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Abstract

Background: Currently, most methods for detecting gene-gene interaction (GGI) in genomewide association
studies (GWASs) are limited in their use of single nucleotide polymorphism (SNP) as the unit of association. One
way to address this drawback is to consider higher level units such as genes or regions in the analysis. Earlier we
proposed a statistic based on canonical correlations (CCU) as a gene-based method for detecting gene-gene
co-association. However, it can only capture linear relationship and not nonlinear correlation between genes. We
therefore proposed a counterpart (KCCU) based on kernel canonical correlation analysis (KCCA).

Results: Through simulation the KCCU statistic was shown to be a valid test and more powerful than CCU statistic
with respect to sample size and interaction odds ratio. Analysis of data from regions involving three genes on
rheumatoid arthritis (RA) from Genetic Analysis Workshop 16 (GAW16) indicated that only KCCU statistic was able to
identify interactions reported earlier.

Conclusions: KCCU statistic is a valid and powerful gene-based method for detecting gene-gene co-association.

Keywords: Genome-wide association study (GWAS), Gene-gene co-association, Gene-gene interaction (GGI),
Kernel canonical correlation analysis (KCCA)
Background
Genome-wide association studies (GWASs), which may
involve a large number of single nucleotide polymorph-
isms (SNPs) on many individuals, are widely used to
identify genetic variants underlying complex diseases or
other types of traits. Although a primary interest in a
GWAS is to identify SNPs associated with a trait of
interest, it is important to consider the associate genes and
their co-association as well. One form of co-association is
epistasis, which was introduced approximately 100 years
ago and generally defined as interactions among genes
[1]. These are linked to gene-gene interactions (GGIs)
which are often characterized to be functional, compos-
itional and statistical [2]. The statistical definition was
given by Fisher [3] and developed further by Cockerham
[4] and Kempthorne [5], whereby the effect of GGIs is
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reproduction in any medium, provided the or
treated as deviation from additive genetic effects of single
genes [6].
Methods to detect GGIs on the basis of the statistical

definition include but are unlimited to logistic regres-
sion, multifactor dimensionality reduction [7], linkage
disequilibrium (LD)-based [8,9] and entropy-based sta-
tistics [10,11], together with others implemented in
PLINK[12], Tuning ReliefF [13], Random Jungle[14],
BEAM[15] and BOOST[16]. However, most of these
consider SNP as the unit of association, which has lim-
itations and are insufficient for interpretation of GGI
[17] which calls for consideration of higher level units
such as genes or regions in the analysis. Gene-based
analysis can account for multiple independent functional
variants within genes with a potential increase of power
to identify GGI. Earlier, Peng et al. [17] proposed a
gene-based statistic (CCU statistic) for detecting gene-
gene co-association based on canonical correlation ana-
lysis (CCA) in a case–control study, which was defined
as joint effect of genes contributing to a binary trait and
proved to have good performance on detecting gene-
gene co-association or GGI. However, CCA can only
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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detect linear correlation, and may be inappropriate for
genomic data containing nonlinear structure. Recent
years have witnessed considerable work and successes
on kernel CCA (KCCA) as a nonlinear generalization of
the classical CCA in machine learning, face recognition,
data classification [18-20], and notably genomic data
analysis by Yamanishi et al. [19]. We here construct a
kernel CCU (KCCU) statistic for detecting gene-gene
co-association and evaluate its performance via simula-
tions and data analysis.
Methods
CCA
CCA is a classical multivariate method which concerns
about linear dependencies between sets of variables. Let
Xi, Yi (i = 1, . . ., m) denote samples of measurements on
m objects, We assume the data to be column centred.
Let A be any m × n matrix then L(A) = {Aα|α2Rn}
will be referred to as the column-space and L(AT) =
{ATα|α2Rm} the row-space of A. The aim of canonical
correlation analysis is to determine vectors νj2 L(XT) and
ωj2 L(YT) such that aj=Xνj and bj=Yωj are maximally

correlated. cor aj; bj
� � ¼ aj;bjh i

ajj jj j� bjj jj j with 〈〉 indicating in-

ner product. Usually, this is formulated as a constrained

optimization problem
argmaxνjTXTYωj

νj 2 LðXT Þ;ωj 2 LðYT Þ subject to

νjTXTXνj ¼ ωj
TY TYωj ¼ 1 which yields the first pair of

canonical vectors (ν1,ω1) and a1 =Xν1, b1 =Yω1 are the
corresponding canonical variates and their correlation is
called the maximum canonical coefficient. Pairs of canon-
ical vectors (νj,ωj) can be recursively defined by maximiz-
ing similar expression and keeping subsequent variates
orthogonal to those previously obtained. CCA can be
interpreted as constructing pairs of factors from X and Y,
respectively by linear combination of the variables
involved, as a way to account for linear dependencies be-
tween sets of variables.
KCCA
KCCA generalizes CCA as follows: Objects xi and yi are
first mapped to some Hilbert spaces Hx and Hy through
mapping Φx(.) and Φy(.), CCA is then performed on
images {Φx(xi)}i= 1

m and {Φy(yi)}i= 1
m . Let Kx and Ky denote

m × m kernel inner product matrices (also known as
kernel gram matrices), constructed element-wise as
Κxð Þij ¼ Φx xið Þ;Φx xj

� �� �
and Κy

� �
ij ¼ Φy yið Þ;Φy yj

� �� �
.

Analogous to CCA, the aim of KCCA is to find canonical
vectors in terms of expansion coefficients αj, βj2Rm as a

constrained optimization problem
argmaxαjTΚXΚYβj
αj; βj 2 Rm

subject to αjTΚXΚXαj ¼ βj
TΚYΚYβj ¼ 1.
Explicit form for the mapping Φx(.) and Φy(.) are not
always required but the kernel Kx and Ky need to be
fixed. Common kernel functions include linear, polyno-
mial, radial basis function (RBF), sigmoid [21], identical-
by-state and weighted identical-by-state kernels [22]. It
is worthwhile to note that these kernel functions gener-
ally have similar performance with parameters that are
appropriately chosen.

Test statistic
Strategy analogous to CCU statistic was used to con-
struct the KCCU statistic except that the maximum ker-
nel canonical coefficient of the two genes, rather than
the maximum canonical coefficient, was taken as a
measure of gene-gene co-association in cases and con-
trols. Let genotyped data of case–control study be (X1

D,
X2
D, . . .,XP

D) and (Y1
D,Y2

D, . . .,Yq
D) for gene A and gene B

for cases, and (X1
C,X2

C, . . .,XP
C) and (Y1

C,Y2
C, . . .,Yq

C) for
controls. The maximum kernel canonical coefficient κrD
between (X1

D,X2
D, . . .,XP

D) and (Y1
D,Y2

D, . . .,Yq
D) obtained

through KCCA could be considered as a measurement
of gene-based gene–gene co-association in cases, and
κrC between (X1

C,X2
C, . . .,XP

C) and (Y1
C,Y2

C, . . .,Yq
C) be a

measurement of gene–gene co-association in controls.
The transformation analogous to Fisher’s simple correl-
ation coefficient transformation was done to κrD and
κrC, i.e. κzD ¼ 1

2 log 1þ κrDð Þ � log 1� κrDð Þð Þ and
κzC ¼ 1

2 log 1þ κrCð Þ � log 1� κrCð Þð Þ.
The KCCU statistic for detecting statistical significance

of the difference of gene-based gene-gene co-association

between cases and controls can be defined as U ¼
κzD � κzCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var κzDð Þ þ var κzCð Þp , which is approximately N(0,1).

With the difficulty in obtaining an explicit form for var
(κzD) and var(κzC), a bootstrap procedure was employed.
Seeing that the performance of kernel methods strongly
relates to the choice of kernel functions and their
parameters, we chose the RBF kernel owing to its flexi-
bility in parameter specification [23]. In general, two
approaches are popular: 1. via empirically assigning
candidate values for the parameter(s) involved subject to
a learning algorithm for the best performance; 2.
via some cross-validation procedure. Both are computer
intensive [24].

Data simulation
Simulation studies were conducted to assess the per-
formance of KCCU relative to CCU under both the null
(H0) and alternative hypotheses (H1), which were based
on the HapMap data in the following steps:
Step 1. Phased haplotype (Phases 1 & 2 of CEU) data

were downloaded from the HapMap web site (http://

http://snp.cshl.org


Figure 2 Pairwise r2 among the seven SNPs in the first region.
The seven SNPs are rs17201502, rs905619, r637871, rs1027711,
rs956864, rs640081, and rs706795. The values to the right of the
seven dbSNP IDs (rs# IDs) are the their minor allele frequencies.
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snp.cshl.org) on two unlinked genome regions for gener-
ating the simulated genotypes. The GNPDA2 region is
on Chr 4: 44401210..44410098 involving six SNPs while
FAIM2 region is on Chr 12: 48571829..48583937 involv-
ing seven SNPs. Their LD patterns where shown in
Figures 1 and 2 together with pairwise r2.
Step 2. Based on data above, large samples with 100,

000 cases and 100, 000 controls were generated using
software gs2.0 [25] under a two-locus interaction multi-
plicative effects model (see Additional file 1), treating
the 2nd SNP of the first region and the SNP of the other
as the causal variants and they were removed in the
simulation to assess gene-gene co-association. The inter-
action odds ratio was set as 1.0 under H0 and 1.1, 1.2,
1.3, 1.4, 1.5 under H1. The SNPs in the regions were coded
according to an additive genetic model. To further investi-
gate the performance on causal SNPs with respect to
minor allele frequency and LD, different SNP pairs from
the two gene regions were defined as the casual variants.
Step 3. From the remaining SNPs, simulated data

were sampled and CCU and KCCU performed
under various sample sizes N (N/2 cases and N/2
controls, N= 1000. . .5000) with R package kernlab
(http://cran.r-project.org/web/packages/kernlab/index.html).
500 simulations were repeated each with a significant
level of 0.05.

Applications
The proposed KCCU statistic was applied to rheumatoid
arthritis (RA) data from GAW16 Problem 1, consisting of
2,062 Illumina 550k SNP chips from 868 RA patients and
1,194 normal controls collected by the North American
Figure 1 Pairwise r2 among the six SNPs in the first region. The
six SNPs are rs16857402, rs2709, rs10020551, rs4484337, rs12643262,
and rs7670601. The values to the right of the 6 dbSNP IDs (rs# IDs)
are the corresponding minor allele frequencies.
Rheumatoid Arthritis Consortium [26]. Three genes (C5,
ITGAV, and VEGFA) on three different chromosomes
were selected to detect gene-gene co-association in this
work, involving eight, eight and four SNPs, respectively.
Logistic regression test and the CCU statistic were also
used. For each pair of genes, the statistic which yielded
the minimum p value was recorded from all pairs of
SNPs one on each gene. The significance of the statistic
was compared to its empirical distribution generated
from 1,000 permutations by permuting case–control
labels [27] which is relatively easy compared to the “BY”
method [28] for multiple testing adjustment.

Results
Simulation
Shown in Table 1 are simulation results under H0. The
KCCU statistic is normally distributed according to the
one sample Kolmogorov-Smirnov test with the type I
error rates of KCCU statistic being close to given no-
minal value (α = 0.05) for different sample sizes. This
indicates that the proposed statistic performs well under
the null hypothesis.
Results on various interaction odds ratios and a sam-

ple size of 3,000 are shown in Figure 3, as with different
sample sizes with an interaction odds ratio of 1.4 in
Figure 4. It is clear that power of KCCU is a monoton-
ically increasing function of sample size and interaction
odds ratio. Figure 5 shows results with different SNP
pairs defined as causal SNPs with an interaction odds
ratio of 1.3. The power of KCCU statistic was higher
than that of CCU statistic. Power as a function of inter-
action odds ratio for different sample size is provided
as Additional file 1.

http://snp.cshl.org
http://cran.r-project.org/web/packages/kernlab/index.html


Table 1 Performance of CCU and KCCU under the null
hypothesis

Sample size CCU KCCU

Type I
Error

Normality
Test (D)

Type I
error

Normality
Test (D)

1000 0.052 >0.55 0.049 >0.55

2000 0.051 >0.55 0.054 >0.55

3000 0.056 >0.55 0.052 >0.55

4000 0.048 >0.55 0.051 >0.55

5000 0.053 >0.55 0.050 >0.55

D, Kolmogorov-Smirnov D test.

Figure 4 Power of CCU and KCCU statistics given an interaction
odds ratio of 1.4 and different sample sizes.
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Application
The performance of logistic regression test, CCU and
KCCU statistics on pair-wise gene-gene co-association
of three genes is shown in Table 2, which also contains
results on the Gaussian RBF kernels with various param-
eter values (σ=0.05, 0.5, 5 and 50). Through KCCU the
three genes were shown to have co-association with each
other at significance level 0.05 regardless the parameter
value, in contrast to the CCU statistics showing no sig-
nificant co-association and none of the SNP pairs were
significant under logistic regression test with correction
for multiple testing.

Discussion
We have extended the CCU statistic to a new statistic
KCCU, which can extract nonlinear correlation between
two genes. Simulation studies show that both CCU and
KCCU statistics performed well under null hypothesis
with KCCU being more powerful than CCU with respect
to significant level, sample size and relative risk. As
results vary with user-defined kernel parameter, various
Figure 3 Power of CCU and KCCU statistics given different
interaction odds ratios and a sample size of 3,000.
parameters were used (the bandwidth parameter in RBF
kernel) to RA data in GAW16 Problem 1, showing that
the logistic regression test and CCU statistic failed to de-
tect any interaction but KCCU statistics identified the
pair-wise interactions among the three genes under vari-
ous parameters. The interaction between ITGAV and
VEGF genes has been identified by a rank method [29].
As suggested by a reviewer, it is critical to consider
time-efficiency in genome-wide association studies to
make the proposed methods practical. In our case, the
computing time as required for KCCU was about 2.5
times slower than CCU, but nevertheless will still be
Figure 5 Power of CCU and KCCU statistics when SNP pairs
from two regions are defined as casual variants at an
interaction odds ratio of 1.3 and a sample size of 3,000.



Table 2 P-values of gene-gene co-association among C5,
ITGAV and VEGFA

Co-association C5-ITGAV C5-VEGFA ITGAV-VEGFA

Logistic regression 0.1015 0.1425 0.1840

CCU 0.5387 0.5325 0.8317

KCCU σ=0.05 <0.001* <0.001* <0.001*

σ=0.5 <0.001* <0.001* <0.001*

σ=5 <0.001* <0.001* <0.001*

σ=50 <0.001* <0.001* <0.001*

*significant at level 0.05.
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feasible with the development as well as the extensive
applications of multiprocessor and multithreading com-
putational technique.
A reviewer has also suggested us to reiterate the rela-

tionship between gene-gene co-association and GGI
which is readily available. GGI generally refers to the
synergetic or antagonistic effect of two genes in addition
to the summation of their independent effects on an
outcome. To represent the interaction between two
genes A and B in a case–control association study, a
product term is customarily added to the logistic regres-
sion model Logit(P) = β0 + β1A+ β2B+ γA×B so that γ
reflects both the direction and size of the interaction.
This model implicitly assumes that gene A and gene B
are independent so as to infer interaction (γ). However,
it might well be that genes are correlated with each
other in genetic networks to contribute to disease sus-
ceptibility, so the independence assumption is rarely
ratified. Gene-gene co-association extends the concept
of GGI in that it describes the generic joint distribution
of two gene effects on disease or trait without assuming
either independence or linear relationship. Here the
measurement of the co-association between genes is
based on the correlation between genes (such as CCU
statistic and KCCU statistic), provides a measure of the
contribution of two genes. As for two unlinked genes,
their relationship can be described as either co-
association or interaction. The reviewer has also brought
to our attention to earlier work by Song and Nicolae
[30] on imposing natural restrictions for the parameter
space and discussion on the definition of “no inter-
action” between two unlinked loci as two loci being in-
dependent conditioned on the subject having the
disease. In this paper, the null hypothesis of the pro-
posed test is that there is no gene-gene co-association
(i.e. GGI for two unlinked genes), the data under the
null hypothesis are generated from the gs software with
the interaction odds ratio parameter to be one.
Several issues remain to be resolved: the uncertainty

to set the kernel function with appropriate parameters
for each data, the undesirable performance of both CCU
and KCCU with small interaction odds ratio (e.g. 1.1),
and the possible failure of maximum kernel canonical
correlation coefficient to represent gene-gene co-
association.

Conclusions
KCCU statistic is a valid and powerful gene-based
method for detecting gene-gene co-association com-
pared to CCU and logistic regression test. Further work
is needed to make its use in GWAS more practical.

Additional file

Additional file 1: Two-locus interaction multiplicative effects
model.
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