13 also were associated with HCR and
25 were associated with CCR. In all cases, the allele sub-
stitution effect was in the same direction for DPR and
either HCR or CCR. Similar results were observed for
PL and NM. Of the 40 SNPs associated with DPR, 26
were also associated with PL and 20 with NM and the
allele substitution effect was in the same direction for
DPR and either PL and NM.
Fewer SNPs associated with DPR were also associated

with production traits. Furthermore, when occurring,
the direction of the effect was often in the opposite



Table 5 SNPs associated with productive lifea

SNP Gene Least-squares means (SEM) Linear Dominance

0 1 2 Effect P value Q value P value Q value

rs109967779 ACAT2 2.05 (0.65) 1.24 (0.41) −0.18 (0.42) −1.18 0.0006 0.0014 0.5495 0.9408

rs133700190 AP3B1 3.74 (1.11) 1.16 (0.47) 0.15 (0.36) −1.42 0.0006 0.0014 0.2684 0.9053

rs110541595 ARL6IP1 0.22 (0.63) 1.49 (0.41) −0.12 (0.45) −0.45 0.2040 0.1193 0.0051 0.4845

rs110127056 ASL 1.49 (0.55) 0.90 (0.40) −0.11 (0.47) −0.82 0.0159 0.0204 0.6685 0.9798

rs43114141 AVP 0.23 (0.56) 1.24 (0.45) 0.15 (0.47) −0.12 0.7144 0.2797 0.0446 0.8474

rs109447102 CCDC86 −0.42 (1.21) −0.16 (0.49) 1.17 (0.35) 1.18 0.0074 0.0112 0.6685 0.9798

rs41711496 CD40 −0.50 (0.50) 0.71 (0.40) 2.28 (0.50) 1.39 <0.0001 0.0004 0.4864 0.9408

rs41857027 CFDP2 −0.69 (0.90) 0.87 (0.64) 1.27 (0.36) 0.81 0.0482 0.0489 0.4461 0.9408

rs109301586 COQ9 −0.67 (0.50) 0.71 (0.44) 2.34 (0.48) 1.50 <0.0001 0.0004 0.8009 0.9798

rs109443582 CSPP1 3.16 (3.99) −1.02 (0.72) 1.08 (0.34) 1.74 0.0147 0.0204 0.0124 0.5059

rs110270752 DEPDC7 −3.30 (1.02) 0.48 (0.48) 1.09 (0.36) 1.41 0.0005 0.0014 0.0202 0.5059

rs109503725 DSC2 0.28 (0.51) 0.35 (0.40) 1.61 (0.50) 0.67 0.0445 0.0478 0.2216 0.9053

rs43745234 FSHR −1.14 (0.82) 0.36 (0.40) 1.34 (0.39) 1.13 0.0023 0.0045 0.6438 0.9708

rs41893756 FUT1 −0.86 (1.04) −0.96 (0.49) 1.60 (0.35) 1.88 <0.0001 0.0004 0.0546 0.8487

rs109516714 GPLD1 −0.34 (0.63) 0.55 (0.41) 1.17 (0.45) 0.73 0.0351 0.0403 0.7998 0.9798

rs109711583 HSD17B12 2.01 (0.57) 0.80 (0.39) −0.08 (0.47) −1.03 0.0030 0.0053 0.7318 0.9798

rs109769865 HSD17B6 0.25 (1.42) −0.80 (0.56) 1.16 (0.34) 1.35 0.0054 0.0090 0.0915 0.8487

rs110828053 HSD17B7 2.01 (1.18) 1.24 (0.47) 0.34 (0.35) −0.87 0.0397 0.0441 0.9303 0.9830

HSP70C895D HSPA1A 1.39 (0.84) 1.27 (0.43) 0.07 (0.38) −0.90 0.0155 0.0204 0.3526 0.9053

rs110789098 IBSP 0.65 (0.56) 1.36 (0.42) −0.25 (0.47) −0.58 0.0888 0.0664 0.0213 0.5059

rs111015912 LDB3 3.01 (1.10) 1.87 (0.44) −0.12 (0.36) −1.81 <0.0001 0.0004 0.5322 0.9408

rs41256848 LHCGR 1.97 (0.60) 0.71 (0.38) 0.03 (0.46) −0.94 0.0061 0.0097 0.5546 0.9408

rs134011564 MARVELD1 2.34 (3.77) 0.81 (0.36) −0.87 (0.71) −1.67 0.0188 0.0232 0.9690 0.9830

rs41859871 MON1B 5.54 (2.25) 1.72 (0.55) 0.31 (0.33) −1.65 0.0018 0.0040 0.3340 0.9053

rs109761676 MS4A8B −1.96 (0.96) 0.33 (0.43) 1.46 (0.39) 1.43 0.0004 0.0014 0.3471 0.9053

rs133762601 NEU3 −0.81 (0.66) −1.29 (1.02) 0.98 (0.34) 0.99 0.0030 0.0053 0.1963 0.9053

rs134264563 OCLN 1.84 (0.88) 1.03 (0.41) 0.01 (0.38) −0.96 0.0113 0.0164 0.8560 0.9798

rs111027720 PARM1 3.06 (0.54) 0.77 (0.39) −1.03 (0.46) −2.03 <0.0001 0.0004 0.6161 0.9708

rs109813896 PCCB 2.00 (0.68) 1.05 (0.41) 0.07 (0.41) −1.06 0.0023 0.0045 0.9700 0.9830

rs109629628 PMM2 3.26 (0.66) 0.94 (0.39) −0.48 (0.43) −1.76 <0.0001 0.0004 0.3833 0.9408

rs133729105 RABEP2 −0.86 (0.62) 0.25 (0.40) 1.68 (0.42) 1.30 <0.0001 0.0004 0.7495 0.9798

rs42158454 SYTL2 N/A N/A 1.88 (0.63) 0.42 (0.33) −1.46 0.0261 0.0311 N/A N/A

rs110660625 TBC1D24 2.12 (0.70) 1.00 (0.41) −0.11 (0.39) −1.17 0.0006 0.0014 0.9830 0.9830

rs110805802 TDRKH −4.35 (1.72) −0.47 (0.55) 1.20 (0.33) 2.00 <0.0001 0.0004 0.2737 0.9053

rs134282928 WBP1 2.73 (3.26) −0.26 (0.53) 1.01 (0.35) 1.07 0.0484 0.0489 0.2112 0.9053

rs110883602 ZP2 −1.06 (0.64) 1.05 (0.48) 1.67 (0.47) 1.25 0.0005 0.0014 0.1876 0.9053
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information database SNP. For entries not
beginning with rs, the abbreviation given by previous researchers was used.
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direction as for DPR, especially for yield traits. There were
10 SNPs associated with MY and all but one (CPSF1) were
in the opposite direction as for DPR (i.e., genotypes favor-
ing DPR were unfavorable for milk yield). There were 7
SNPs associated with FY and 5 of these were in the oppos-
ite direction as for DPR. There were 7 SNPs associated
with PY and 5 of these were in the opposite direction as
for DPR. For other production traits, however, there were
fewer negative relationships between allele substitution ef-
fects on DPR. For FPC, there were 5 SNPs but only 1 was
in the opposite direction as DPR. For PPC, there were 13
SNPs but only 1 was in the opposite direction as DPR. For



Table 6 SNPs associated with net merita

SNP Gene Least-squares means (SEM) Linear Dominance

0 1 2 Effect P value Q value P value Q value

rs109967779 ACAT2 178.42 (48.24) 98.35 (30.35) 15.01 (31.97) −82.07 0.0012 0.0070 0.9660 0.8362

rs133700190 AP3B1 263.47 (82.15) 105.28 (35.29) 39.78 (27.83) −86.36 0.0043 0.0134 0.3700 0.7538

rs110541595 ARL6IP1 19.00 (47.24) 102.08 (31.27) 34.27 (33.92) −7.02 0.7872 0.4223 0.0471 0.6280

rs110127056 ASL 126.52 (40.99) 92.90 (30.18) 15.06 (35.27) −58.04 0.0190 0.0386 0.5267 0.7538

rs133455683 C17H22orf25 153.24 (44.49) 81.81 (32.19) 33.74 (34.16) −58.15 0.0227 0.0441 0.7567 0.8181

rs137673698 CCT8 −66.96 (384.43) 64.02 (25.15) 218.87 (70.34) 154.21 0.0254 0.0456 0.9513 0.8362

rs109621328 CD14 −330.45 (164.59) 75.08 (51.21) 92.99 (24.82) 71.41 0.1123 0.1167 0.0429 0.6280

rs133747802 CD2 25.05 (37.20) 51.73 (57.91) 124.90 (31.41) 50.51 0.0178 0.0378 0.6950 0.7831

rs1711496 CD40 −34.02 (37.54) 78.45 (30.39) 177.35 (37.44) 105.65 <0.0001 0.0011 0.8510 0.8362

rs109301586 COQ9 12.99 (36.38) 76.86 (32.52) 180.47 (35.29) 83.46 0.0002 0.0016 0.5816 0.7538

rs133449166 CSNK1E 148.36 (45.78) 74.03 (31.33) 5.10 (34.49) −71.12 0.0057 0.0166 0.9420 0.8362

rs110270752 DEPDC7 −205.46 (76.20) 57.40 (35.94) 89.30 (27.20) 90.54 0.0028 0.0104 0.0236 0.6280

rs43676052 EPAS1 47.14 (94.81) 10.96 (33.14) 121.94 (27.62) 84.96 0.0077 0.0211 0.1892 0.7538

FGF2ag FGF2 31.03 (49.04) 118.22 (31.03) 43.39 (31.60) −12.88 0.6165 0.3509 0.0341 0.6280

rs109247499 FST 142.59 (37.96) 75.63 (30.09) −3.82 (37.54) −73.25 0.0023 0.0102 0.8578 0.8362

rs41893756 FUT1 −54.03 (75.53) −39.78 (36.51) 134.76 (26.92) 133.31 <0.0001 0.0011 0.1074 0.7538

rs109711583 HSD17B12 168.57 (42.46) 73.40 (29.38) 18.20 (35.19) −72.89 0.0041 0.0134 0.5686 0.7538

rs109769865 HSD17B6 −17.39 (104.02) −12.91 (41.89) (25.95) 92.53 0.0091 0.0222 0.3951 0.7538

HSP70C895D HSPA1A 102.78 (62.61) 107.06 (32.41) 27.50 (28.95) −55.77 0.0417 0.0671 0.3526 0.9053

rs110789098 IBSP 75.84 (42.40) 127.06 (32.00) −15.18 (35.38) −56.10 0.0276 0.0460 0.0105 0.5680

rs111015912 LDB3 180.77 (83.38) 129.65 (33.53) 23.71 (27.55) −94.51 0.0018 0.0093 0.5936 0.7538

rs41256848 LHCGR 144.34 (44.56) 66.31 (29.33) 37.07 (34.33) −49.65 0.0452 0.0703 0.5546 0.9408

rs41859871 MON1B 459.24 (163.85) 148.99 (40.47) 43.67 (25.54) −125.76 0.0010 0.0067 0.2594 0.7538

rs43703916 MRPL48 13.22 (41.27) 88.01 (30.70) 118.26 (40.09) 52.03 0.0488 0.0735 0.461 0.9408

rs109761676 MS4A8B −72.05 (71.38) 50.4 (33.00) 112.45 (30.27) 77.88 0.0095 0.0222 0.5108 0.7538

rs133762601 NEU3 −23.09 (49.33) −94.09 (75.68) 83.89 (26.51) 61.77 0.0115 0.0256 0.1105 0.7538

rs134264563 OCLN 147.95 (65.06) 84.23 (31.17) 21.84 (29.23) −62.76 0.024 0.0448 0.9878 0.8362

rs111027720 PARM1 209.58 (41.04) 73.79 (30.13) −18.2 (35.56) −111.8 <0.0001 0.0011 0.5531 0.7538

rs109813896 PCCB 177.33 (50.88) 99.87 (30.79) 21.02 (30.85) −78.35 0.0024 0.0102 0.9856 0.8362

rs109629628 PMM2 290.06 (49.07) 103.79 (29.91) −34.46 (32.43) −156.4 <0.0001 0.0011 0.5195 0.7538

rs133729105 RABEP2 −8.85 (46.79) 48.97 (30.72) 117.46 (31.97) 64.29 0.0088 0.0222 0.8863 0.8362

rs110365063 SLC18A2 −63.33 (115.05) 160.24 (38.53) 50.69 (26.17) −57.22 0.0998 0.1136 0.0142 0.568

rs110660625 TBC1D24 178.3 (52.52) 71.03 (31.02) 12.25 (29.81) −75.7 0.0029 0.0104 0.528 0.7538

rs110805802 TDRKH −280.61 (126.98) −25.67 (41.26) 95.88 (25.52) 141.8 0.0002 0.0016 0.3684 0.7538
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information database SNP. For entries not
beginning with rs, the abbreviation given by previous researchers was used.
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SCS, there were 5 SNPs with three in the same direction
as DPR and two in the opposite direction.
Of the 40 SNPs related to DPR, there were 29 that

were not negatively associated with yield traits (milk, fat
and protein). Thus, it should be possible to select for
specific SNPs affecting DPR without compromising yield
traits.
Relationship between SNPs associated with DPR and SNPs
reported previously to be related to fertility
Of the 434 SNPs analyzed, 17 were chosen because they
had previously been reported to be associated with
reproduction or to be close to SNPs related to interval to
insemination or 56-d non-return rate (Additional file 1:
Table S2). Of these, only 8 had a MAF ≥ 5% (CAST, FGF2,



Table 7 SNPs associated with milk yielda

SNP Gene Least-squares means (SEM) Linear Dominance

0 1 2 Effect P value Q value P value Q value

rs110127056 ASL 129.19 (93.50) 76.85 (65.52) −110.46 (78.95) −125.97 0.0325 0.1316 0.4235 0.6041

rs43114141 AVP −219.62 (96.69) 28.79 (76.21) 119.38 (80.43) 163.02 0.0070 0.0655 0.4035 0.6041

rs109032590 BOLA-DMB −196.31 (132.92) −48.42 (72.66) 84.09 (63.57) 137.68 0.0348 0.1316 0.9396 0.6799

rs135744058 CACNA1D −91.04 (169.91) −118.53 (71.28) 125.13 (61.36) 177.10 0.0103 0.0785 0.2251 0.5234

rs137601357 CAST 194.98 (100.40) 50.25 (63.19) −101.42 (76.03) −148.69 0.0150 0.0922 0.9681 0.6799

rs109621328 CD14 −1561.65 (401.52) −111.12 (117.92) 87.57 (47.23) 365.61 0.0010 0.0165 0.0071 0.4733

rs134432442 CPSF1 −415.14 (178.65) −181.24 (75.87) 170.79 (59.25) 323.52 <0.0001 0.0059 0.6155 0.6557

rs110270752 DEPDC7 166.55 (183.04) 144.62 (81.13) −83.06 (57.35) −175.37 0.0171 0.0933 0.0498 0.5180

rs109503725 DSC2 137.43 (81.39) −34.35 (61.57) 126.23 (80.26) −4.14 0.9427 0.6564 0.0498 0.5180

rs42075611 DTX2 419.42 268.38 −5.14 −235.63 0.0292 0.1274 0.7702 0.6642

(264.53) (162.59) (53.42)

rs133175991 DZIP3 −468.80 (238.09) −87.50 (84.96) 114.47 (60.92) 236.29 0.0041 0.0537 0.5411 0.6557

rs135071345 FAM5C 91.43 (282.11) 273.07 (82.89) −85.79 (54.42) −281.47 0.0007 0.0153 0.0993 0.5234

rs42339105 GOLGA4 1083.08 (686.77) −215.11 (108.30) 19.03 (53.55) 159.55 0.1543 0.3156 0.0341 0.5180

rs110828053 HSD17B7 −131.10 (2096.70) −142.60 (79.17) 93.43 (55.37) 183.95 0.0155 0.0922 0.3517 0.6041

rs110789098 IBSP −33.11 (96.27) 134.44 (70.23) −68.21 (78.36) −36.41 0.5439 0.5221 0.0406 0.5180

rs134011564 MARVELD1 1364.97 (686.88) 26.81 (52.94) 117.22 (122.41) 34.81 0.7874 0.6199 0.0432 0.5180

rs109761676 MS4A8B 20.93 (168.91) 161.86 (71.07) −101.57 (63.97) −159.13 0.0260 0.1216 0.0703 0.5180

rs109383758 NLRP9 −125.31 (86.14) 4.68 (64.67) 171.33 (84.75) 148.48 0.0108 0.0785 0.8290 0.6642

rs111027720 PARM1 −119.34 (90.81) −35.61 (63.47) 272.73 (77.68) 204.66 0.0005 0.0153 0.1875 0.5234

rs109506766 PGR −180.89 (117.82) −39.99 (66.65) 150.10 (69.77) 172.17 0.0059 0.0644 0.7877 0.6642

rs110805802 TDRKH 77.83 (317.74) 142.85 (96.21) −96.03 (53.67) −194.34 0.0362 0.1316 0.4145 0.6041

rs132789482 TSHB 399.97 (280.14) 219.67 (102.03) 0.15 (56.95) −211.99 0.0240 0.1208 0.9107 0.6799

rs134031231 TXN2 −37.85 (102.08) 122.46 (63.64) −76.26 (77.60) −44.81 0.4682 0.4715 0.0420 0.5180

rs134031231 TXN2 −37.85 (102.08) 122.46 (63.64) −76.26 (77.60) −44.81 0.4682 0.4715 0.0420 0.5180
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information database SNP.
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FSHR, HSPA1A, IRF9, NLRP9, PGR and STAT5A) and
only 2 (CAST and NLRP9) were significantly associated
with DPR (Table 2).
The physical location of each SNP associated with DPR

in the current study was compared to markers from the
BovineSNP50 chip previously associated with DPR [7].
Figure 2 shows the relative location of the SNPs and the
SNP50 marker effects. The SNP effects from the current
custom array have a much greater effect on DPR than
those found on the BovineSNP50 chip. The largest genetic
standard deviation on the BovineSNP50 chip for DPR was
0.07 genetic standard deviations [7]; however, in the
current study, the marker effect ranged from 0.44 to 1.78
(Additional file 3: Table S7).
A literature search was conducted to determine if any

SNPs previously related to fertility were within 100,000
bases of any of the SNPs related to DPR in the current
study. The literature provided evidence for 3 other SNPs
located close to SNPs from the current study. A SNP in
DGAT1, which is about 65,000 bp from the SNP in
CPSF1, was associated with 28 and 56 day nonreturn
rate to first service, age at puberty, number of insemina-
tions per conception, and conception rate [56-58]. A
SNP in TNF, which is about 25,000 bp from the SNP in
NFKBIL1, was associated with early first ovulation in
postpartum cows [59]. Also, a SNP in HSD14B14, which
is about 60,000 bp from the SNP in FUT1, was associ-
ated with DPR [7]. Since these SNPs are close in dis-
tance, there could be linkage disequilibrium between
them. Therefore, it is possible that either gene in each of
the previous locations could contain the causative SNP.

Effect of tissue type used for SNP discovery on
probability of identifying SNPs associated with DPR
An analysis was performed to determine whether the tis-
sue type used to identify genes for SNP discovery af-
fected the probability that a gene was related to DPR
(Additional file 3: Table S8). Using chi-square analysis,



Table 8 SNPs associated with fat yielda

SNP Gene Least-squares means (SEM) Linear Dominance

0 1 2 Effect P value Q value P value Q value

rs41766835 APBB1 −0.06 (7.57) 6.22 (3.16) 12.64 (2.20) 6.39 0.0259 0.1474 0.9883 0.9719

rs110541595 ARL6IP1 3.52 (4.03) 5.83 (2.53) 12.47 (2.80) 4.88 0.0341 0.1516 0.5205 0.9719

rs43114141 AVP 3.31 (3.56) 6.03 (2.82) 12.53 (2.97) 4.76 0.0291 0.1474 0.5786 0.9719

rs133674837 BDH2 7.70 (4.15) 3.71 (2.57) 13.03 (2.74) 4.18 0.643 0.2443 0.0431 0.5703

rs137601357 CAST 18.50 (3.70) 8.56 (2.48) 4.87 (2.89) −6.38 0.0033 0.0587 0.3021 0.9719

rs109621328 CD14 −15.29 (14.91) −0.36 (4.49) 10.42 (1.94) 11.34 0.0055 0.0733 0.8097 0.9719

rs41711496 CD40 3.72 (3.20) 7.94 (2.48) 12.40 (3.17) 4.34 0.0479 0.1965 0.9705 0.9719

rs134432442 CPSF1 37.64 (6.52) 19.88 (2.79) −0.39 (2.19) −19.67 <0.0001 0.0048 0.7696 0.9719

rs133449166 CSNK1E 15.18 (3.92) 9.75 (2.57) 4.72 (2.85) −5.19 0.0216 0.1474 0.9518 0.9719

rs110629231 DNAH11 −1.91 (4.66) 7.78 (2.61) 10.96 (2.55) 5.40 0.0197 0.1474 0.3446 0.9719

rs133175991 DZIP3 −2.51 (8.81) 5.65 (3.21) 11.90 (2.36) 6.61 0.0290 0.1474 0.8583 0.9719

FGF2ag FGF2 1.05 (4.24) 7.56 (2.58) 11.43 (2.61) 4.87 0.0304 0.1474 0.6946 0.9719

rs109247499 FST 11.59 (3.27) 10.96 (2.50) 1.75 (3.25) −4.94 0.0265 0.1474 0.1831 0.8095

rs43703916 MRPL48 0.50 (3.43) 12.51 (2.48) 6.04 (3.33) 2.59 0.2581 0.3471 0.0042 0.3149

rs111027720 PARM1 5.09 (3.45) 4.84 (2.48) 18.09 (2.97) 7.01 0.0014 0.0373 0.0330 0.5651

rs136457441 RPL26 15.50 (3.55) 6.36 (2.43) 13.19 (3.35) −0.84 0.7208 0.5003 0.0136 0.3149

rs43321188 SERPINE2 −5.08 (5.73) 11.63 (2.75) 8.10 (2.27) 2.24 0.3735 0.3831 0.0118 0.3149

rs110365063 SLC18A2 −4.30 (5.73) 14.21 (2.75) 7.25 (2.27) 2.98 0.3407 0.3634 0.0366 0.5651

rs134031231 TXN2 3.94 (3.80) 13.18 (2.38) 5.89 (2.90) −0.21 0.9263 0.5256 0.0119 0.3149
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information database SNP. For entries not
beginning with rs, the abbreviation given by previous researchers was used.
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fewer SNPs identified in genes identified as expressed in
the brain or pituitary were significantly associated with
DPR (18%) than for embryo genes (51%), endometrium
or oviduct genes (50%) or ovary genes (43%) (χ2 for
brain/pituitary vs others, 3.74, P = 0.05).
Table 9 SNPs associated with fat percenta

SNP Gene Least-squares means (SEM)

0 1 2

rs109621328 CD14 0.177 (0.051) 0.016 (0.015) 0.029

rs133747802 CD2 0.009 (0.010) 0.037 (0.017) 0.037

rs134432442 CPSF1 0.207 (0.019) 0.105 (0.008) −0.025

rs110270752 DEPDC7 −0.003 (0.023) 0.007 (0.010) 0.046

rs135071345 FAM5C 0.039 (0.036) 0.001 (0.011) 0.042

rs43079452 HSD17B3 0.040 (0.040) 0.055 (0.011) 0.023

HSP70C895D HSP70 0.020 (0.019) 0.051 (0.009) 0.020

rs109761676 MS4A8B 0.036 (0.021) 0.012 (0.009) 0.051

rs134264563 OCLN 0.050 (0.019) 0.038 (0.009) 0.019

rs41912290 SREBF1 0.053 (0.012) 0.035 (0.009) 0.012

rs110805802 TDRKH 0.028 (0.041) 0.007 (0.012) 0.038

rs132789482 TSHB 0.007 (0.037) 0.007 (0.014) 0.040

rs137248155 VCAN −0.011 (0.018) 0.040 (0.009) 0.032
aSingle nucleotide polymorphism represented as the rs number given by the Nation
beginning with rs, the abbreviation given by previous researchers was used.
Pathway analysis of genes with SNPs associated with DPR
There were a total of 5 canonical pathways in which 2
or more genes were overrepresented (P < 0.05). These
were Estrogen Biosynthesis (HSD17B7 and HSD17B12),
Estrogen-Dependent Breast Cancer Signaling (HSD17B7
Linear Dominance

Effect P value Q value P value Q value

(0.006) −0.010 0.4151 0.1531 0.0033 0.1760

(0.008) 0.014 0.0348 0.0870 0.9223 0.9719

(0.006) −0.123 0.0001 0.0018 0.2690 0.4658

(0.007) 0.033 0.0004 0.0040 0.3477 0.4920

(0.007) 0.030 0.0053 0.0285 0.0616 0.4480

(0.007) −0.025 0.0208 0.0693 0.4153 0.9719

(0.008) −0.014 0.1009 0.1185 0.0174 0.3413

(0.008) 0.023 0.0116 0.0464 0.0256 0.3413

(0.008) −0.017 0.0468 0.0968 0.5628 0.9719

(0.009) −0.021 0.0057 0.0285 0.8490 0.5196

(0.007) 0.023 0.0484 0.0968 0.9191 0.9719

(0.008) 0.014 0.0265 0.0757 0.6093 0.9719

(0.008) 0.010 0.1928 0.1441 0.0249 0.3413

al Center for Biotechnology Information database SNP. For entries not



Table 10 SNPs associated with protein yielda

SNP Gene Least-squares means (SEM) Linear Dominance

0 1 2 Effect P value Q value P value Q value

rs43114141 AVP −3.77 (2.96) 2.87 (2.35) 5.42 (2.48) 4.42 0.0144 0.0800 0.4680 0.7313

rs137601357 CAST 9.16 (3.09) 5.14 (2.00) −1.52 (2.37) −5.53 0.0028 0.0575 0.6131 0.7424

rs109621328 CD14 −39.70 (12.16) −0.10 (3.65) 5.04 (1.58) 9.79 0.0035 0.0575 0.0146 0.3650

rs41857027 CFDP2 12.23 (4.90) −1.35 (3.47) 4.31 (1.89) −1.17 0.6037 0.4223 0.0209 0.3919

rs133449166 CSNK1E 10.22 (3.21) 4.36 (2.12) −0.42 (2.35) −5.23 0.0046 0.0575 0.8397 0.7524

rs133175991 DZIP3 −4.58 (7.33) −0.03 (2.67) 6.11 (1.96) 5.84 0.0206 0.0942 0.8601 0.7589

rs43676052 EPAS1 −2.57 (6.94) 0.11 (2.28) 5.63 (1.83) 5.02 0.0307 0.1171 0.7324 0.7424

rs135071345 FAM5C 4.42 (8.71) 7.84 (2.59) 1.09 (1.72) −5.28 0.0383 0.1226 0.3144 0.7275

rs109247499 FST 6.97 (2.66) 5.29 (2.03) −3.76 (2.64) −5.37 0.0033 0.0575 0.1623 0.6407

rs109830880 GCNT3 14.32 (12.06) 10.53 (3.41) 1.60 (1.99) −8.26 0.0126 0.0788 0.7110 0.7424

rs110828053 HSD17B7 −2.55 (6.34) −2.60 (2.45) 5.19 (1.78) 6.14 0.0073 0.0729 0.3258 0.7275

rs133497176 NFKBIL1 −16.34 (8.03) 9.12 (2.91) 2.02 (1.67) −1.10 0.6802 0.4316 0.0010 0.0750

rs109383758 NLRP9 0.15 (2.64) 1.30 (2.01) 8.03 (2.60) 3.97 0.0226 0.0942 0.2734 0.7275

rs111027720 PARM1 1.28 (2.84) 1.13 (2.04) 8.95 (2.45) 4.15 0.0211 0.0942 0.1269 0.6309

rs109506766 PGR −4.20 (3.59) 2.38 (2.06) 6.25 (2.15) 4.85 0.0102 0.0729 0.6220 0.7424

rs109629628 PMM2 10.21 (3.60) 4.58 (2.09) 0.05 (2.29) −4.94 0.0095 0.0729 0.8427 0.7524

rs43572154 ROR2 −6.90 (9.46) −1.15 (2.61) 4.30 (1.72) 5.49 0.0328 0.1171 0.9776 0.7789

rs43321188 SERPINE2 −5.56 (4.72) 2.32 (2.29) 5.06 (1.90) 4.21 0.0413 0.1226 0.4365 0.7275

rs134031231 TXN2 3.77 (3.14) 7.53 (2.00) −1.97 (2.41) −3.81 0.0417 0.12264 0.0135 0.3650
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information database SNP.
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and HSD17B12), Hepatic Fibrosis/Hepatic Stellate Acti-
vation (CD14 and CD40), Tight Junction Signaling
(CDSF1 and OCLN), and Dopamine-DARPP32 Feedback
in cAMP Signaling (CACNAID and CSNK1E). The IPA
software also built 4 networks of genes related to DPR.
The most revealing was one that included 16 genes
(ACAT2, AP3B1, COQ9, CPSF1, CSPP1, DEPDC7, DSC2,
GPLD1, HSD17B12, MARVELD1, MON1B, NFKBIL1,
PMM2, RABEP2, TBC1D24, and TDRKH) which
interacted directly or indirectly with UBC (Additional
file 3: Figure S1).
The list of genes related to DPR was also examined for

upstream regulators in which regulated genes were sig-
nificantly (P < 0.05) overrepresented. A total of 5 tran-
scription factors were identified (Additional file 3: Figure
S2) including HNF4A, which regulates 8 genes associ-
ated with DPR, TCF3, which regulates 3 DPR genes, and
CTBP2, FOSB, and SP100, which each regulate one
gene. Additional regulators of genes associated with
DPR were two hormones (estradiol and prostaglandin
E1) and one growth factor (TGFB1). Estradiol regulates
10 DPR genes, TGFB1 regulates 6 genes, and prostaglan-
din E1 regulates 2 genes (Figure 3).

Discussion
The results of this study verified that the candidate gene
approach could be a successful method of determining
markers for DPR. It was anticipated that, since the SNPs
used for genotyping were specifically chosen for their
function in reproductive processes, a larger proportion of
them would be associated with reproductive traits than
for production traits. Such a result was obtained. Of the
98 genes that met the criteria for analysis (MAF ≥ 5% and
call rate ≥ 70%) and where effects were P < 0.05, there
were 42 genes associated with DPR (Table 2) but only 23
associated with MY (Table 7). Moreover, all of the signifi-
cant SNP effects for DPR in this study were between 5
and 25 times greater than the largest marker effect from
the BovineSNP50 chip [7] (Figure 2 and Additional file 3:
Table S7). This result is probably due to the differences in
SNP selection between the two methods. The majority of
SNPs on the BovineSNP50 chip are between genes (63%)
and over 14,000 genes are not represented by a SNP on
the Bovine SNP50 chip [9]. In the current study, almost
all of the SNPs examined were located within the coding
region of the gene and the remainder were close physically
to the coding region. Moreover, SNPs were chosen to
maximize the probability that there would be a change in
the characteristic of the protein encoded for the gene.
Thus, it is likely that many of the SNPs that have large ef-
fects on DPR do so because they are causative SNPs
resulting in changes in protein function. The remainder
may represent linkages to causative SNPs. The SNPs iden-
tified in this study may be closer to the causative SNPs



Table 11 SNPs associated with protein percenta

SNP Gene Least-squares means (SEM) Linear Dominance

0 1 2 Effect P value Q value P value Q value

rs109967779 ACAT2 0.018 (0.006) 0.016 (0.004) 0.006 (0.004) −0.007 0.0495 0.1650 0.3982 0.3071

rs110217852 BSP3 −0.005 (0.008) 0.009 (0.004) 0.020 (0.003) 0.022 0.0012 0.0222 0.7556 0.3129

rs109332658 C7H19orf60 0.005 (0.009) 0.009 (0.004) 0.018 (0.003) 0.008 0.0442 0.1628 0.6785 0.3129

rs135744058 CACNA1D 0.012 (0.010) 0.020 (0.004) 0.007 (0.003) −0.008 0.0411 0.1628 0.0915 0.3040

rs109447102 CCDC86 0.005 (0.012) 0.006 (0.005) 0.017 (0.003) 0.009 0.0322 0.1507 0.5579 0.3129

rs134432442 CPSF1 0.048 (0.010) 0.027 (0.004) 0.001 (0.003) −0.025 <0.0001 0.0063 0.7109 0.3129

rs110270752 DEPDC7 −0.013 (0.010) 0.012 (0.004) 0.015 (0.003) 0.009 0.0323 0.1507 0.1169 0.3040

rs109561866 DYRK3 −0.014 (0.023) 0.002 (0.005) 0.016 (0.003) 0.013 0.0143 0.1001 0.9134 0.3215

rs133175991 DZIP3 0.040 (0.013) 0.018 (0.005) 0.010 (0.003) −0.011 0.0201 0.1109 0.4166 0.3071

rs135071345 FAM5C 0.007 (0.016) −0.002 (0.005) 0.018 (0.003) 0.016 0.0006 0.0210 0.1168 0.3040

rs109137982 FCER1G −0.001 (0.033) −0.002 (0.006) 0.016 (0.003) 0.016 0.0056 0.0490 0.6054 0.3129

rs109247499 FST 0.022 (0.005) 0.011 (0.004) 0.006 (0.005) −0.008 0.0163 0.1037 0.4741 0.3129

rs41893756 FUT1 −0.010 (0.010) 0.007 (0.005) 0.017 (0.003) 0.012 0.0046 0.0460 0.6355 0.3129

rs109262355 FYB 0.009 (0.006) 0.007 (0.004) 0.020 (0.004) 0.007 0.0423 0.1628 0.1740 0.3040

rs43079452 HSD17B3 −0.008 (0.017) 0.021 (0.005) 0.011 (0.003) −0.005 0.2902 0.4731 0.0488 0.3040

HSP70C895D HSPA1A 0.019 (0.008) 0.023 (0.004) 0.005 (0.003) −0.012 0.0016 0.0222 0.0534 0.3040

rs109761676 MS4A8B 0.001 (0.009) 0.005 (0.004) 0.021 (0.004) 0.013 0.0014 0.0222 0.3892 0.3071

rs111027720 PARM1 0.023 (0.005) 0.013 (0.003) 0.002 (0.004) −0.010 0.0019 0.0222 0.8492 0.3129

rs109629628 PMM2 0.029 (0.007) 0.011 (0.004) 0.009 (0.004) −0.008 0.0206 0.1109 0.1396 0.3040

rs43572154 ROR2 0.000 (0.018) 0.005 (0.005) 0.016 (0.003) 0.010 0.0481 0.1650 0.8169 0.3129

rs41912290 SREBF1 0.019 (0.006) 0.015 (0.004) 0.006 (0.004) −0.007 0.0378 0.1628 0.6750 0.3129

rs110805802 TDRKH −0.001 (0.017) 0.001 (0.005) 0.017 (0.003) 0.014 0.0064 0.0498 0.5183 0.3129
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information database SNP. For entries not
beginning with rs, the abbreviation given by previous researchers was used.

Table 12 SNPs associated with somatic cell scorea

SNP Gene Least-squares means (SEM) Linear Dominance

0 1 2 Effect P value Q value P value Q value

rs110127056 ASL 4.36 (0.16) 3.87 (0.11) 4.04 (0.14) −0.13 0.2141 0.5831 0.0305 0.3684

rs133674837 BDH2 3.81 (0.19) 4.19 (0.11) 3.92 (0.12) −0.01 0.8913 0.7535 0.0403 0.3993

rs109332658 C7H19orf60 4.65 (0.28) 3.89 (0.12) 4.00 (0.11) −0.13 0.2968 0.5831 0.0234 0.3684

rs133747802 CD2 3.99 (0.15) 4.66 (0.25) 3.92 (0.12) −0.28 0.0281 0.0281 0.3365 0.5851

rs41857027 CFDP2 4.31 (0.28) 4.34 (0.20) 3.89 (0.10) 0.26 0.0394 0.0394 0.6166 0.5851

rs134432442 CPSF1 3.73 (0.32) 3.83 (0.13) 4.14 (0.10) 0.26 0.0394 0.0394 0.6166 0.5851

rs109503725 DSC2 3.80 (0.14) 3.88 (0.11) 4.48 (0.14) 0.34 0.0008 0.0008 0.0846 0.3993

rs109247499 FST 3.90 (0.14) 3.89 (0.11) 4.41 (0.14) 0.25 0.0083 0.0083 0.0759 0.3993

rs133497176 NFKBIL1 6.52 (0.45) 3.91 (0.16) 3.97 (0.09) −0.42 0.0030 0.1167 0.0001 0.0054

rs109629628 PMM2 3.84 (0.20) 3.90 (0.11) 4.24 (0.12) 0.23 0.0359 0.0359 0.4032 0.5851

rs136746215 SEC14L1 4.19 (0.11) 3.99 (0.14) 3.88 (0.08) −0.15 0.0183 0.0183 0.7550 0.5851

rs132789482 TSHB 4.49 (0.30) 3.81 (0.11) 3.95 (0.06) −0.02 0.8513 0.7535 0.0307 0.3684

rs134031231 TXN2 3.83 (0.17) 3.94 (0.10) 4.26 (0.13) 0.23 0.0352 0.0352 0.5155 0.5851
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information database SNP.
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Figure 1 Allele substitution effects of SNPs on fertility and production traits. Only effects with P values and/or Q values < 0.05 are included.
Numbers represent the magnitude of the allele substitution effect. Dark blue rectangles are linear effects in the same direction as DPR (Q < 0.05),
light blue rectangles are linear effects in the same direction as DPR (P < 0.05 but Q value≥ 0.05), red rectangles are linear effects in the opposite
direction as DPR (P and Q value < 0.05), and pink rectangles are linear effects in the opposite direction as DPR (P < 0.05 but Q ≥ 0.05). Empty cells
indicate that there was no significant effect of the SNP on the trait based on P or Q values. Abbreviations are as follows: CCR, cow conception
rate; DPR, daughter pregnancy rate; FPC, fat percent; FY, fat yield; HCR, heifer conception rate; MY, milk yield; NM, net merit; PL, productive life;
PPC, protein percent; PY, protein yield; SCS, somatic cell score.
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than the SNPs on the BovineSNP50 chip. Allele substitu-
tion effects were estimated individually with a linear
mixed model, rather than simultaneously as described in
Cole et al. [7], which also could explain some of the
differences.
Polymorphisms in the current study were chosen for

having the greatest probability of changing protein func-
tion. In order to maximize the possibility of finding
causative SNPs, we prioritized the selection of SNPs
within a gene to favor those causing the greatest change
in protein function. This decision may have been one
reason why there was a high rate (75%) of SNPs with
MAF < 5% because the SNP would be subjected to puri-
fying selection. Only 20% of the nonsense, 25% of the
missense and 9% of the frameshift mutations had MAF ≥
5% whereas this frequency was 80% of the 5 SNPs that
were in a non-coding region or did not result in an
amino acid substitution. Many of the SNPs were not in
Hardy-Weinberg equilibrium and this, too, may reflect
the effect of the SNPs on protein function.
Of the 9 SNPs most out of equilibrium, only 3 (CCT8,

MARVELD1 and SYTL2) had less than expected fre-
quencies of minor allele homozygotes. The interpret-
ation is that few of the mutations in which MAF was ≥
5% were lethal. Interestingly, for six genes, the heterozy-
gote was more or less frequent than expected. Some of
the decrease in heterozygosity could be due to inbreeding,
which is high in Holstein cattle [60]. Other changes in het-
erozygosity could be due to either an advantage or disad-
vantage of the heterozygote. Heterozygote advantage



Figure 2 Manhattan plots comparing SNP effects on daughter pregnancy rate from the current study (panel A; UF SNP) to marker
effects from the BovineSNP50 chip in a previous study (panel B; USDA SNP) [7]. Each chromosome is represented in a different color along
the x-axis. The y-axis is the marker effect on daughter pregnancy rate (genetic standard deviations). The markers are color coordinated according
to their chromosome location.

Figure 3 Growth factors and steroids which regulate daughter pregnancy rate genes. Only significant pathways are shown (P < 0.05).
Red symbols are genes in which SNPs were associated with daughter pregnancy rate and arrows represent regulation.
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could be due to the ability of receptors to recognize more
forms of the peptides they bind (e.g. MHC class I [61]),
heterozygotes having the optimal level of gene expression
[62], or in theory, the optimal allele being different for dif-
ferent cell types. A reason for heterozygote disadvantage is
not clear.
The antagonistic genetic relationship between fertility

traits and milk production [1-3] was verified here. There
was a negative correlation between DPR and MY across
DPR classes (Additional file 2: Table S4) and within cows
in the high DPR class (Additional file 2: Table S5).
Nonetheless, there were many SNP related to DPR (and
often, other reproductive and health traits) that were not
antagonistic for MY. Accordingly, it should be possible
to select for DPR without reducing MY. Of the 40 SNPs
linearly related to DPR, only 11 were negatively associ-
ated with MY, FY, or PY (Figure 1).
SNPs that affected DPR were also positively related

with other fertility traits (HCR, CCR, and NM). Other
studies have also shown a positive genetic correlation
among fertility traits [3,28,63]. It is not surprising that
these traits are affected by the SNPs associated with
DPR. One determinant of DPR is CCR. In addition, PL
depends in part on the probability of culling for
reproduction. The equation to calculate NM includes
DPR and PL. The fact that SNPs associated with DPR
are also associated with HCR, CCR, PL and NM means
that selection of genes that improve DPR are likely to
improve other reproductive traits and traits that depend
upon reproduction.
SNPs linked to traits in the current study that were

previously linked to other traits are summarized in
Table 13. Of the 17 genes with SNPs previously linked
to fertility or close to SNPs related to fertility traits, 9
SNPs had MAF < 5% (BAIAP2, GHR, LEP, IGF1,
IGFBP7, ITGB5, PAPPA2, SCRN1, and SERPINA14) and
were not analyzed. Of the other 8, 2 were significantly
associated with DPR (CAST and NLRP9) and one tended
to be (FGF2). The exact SNP in CAST analyzed here was
previously associated with DPR, PL, and NM [15]. A dif-
ferent SNP in NLRP9 than the one studied here was as-
sociated with incidence of still birth [21]. Another gene,
FGF2, tended to have an association with DPR (P =
0.08), with the AA genotype being superior to the GG
genotype. Previously, the AA genotype of FGF2 was as-
sociated with higher estimated relative conception rate
in bulls [16] although, surprisingly, associated with lower
in vitro embryo development [12]. Another SNP, in
PGR, was previously associated with in vitro fertilization
rate and development [14] and in vivo fertilization [64]
and pregnancy rates [65], and while not significant (P =
0.16), the GG genotype was superior to the CC genotype
for DPR in agreement with the superior genotype seen
earlier [14,64,65]. A SNP in FSHR was previously
associated with superovulation response [19,66] and,
while not significantly associated with DPR in the
current study, was associated with HCR and PL. There
was no significant effect of genotype for four other SNPs
in genes previously associated with reproductive traits,
including HSPA1A, associated with calving rate in beef
cattle [23], IRF9, which was physically close to a SNP for
interval to insemination [28], and STAT5A, associated
with in vitro embryo development [11] and sire concep-
tion rate [16]. Note that HSPA1A was significantly asso-
ciated with PL and NM (Table 13) and both of these
traits depend upon reproductive function.
The genes in the current study with SNPs that were

associated with DPR participate in a wide range of
physiological functions associated with reproductive pro-
cesses. Many function in the endocrine system, either in
synthesis of hormones or in cell signaling. The estrogen
biosynthesis pathway was one of the pathways in which
genes associated with DPR were significantly overrepre-
sented. The gene ACAT2 is involved in cholesterol me-
tabolism [67], and expression of ACAT2 in cumulus cells
is increased for infertile women as compared to fertile
women [68]. The gene HSD17B12 encodes for an en-
zyme that converts estrone to estradiol [69]. It is also in-
volved in the synthesis of arachidonic acid and is
essential for embryo survival in mice [70]. Another gene
related to DPR, HSD17B7, also converts estrone to estra-
diol [71] and is essential for de novo cholesterol synthe-
sis in the fetus [72-74]. In addition to genes involved in
steroid synthesis, TSHB, a gene which codes for the β
strand of the pituitary hormone, TSH, was associated
with DPR. Thyroid function, which is under the control
of TSH [75], can impact reproductive function in cattle
[76,77]. Some genes related to DPR may also affect re-
lease of neurotransmitters controlling hypothalamic-
pituitary function. One, AP3B1, is involved in formation
of synaptic vesicles [78], and APBB1 controls GnRH-1
neurogenesis [79]. Another, TBC1D24, stimulates pri-
mary axonal arborization [80,81]. Polymorphisms in
TBC1D24 have been associated with shortened axons
and epileptic seizures [80,81].
Among the DPR genes involved in cell signaling are

the G protein-coupled receptors MRGPRF and MS4A8B
[82], GPLD1, which cleaves cell surface proteins an-
chored by phosphatidylinositol glycans [83], the sialidase
NEU3, which is important for insulin signaling [84],
CACNA1D, a component of calcium channels [85], and
DSC2, an important component of membrane rafts and
cell-cell junctions [86] and which is involved in blastocoel
formation [87]. Similarly, OCLN is a major component of
tight junctions and is involved in barrier stability [88]. An-
other gene involved in cell-cell binding related to DPR is
PMM2, which isomerizes mannose 6-phosphate into man-
nose 1-phosphate [89], which eventually is converted to



Table 13 SNPs associated with at least one trait in the current study that were previously linked to one or more other
traitsa

SNP Gene symbol Traits in current study SNP in literature Trait in literature Reference

rs137601357 CAST DPR, CCR, MY, FY, PY Different location DPR, PL, NM, SCS [15]

rs109621328 CD14 DPR, HCR, NM, MY, FY, FPC, PY Same SNP PY, FY (tendancy for MY) [64]

FGF2ag FGF2 NM, FY Same SNP ERCR (bulls) [16]

Same SNP FY, FPC, SCS, PL [13]

Same SNP In vitro embryo survival to d 7 [12]

rs43745234 FSHR HCR, PL Different location Superovulation response [19]

Different location Superovulation response [65]

HSP70C895D HSPA1A PL, NM, FPC, PPC Same SNP Calving rate (beef cattle) [23]

rs41256848 LHCGR PL, NM Same SNP Superovulation response [66]

Different location Superovulation response [19]

rs109383758 NLRP9 DPR, MY, PY Different location Incidence of stillbirth [21]

rs109506766 PGR MY, PY Same SNP Fertilization rate and in vitro embryo survival to d 7 [14]

Different location Superovulation response [67]

Different location Pregnancy rate [68]
aSingle nucleotide polymorphism represented as the rs number given by the National Center for Biotechnology Information database SNP. Abbreviations are as
follows: CCR, cow conception rate; DPR, daughter pregnancy rate; ERCR, estimated relative conception rate; FPC, fat percent, FY, fat yield; HCR, heifer conception
rate, MY, milk yield; NM, net merit; PL, productive life; PPC, protein percent; PY, protein yield; and SCS, somatic cell score.
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GDP-fucose and used to make fucosylated glycans [90].
Fucosylated glycans serve several functions, including
leukocyte-endothelial adhesion, host-microbe interactions,
embryo compaction, and signal transduction [90].
One gene associated with DPR, CSNK1E, is involved in

paracrine regulation of cell function as a positive regulator
of the canonical WNT/β-catenin pathway [91,92]. The
WNT pathway plays important roles in cell differentiation
[93,94], preimplantation development [95], formation of
the epiblast [96] and implantation [97]. Moreover,
CSNK1E regulates circadian rhythm by controlling nu-
clear entry of PER1, a regulator of CLOCK [98]. Expres-
sion of PER1 was associated with depth of anestrus at the
start of the breeding season in beef cattle [99].
Three genes related to DPR are involved with the

function of spermatozoa in the female tract. The gene
BSP3 aids in maintaining sperm motility during storage
in the oviduct [100]. Protein concentrations are associ-
ated with bull fertility [101] and the mRNA is down-
regulated in the endometrium of heifers which carried a
pregnancy to term compared to those in which the em-
bryo died after transfer [26]. Another gene, CAST, plays
an important role in sperm capacitation and the acro-
some reaction [102-104] and may play a role in oocyte
calcium-mediated processes that occur during oocyte ac-
tivation [105]. The same SNP in CAST found to be asso-
ciated with DPR in this study was earlier associated with
DPR, PL, NM and SCS [15]. The embryonic gene ZP2
encodes for a protein that makes up part of the zona
pellucida and is the location that sperm bind on the
zona pellucida [106,107]. One of the genes related to
DPR, NLRP9, is likely to play an important function in
the oocyte. The gene is expressed in the oocyte, and
steady-state amounts of NLRP9 mRNA decline after
fertilization and become undetectable after the maternal
to zygote transition [108-110].
There is much evidence to implicate immune function

in the establishment of pregnancy [111]. Seven of the
genes with SNPs associated with DPR are involved in
immune function. The gene C1QB is involved in com-
plement activation [112], CD14 is a co-receptor for rec-
ognition of bacteria [113], CD40 regulates cell surface
receptor signaling [114], and NFKBIL1 regulates den-
dritic cell function [115]. Additionally, MON1B and
RABEP2 help regulate phagocytosis and endocytosis
[116,117] and mutations in FUT1 have been associated
with disease resistance [118-120]. Polymorphisms in
FUT1 have also been associated with total number of
piglets born [121,122] and number of piglets alive at
weaning [119]. It is possible that allelic variants in these
genes that are positively associated with DPR improve
immune function and decrease incidence of diseases
such as endometritis, metritis, and mastitis that disrupt
reproduction [123-125].
Three genes related to DPR are anti-apoptotic: ARL6IP1,

DYRK3 and PARM1I [126-128]. Induction of apoptosis in
the oocyte and associated cumulus cells is associated with
reduced fertilization rate [129-131]. Two molecules that



Cochran et al. BMC Genetics 2013, 14:49 Page 19 of 23
http://www.biomedcentral.com/1471-2156/14/49
improve embryo competence for establishment of preg-
nancy after transfer into recipients, CSF2 and IGF1
[132,133], are anti-apoptotic in embryos [32,134].
A variety of other roles are also represented by the genes

with SNPs associated with DPR. Two genes are involved
in energy pathways (COQ9 and PCCB). The COQ9 pro-
tein is necessary for the synthesis of CoQ10 [135], which
is needed for generating ATP [136]. PCCB is an enzyme
that converts proponyl CoA to methylmalonyl CoA dur-
ing gluconeogenesis [137]. The CSPP1 gene plays a role in
spindle formation and cytokinesis [138], MARVELD1 in-
hibits cell cycle progression and migration [139], and
LDB3 helps organize actin and α-actinin binding in
sarcomeres [140]. Finally, CPSF1 is involved in 3′ end-
processing of pre-messenger RNAs into messenger
RNAs [140].
Several gene networks were significant among the

genes related to DPR but most contained only two
genes. The exceptions were estrogen biosynthesis,
discussed earlier, and a network of genes associated with
ubiquitin C (UBC). It is not surprising that the proteins
encoded for by so many genes bind to UBC because ubi-
quitin is involved in a large number of intracellular func-
tions [141-144]. Five transcription factors (HNF4A,
TCF3, CTBP2, FOSB, and SP100), two hormones (estra-
diol and prostaglandin E1), and one growth factor
(TGFB1) were determined by the IPA software to be sig-
nificantly overrepresented as regulators of DPR genes.
Each of these upstream regulators could be studied fur-
ther for the potential to improve fertility by regulating
activation of pathways controlled by these molecules.
Conclusions
In conclusion, SNPs in a total of 40 genes associated
with DPR were identified as well as SNPs for other traits.
It might be feasible to include these SNPs into genomic
tests of reproduction and other traits. The genes associ-
ated with DPR are likely to be important for understand-
ing the physiology of reproduction and manipulating
reproduction function in cattle. Given the large number
of SNPs associated with DPR that were not negatively
associated with production traits, it should be possible
to select for DPR without compromising production.
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ability for traits on bulls used for genotyping. Table S5. Correlations,
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frequencies (MAF) > 5% and call rates > 70%.
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associated with daughter pregnancy rate. Table S8. Effect of tissue type
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significantly associated with daughter pregnancy rate (DPR). Figure S1.
The ubiquitin pathway contains an overrepresentation of daughter
pregnancy rate genes. Figure S2. Transcription factors which regulate
daughter pregnancy rate genes.
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