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Abstract

which have become available in the last few years.

parameter estimates using ABC.

tool for analyzing large genome-wide datasets.

Background: The Approximate Bayesian Computation (ABC) approach has been used to infer demographic
parameters for numerous species, including humans. However, most applications of ABC still use limited amounts
of data, from a small number of loci, compared to the large amount of genome-wide population-genetic data

Results: We evaluated the performance of the ABC approach for three ‘population divergence’ models - similar to
the “isolation with migration” model - when the data consists of several hundred thousand SNPs typed for multiple
individuals by simulating data from known demographic models. The ABC approach was used to infer
demographic parameters of interest and we compared the inferred values to the true parameter values that was
used to generate hypothetical “observed” data. For all three case models, the ABC approach inferred most
demographic parameters quite well with narrow credible intervals, for example, population divergence times and
past population sizes, but some parameters were more difficult to infer, such as population sizes at present and
migration rates. We compared the ability of different summary statistics to infer demographic parameters, including
haplotype and LD based statistics, and found that the accuracy of the parameter estimates can be improved by
combining summary statistics that capture different parts of information in the data. Furthermore, our results
suggest that poor choices of prior distributions can in some circumstances be detected using ABC. Finally,
increasing the amount of data beyond some hundred loci will substantially improve the accuracy of many

Conclusions: We conclude that the ABC approach can accommodate realistic genome-wide population genetic
data, which may be difficult to analyze with full likelihood approaches, and that the ABC can provide accurate and
precise inference of demographic parameters from these data, suggesting that the ABC approach will be a useful

Background

In evolutionary biology and population genetics, several
approaches for inferring demographic or genetic para-
meters are based on Bayesian statistical inference [1-3].
Bayesian statistics is a general framework based on
Bayes’ theorem that can be used to estimate unknown
parameters. Bayesian inference uses the following rela-
tionship
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P(6|D) « P(6) - P(D|6),

where P(0|D) is the conditional distribution of some
parameter of interest (¢) given the data (D), P(0) is the
prior distribution of the parameter, and P(D|0) is the
probability of the data given the parameter (the likeli-
hood function: L(#) = P(D|0). According to the expres-
sion above, the conditional distribution P(#|D) of the
parameter given the data, which is called the posterior
distribution, is proportional to the prior distribution and
the likelihood. For most practical cases in evolutionary
biology and population genetics, the likelihood function
is very difficult to compute because of the large amount
of data and the potentially complex models, and exact
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approaches requiring evaluation of the full likelihood are
often restricted to simple evolutionary models [4].

Approximate Bayesian Computation (ABC) can be
used to make inference for complex models with high
dimensional data [5]. First, in order to overcome the diffi-
culty in evaluating exact likelihoods, ABC approximates
the likelihoods of the parameters based on a tolerance
level (with respect to some metric) for the difference
between observed and simulated data. As the tolerance
level goes to zero, ABC produces a sample from the pos-
terior distribution. Second, to overcome the difficulty in
evaluating high dimensional data, ABC evaluates sum-
mary statistics that reduce the dimensionality of the data.
The summary statistics are ideally chosen so that they
capture as much information as possible from the data
about the parameter(s) of interest. However, because
only non-sufficient summary statistics exist for most
complex models and parameters of interest, the effects of
such statistics will be case-dependent, and the effect of
mapping the data space to arbitrarily chosen non-suffi-
cient summary statistics space is not well-known. Tavaré
et al. (1997) [5] described a straightforward rejection-
algorithm for approximate Bayesian inference, which was
extended by Pritchard et al. (1999) [6] to allow some
level of deviation between the observed and simulated
data. In short, their algorithm proceeds as follow: Simu-
late a large number of datasets based on different values
for some parameter of interest, where the parameter
values are sampled from a prior distribution. Next, calcu-
late summary statistics of simulated datasets, accept or
reject parameter values on the basis of the difference
between simulated summary statistics and the summary
statistics of some observed data. Finally, the accepted
parameter values represent an approximate sample from
the posterior distribution of the parameter of interest.
There are several more advanced versions of the basic
rejection approach, such as local linear regression adjust-
ment [7], non-linear feed forward neural networks [8],
ABC with Markov chain Monte Carlo [3], ABC with
sequential Monte Carlo [9].

Population divergence models, or ‘isolation with migra-
tion’ models, have been used extensively in order to
describe properties of populations and species, and to
explore increasingly complex demographic scenarios e.g.
[10-18]. These models can often be good approximations
of scenarios that involve populations splitting off from an
ancestral population e.g. [13,18], such as the colonization
of islands or distant continents, or the domestication of
livestock and crops. In recent years, ABC has also been
used to infer demographic parameters of humans from
genetic data. For example, Fagundes et al. (2007) [19]
estimated several demographic and historical parameters
using divergence models, such as the timing of modern
humans’ exodus from Africa and the time of colonization
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of the Americas, based on data from 50 nuclear loci
sequenced in African, Asian and Native American sam-
ples. Similarly, Wegmann et al. (2009) [20] applied ABC
with a Markov chain Monte Carlo approach to estimate
divergence times and migration rates between three
African populations based on 331 microsatellites. Bertor-
elle et al. (2010) [21] conducted a survey about ABC
related publications since 2002. In their survey, they
found that 43% publications used microsatellite markers
as the source of genetic information, which was the most
common source, and the remaining fraction was divided
between nuclear and mitochondrial sequence data. The
median value of the number of loci for STR and nuclear
sequence data was 9 and 19, respectively. Bertorelle et al.
(2010) [21] concluded that most applications of ABC still
use limited amounts of data, often due to using a small
number of loci, compared to the amount of genome-wide
population-genetic data which has become available in
the last few years [22-26]. Recently, Wollstein et al.
(2010) [27] used an ABC approach to investigate the
demographic history of Oceania based on approximately
1 million SNPs. Based on that data, and accounting for
ascertainment bias, they could provide a more detailed
picture of human history and the peopling of Oceania
than has previously been painted. However, most studies
that use ABC are based on a small number of markers
(e.g. Bertorelle et al. (2010) [21]) leading to, in many
cases, imprecise parameter estimation [28], and questions
about of the power of ABC under some scenarios [29,30].

In this article, we investigate the performance and
power of the ABC approach when we have access to
large amounts of genome-wide population-genetic data.
We study the ABC approach with local linear regression
adjustment for several population divergence models.
Simulated data is generated under ‘human-like’ condi-
tions and from a particular known demographic model
(some 150,000 to 300,000 SNPs are generated). Three
population divergence models with increasing complexity
are investigated, and we compare estimation accuracy of
particular parameters under the different models. The
effect of the number of loci on the performance of the
ABC approach is also investigated.

Methods

Population models

We investigate three different population divergence
models. These models were chosen to be similar to com-
monly studied population models, such as the ‘isolation
with migration” model, and to represent an increasing
complexity. In the first model (Figure 1A), an ancestral
population with size Ny was split into two sub-popula-
tions (population 1 and population 2) at time T before
present (scaled by 4N, generations, where N, = 10,000).
Sub-populations had a constant size of N; = N, and
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migration occurring at rate m;, and m,; after divergence time.

Figure 1 Population models. A) Model 1: a simple divergence model, with two sub-populations that have constant sizes (N; and N-). Migration
occur after divergence event (at time T) with rate m;, and m,;; B), model 2: a divergence model with exponential growth. After the divergence
time 7, two sub-populations (of size N; and N,) grow with exponential rates o and o, and the population sizes at present are Ny and Ns.
There is no migration between the sub-populations; C) model 3: Composite model of model 1 and model 2. The same as model 2, but with

N,

N,

N,

N, = 0.5N,, respectively (where Nx = N; + N,). Migration
between the two sub-populations occurred at rate m1,,
(from population 1 to population 2) and m1,; (from popu-
lation 2 to population 1), where the migration rate m =
4N,M and M is the fraction of migrants per generation.
In this model, we treated the parameters T, m1,, and miy;
as unknown and we attempted to infer their values based
on simulated genetic data. The sub-population sizes N
and N, were assumed to be known for this case.

In the second model (Figure 1B), an ancestral population
was split into two sub-populations with size N; and N, at

time T. The size of the ancestral population was set to
Nj = N; + N,. Each sub-population grew exponentially
starting at time T with different rates o; and o,. At pre-
sent, the size of each sub-population was N; and Nj. In
this model, we assumed that there was no migration
between populations. We aim to estimate past population
sizes N; and N, and present population sizes N; and N».
Since both past and present population sizes will be drawn
from prior distributions for each proposed set of para-
meters, the growth rates o; and o, are fixed and can be
computed by «; = In(N;/Nj),i=1o0r2. The divergence
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time T was assumed to be known in this model (T = 0.1 x
4N, = 4,000 generations).

The third model (Figure 1C) was a combination of
model 1 and model 2, we treated all parameters as
unknown, and we were interested in estimating all these
seven parameters: divergence time 7, migration rates
mi, and m,;, past population sizes N; andN,, and pre-
sent population sizes N; and N,.

Simulated data

Population-genetic SNP data, comparable in size to
human SNP-chip data or large scale re-sequencing data,
was simulated using Hudson’s ms program [31]. We
simulated 10,000 genome-regions each of size 100 kb, for
a total of 200 chromosomes (200 haploid individuals or
100 diploid individuals), 100 chromosomes from each
sub-population. The mutation rate (0 = 4N.u) per gen-
ome-region was set to 5, the recombination rate (p =
4N,r) per genome-region was set to 40. By assuming an
effective population size of N, = 10,000, the mutation
rate 6 corresponded to pg = 1.25 x 10 per base pair per
generation, and the recombination rate p corresponded
to 7 ~ 1.00 x 10°® per base pair per generation. The
recombination rate r was chosen to match recombination
rates estimated from large-scale genomic data and the
mutation rate 4 was chosen to correspond to an incom-
plete set of SNPs (which was lower than the value ~107®
for human genome) [32], on the order of 1/8™ of all
SNPs in the region. Furthermore, SNPs with minor allele
frequency less than or equal to 5% were removed in
order to mimic ascertained SNPs. With these values of
the parameters, one replicate of the simulated data
resulted in a few hundred thousand SNPs. The 10,000
genome-regions were assumed to be independent of each
other. The ms commands for generating data under the
three models are provided in the Additional file 1.

ABC with local linear regression adjustment

To estimate demographic parameters, we used the ABC
approach with local linear regression adjustment, intro-
duced by Beaumont et al. (2002) [7] that also utilize
smooth weighting for candidate parameters instead of
only using a rejection algorithm (e.g. Pritchard et al.
1999) [6]. The linear regression is an innovation that
has been successful in reducing the computational load
of ABC, but it can produce nonsense values (due to
post-processing of sampled values) for the posterior dis-
tribution that fall outside the prior distribution. Para-
meter values not included in the prior distribution
cannot appear in the posterior distribution in parametric
models as a consequence of Bayes’ theorem, and a
transformation of accepted parameters vales [33] solves
this issue so that only values that appear in the prior
distribution can appear in the posterior distribution.
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In detail, our ABC procedure can be described as
follows:

(1) Sample a set of candidate parameters, 6;, from
each of the prior distributions;

(2) Simulate population-genetic data using the
sampled parameter-values 6; under a particular model;

(3) Compute summary statistics from simulated data;

(4) Compute Euclidean norm for the differences
between the set of simulated summary statistics,

SF = (S;“l, e ,S;‘;) , and the set of observed summary

statistics, S =(S1,...S¢), so that ||s,us||=\/2/f’:1 (s;;.fs,‘)z,

where ¢ is the number of summary statistics. All sum-
mary statistics were standardized before computing the
Euclidean norm.

(5) Select a fixed fraction of candidate parameter-sets

that have the smallest values of ||S;k — S|| and use the

Epanechnikov kernel to weight the candidate parameter-
sets. Adjust candidate parameters by using a local linear
regression approach [7].

We generated 50,000 replicate simulated dataset for
each model and choice of prior that were investigated,
which corresponds to 500 million simulated genome-
regions of size 100 kb. The tolerance level was set to 1%
(except for the investigation of tolerance level). In order
to assure that the estimated posterior distribution
obtained by the local linear regression approach stayed
within the bounds of the prior distribution, we trans-
formed the values of the accepted parameters in the
rejection step before the regression step [33]. The
obtained adjusted parameter-values are draws from the
posterior distributions, and can be used as an approxi-
mation of the posterior distributions of the parameters
of interest.

Summary statistics
We used eight different classes of summary statistics
for the ABC approach. All summary statistics were
computed individually for the two sub-populations,
except for Fsr, resulting in a total of 15 summary sta-
tistics. Many of the summary statistics were based on
‘haplotypes’ and the genetic data were assumed to be
phased. We define a haplotype locus by the chunk of
DNA that extends from the SNP position a along the
genome to the SNP position a + w (for a particular
window size w). A haplotype-allele is defined as the
combination of variants at all SNPs within the window
w for a particular chromosome (and for a particular
haplotype locus) [34]. The 8 different classes of sum-
mary statistics are:

(1) Haplotype heterozygosity (HHA) [34] of the entire
genome-region (the window extended over the entire
100 kb genome-region). The statistic was computed
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from the frequency 1oo/; of each haplotype-allele i in a
particular population,

HHA = ni 1 (1 — Zi 100h%)r

where 7 is the number of sampled chromosomes.

(2) Average heterozygosity of 10 kb-haplotype-win-
dows (HAW). For a window of size 10 kb, the haplotype
heterozygosity in a particular window j was computed as

2
Hj =1- Zi lohij’

where 10/;; is the frequency of the haplotype-allele i in
the 10 kb window j. The window moves one SNP at the
time, and the average haplotype heterozygosity of all
windows is

n i Hj

HAW = ,
n—18

where 7 is the number of sampled chromosomes, and
S is the number of SNPs.

(3) The average heterozygosity of all segregating sites
(HSS). The HSS statistic was computed from

) ”Zj(l - 1]2>

HSS
n—18

7

where f;; is the frequency of allele i for SNP j, u is the
number of sampled chromosomes, and S is the number
of SNPs.

(4) Linkage disequilibrium (LDR), measured as 7 [35].
For each pair of SNPs that were between 9 and 11 kb
apart, * was computed using

2 (xu —]'1}31)2
jijz2kika

where j; and j, denote the frequency of allele 1 and
allele 2 at SNP J and k; and k, denote the frequency of
allele 1 and allele 2 at SNP K, and x;; denotes the fre-
quency of the J,K; haplotype. The average r* is com-
puted across all pairs of SNPs (that are located between
9 kb and 11 kb from each other) to get LDR.

(5) The number of distinct haplotype-alleles (NOA)
per genome-region.

(6) The number of private haplotype-alleles in each
sub-population (NPA) per genome-region.

(7) Tajima’s D (TAD). Computed for all SNPs in each
genome-region following [36].

(8) Fsr (FST). Computed for all SNPs in each genome-
region using equation 5.3 in [37].

The summary statistics were computed for each of the
two populations, except for Fsr, and all summary
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statistics were averaged across the 10,000 genome
regions. We also tested to use the variances (across the
genome regions) instead of the means in the ABC pro-
cedure, see discussion.

Results

Comparison of population models

To generate simulated datasets that represent potentially
empirical datasets, we fixed a particular true value of
each parameter (Table 1) and simulated “observed” data-
sets from the particular model under consideration. We
used these “observed” datasets to evaluate how well the
ABC approach could recover the true parameter values.
By this setup, we could compare the true parameter
values to the inferred parameter values and evaluate the
performance of the ABC approach under different condi-
tions. The prior distributions of each parameter in the
ABC framework are given in Table 1. Note that we scaled
the values of T, m,, and m,; by 4N, where N, was set to
10,000. We start by investigating single “observed” data-
sets to mimic the conditions of empirical studies,
followed by investigating multiple “observed” datasets.
An outline of the various investigations is given in Addi-
tional file 1: Table S1.

For the simple isolation with migration model 1, the
parameter estimation turned out to be quite accurate.
Table 2 gives the means and the 95% credible intervals of
the posterior samples of T, m;, and m,;, and Figure 2
shows the prior and the estimated posterior distributions
for the same parameters. For the divergence time 7, the
mean of the posterior sample was 0.30% smaller than the
true value, and the 95% credible interval was narrow. For
the migration rate m1,;, the mean of the posterior sample
was 5.46% smaller compared to a true value of 1 (one)
and the 95% credible interval was [0.5033, 1.3935]. The
estimate of the migration rate m1;, turned out to be very
close to the true value of m1;, (only 0.99% greater than
the true value), but its 95% credible interval was about as
wide as for n1,;.

Table 1 True values and prior distributions of each
parameter of the 3 models

Model Parameter True Prior distribution
value (uniform)
T 0.1 (0, 0.5)
model mi 2 (0, 5)
1
mo 1 0, 5)
model Ny 2,000 (100, 10,000]
3
model A 5,000 [100, 10,000]
2
N, 100,000 [10,000, 200,000]
N> 150,000 [10,000, 200,000]
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Table 2 Summary of the posterior sample for each
parameter in model 1
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Table 3 Summary of the posterior sample for each
parameter in model 2

Parameter  True value Mean  Difference 95% interval Parameter True value Mean Difference 95% interval
T 0.1 0.1003 0.30% [0.0952, 0.1063] Ny 2,000 2,054 2.70% [1,907, 2,244]
m; 2 1.9803 0.99% [1.6516, 2.1560] Ny 5,000 4,883 2.34% [4,580, 5,141]

mo 1 0.9454 546% [0.5033, 1.3935] N, 100,000 119913 19.91% [82,623, 177,468]

The true value, the mean of the posterior sample, the difference of the N, 150,000 162,167 811% (135,291, 190,948]

estimated mean value and the true value, and the 95% credible interval of
the posterior sample are given for each parameter

For model 2, the means of the posterior samples of past
population sizes were slightly closer to the true values
than the means for the present population sizes, but the
95% credible intervals of Nll and Nz’ were much more nar-
row compared to 95% credible intervals of N; and N,
indicating that present population sizes are more difficult
to estimate. Table 3 shows the mean and the 95% credible
interval of the posterior samples of the past population
sizes (N; and N), and the present population sizes (N;
and N,). Figure 3 shows the prior and the estimated pos-
terior distributions for the same parameters.

Model 3 - a combination of model 1 and model 2 - is
more complex, but also more flexible than models 1
and 2. For model 3, we estimated seven parameters com-
pared to the three and the four parameters in models 1
and 2, respectively. A summary of the posterior samples
for the parameters in model 3 is given in Table 4 and the
estimated posterior distributions are shown in Figure 4.
For model 3, the divergence time and the two past popu-
lation sizes were estimated quite well; the mean values of
the posterior samples were close to true values and the
95% credible intervals were fairly narrow. The means of
the posterior samples of the two migration rates were
relatively far from the true values (17.27% and 16.44%)
and the 95% credible intervals were also wide (see Table
4). The two present population sizes were somewhat
poorly estimated (Table 4).

The true value, the mean of the posterior sample, the difference of the
estimated mean value and the true value, and the 95% credible interval of
the posterior sample are given for each parameter

We compared the three parameters in common
between model 1 and model 3, and the four parameters
in common between model 2 and model 3. Generally, the
estimation of each parameter was more accurate under
model 1 or model 2 compared to model 3; both the mean
values and the 95% credible intervals of the posterior
samples were more precise for model 1 and 2 compared
to model 3. Especially the 95% credible intervals esti-
mated in models 1 and 2 were much smaller compared
to the 95% credible intervals in model 3. These observa-
tions were not surprising and reflect the notion that the
more complex a model is, the less accurate will the para-
meter estimation be (given the same estimation condi-
tions). However, the means of the posterior samples of 7,
N, N, , were still quite close to the true values even for
the complex model 3, but the migration rates and present
population sizes were more difficult to estimate as illu-
strated by the wide credible intervals (Figure 4).

We generated 195 “observed” datasets for model 3
where the true past population size N;” ranged from 200
to 9,800, the true current population size N; ranged from
11,000 to 198,000, the true migration rate m,; ranged
from 0.1 to 4.9, and the true divergence time 7 ranged
from 0.01 to 0.49 (the other parameters were set to the
same values as above, see Table 4). These datasets were
generated to investigate to what extent the observations
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Table 4 Summary of the posterior sample for each
parameter in model 3

Parameter True value Mean Difference 95% interval
T 0.1 0.1000 0.00% [0.0654, 0.1449]
mis 2 2.3454 17.27% [0.4864, 4.6692]
mo; 1 0.8356 16.44% [0.0686, 3.1288]
Ny 2,000 1,987 0.65% [1,106, 3,178]
Ny 5,000 4,943 1.14% [3,838, 5,828]
N 100,000 131,615 31.62% [66,355, 192,624]
N> 150,000 160,328 6.89% [122,769, 194,806]

The true value, the mean of the posterior sample, the difference of the
estimated mean value and the true value, and the 95% credible interval of
the posterior sample are given for each parameter

from single “observed” datasets generalize to a wide
range of true values for various parameters and multiple
instances of estimating parameters using ABC. In most
of cases, the ABC with local linear regression adjustment
estimated all four parameters satisfactory (Figure 5),
including the difficult current population size and the
migration rate, albeit that the credible intervals were
large. For the past population size and the divergence
time, there were a few exceptional cases where the 95%
credible intervals extended over almost the entire range
of the prior (e.g. T = 0.26 and N;’ = 5,800). For these
cases, the set of summary statistics for accepted para-
meter-values included one or more extreme outlier,
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which in turn caused the local linear regression to pro-
duce a wide range of adjusted parameter-values since the
normal least-square estimation for the regression model
is non-robust to outliers [38].

We also investigated a range of tolerance levels to
determine its impact on the accuracy of the parameter
estimation. For each of the 49 “observed” datasets where
the true T ranged from 0.01 to 0.49, we varied the toler-
ance level from 0.2% to 10%. For each tolerance level, the
mean (across the 49 choices of the true value of T) differ-
ence between the true and the estimated T (mean of the
posterior sample) was computed (Figure 6). The differ-
ence between the true and the estimated T decreased as
the tolerance decreased (Pearson correlation: 0.61, p <
10’10). Furthermore, the width of the 95% credible region
also decreased with decreasing tolerance levels (Pearson
correlation: 0.82, p < 107** Figure 6). For comparison, if
the use a standard rejection algorithm instead of ABC
with local linear regression, the difference between the

true and the estimated T turned out to be very similar,
but the width of the 95% credible region was slightly
smaller when using local linear regression. Hence, as
long as the number of accepted replicate simulations was
reasonable - in this case a hundred or greater - the para-
meter estimation using ABC benefits from a low toler-
ance levels.

Both mutation rates and recombination rates can vary
across the genome, and in most practical ABC analyses
the empirical data will come from various genome
regions with potentially different underlying mutation
and recombination rates. In order to explore the effect of
using fixed mutation and recombination rates in the
ABC procedure, we simulated “observed” datasets where
the mutation rate or the recombination rate of each gen-
ome region was randomly drawn from a normal distribu-
tion [norm(#, 0.2) or norm(p, 1)]. The ABC procedure
uses fixed values for the mutation and the recombination
rates (0 = 5 and p = 40). In the case that the mutation
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Figure 6 Influence of the tolerance level. The mean (across 49 choices of 7) difference between the true and the estimated divergence time
T as a function of the tolerance level (blue stars for using regression and red stars for using rejection only). The mean (across 49 choices of T)
width of the 95% credible interval for the estimated T as a function of the tolerance level (blue filled circles for using regression and red filled
circles for using rejection only). For comparison, fitted lines are included for the results of ABC with local linear regression.
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rate or the recombination rate of the ABC was similar to
the mean of the distribution of the mutation rate or the
recombination rate, the ABC estimates were not affected
much (Table 5) compared to if the mutation and recom-
bination rates were fixed for the “observed” data (Table
4). However, if the simulations in the ABC procedure
used a mutation rate that was a third of the mean of the
“observed” data or three times larger than the mean of
the “observed” data, the ABC estimates were not very
accurate (Table 5). If the simulations in the ABC proce-
dure used a recombination rate that was half of the mean
of the “observed” data the ABC estimates were also inac-
curate, but if the ABC procedure used a recombination
rate that was twice as large as the mean of the “observed”
data, the ABC estimates were less affected and stayed
reasonably accurate (Table 5).

Choosing a poor prior
In order to evaluate how a poor choice of prior affects
the inference based on the ABC approach with local

linear regression adjustment, we set a number of true
values of the divergence time 7T outside the prior distri-
bution of (0, 0.5) for model 3. All other parameter set-
tings of the model and the priors were the same as in
Table 1. We repeated the ABC procedure to infer the
parameter T for this case where the prior distribution
does not cover the true parameter values. The posterior
sample was limited to the range of the prior distribution
and the mean of the posterior sample for each case hit
the upper bound of the prior distribution (Table 6). For
comparison, if the ABC procedure with local linear
regression was implemented without the transformation
step, the mean of the posterior samples extended out-
side the upper bound of the prior, and the 95% credible
interval extended well beyond the bounds on the prior
distribution (but note that such results violate Bayes’
theorem; Table 6). These observations were indications
that some model assumption was violated, such as
choosing a prior distribution that does not cover the
true parameter value. By changing the prior of 7 to (0.3,
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Table 5 The estimation of divergence time, migration rates, past population sizes and present population sizes in
model 3 when the mutation rate or the recombination rate varies across the genome regions

Parameter (true value)

Varying mutation rate (6 = 4N u)

Varying recombination rate (p = 4N.r)

El0] = 5/3 E[0] = 5 E[0] = 5% 3 Elp] = 40/2 Elp] = Elp] = 40 x 2

T(0.1) Mean 00700 0.1070 01168 00662 0.1154 0.1489

95% CI  [00252,01383]  [00656,0.1759]  [0.0726,0.1864]  [0.0274,0.1259]  [0.0626,0.1883]  [0.1018, 0.2054]
ma2 (2.0) Mean 31771 24135 49080 15306 2.5406 26228

95% CI  [04462, 485431  [04741,46774]  [45929,49939]  [00379,42540]  [05208, 46828]  [1.0433, 46559]
my: (1.0) Mean 0.7207 09144 00476 46749 09631 0.1092

95% CI  [00465, 34811]  [0.1033,30788]  [0.0000,02378]  [2.8810,49834]  [0.1032,3.1232]  [0.0190, 0.3659]
N, (2,000) Mean 1268 2,349 9014 1820 2474 4779

95% Cl [499, 2,460 [1195, 4227) 7,253, 9,884] 796, 3,402 1,186, 4,390] 2,738, 6,790]
N, (5,000) Mean 1777 4777 9,338 3,562 4838 4104

95% Cl [770, 3,361] 3,344, 6,235] 7,878, 9,971] 2,301, 4,836] 3,324, 6,276] 2,620, 5,496]
N, (100,000)  Mean 164,116 116,700 75,603 44,265 115,277 192,358

95% CI  [94,583,198448]  [47,239,191310]  [40493, 133925]  [13,558, 159,882]  [44,780, 191,187  [177,723, 199,615
N, (150,000)  Mean 183,527 154,968 24,650 45,778 151,010 196,899

95% CI  [14,273,199210]  [102,065 195442]  [12964, 75434]  [16968, 140,253  [98,170, 195246]  [190,142, 199,659

For each “observed” dataset, we randomly draw a mutation rate or a recombination rate for each genome region from a normal distribution with parameter (E
[6], 0.2) or (E[p], 1). The ABC procedure uses fixed values for the mutation and the recombination rates, # = 5 and p = 40. The means and 95% Cls are averaged
over 50 replicate “observed” datasets. Compare with Table 4 which shows the ABC estimates when the “observed” data are generated from a model with fixed

values for the mutation and the recombination rates

0.8) for the case of the true T' = 0.7, and repeating the
ABC analysis (10,000 replicate simulations), the mean of
the posterior sample (0.7274) was quite close to the true
value, and the 95% interval [0.6350, 0.7946] was fairly
narrow around the true value.

Comparison of summary statistics

We investigated the performance of each summary statis-
tic, and combinations of summary statistics, for estimat-
ing the divergence time 7. We investigated the complex
model 3 by simulating 49 “observed” datasets from a set
of known parameter values using the same approach as
described above. The ABC with the local linear regres-
sion adjustment was used to infer the population diver-
gence time 7. The mean difference between the true and

the estimated T, and the mean width of the 95% credibil-
ity interval of the posterior sample of T is shown in
Figure 7 and Additional file 1: Table S2 for each sum-
mary statistic, for pairs of summary statistics, and for the
combination of all summary statistics. We first noted
that an accurate mean of the posterior sample (small
deviation from the true parameter-value) also corre-
sponded to a narrow credible interval (Pearson correla-
tion: 0.95, p < 107'®). Moreover, pairs of summary
statistics generally improved the accuracy of the para-
meter estimation compared to single summary statistics;
the mean difference between true and estimated T was
greater than 0.070 for all single summary statistics (mean
difference across the 8 summary statistics equaled 0.110),
whereas the mean difference was less than 0.070 for 68%

Table 6 Estimation of divergence time T for model 3 in cases where the prior distribution does not encompass the

true parameter value

True T With transformation Without transformation Without regression

Mean 95% interval Mean 95% interval Mean 95% interval
0.60 04994 [0.4954, 0.5000] 0.6226 [0.0977, 1.1443] 0.4607 [0.3945, 04991]
0.65 0.5000 [0.5000, 0.5000] 0.5952 [0.5618, 0.6297] 04633 [0.4039, 0.4991]
0.70 0.5000 [0.5000, 0.5000] 0.7502 [0.5228, 0.9915] 0.4669 [0.4158, 0.4994]
0.75 0.5000 [0.5000, 0.5000] 0.5447 [0.4450, 0.6692] 04703 [0.4216, 0.4995]
0.80 0.5000 [0.5000, 0.5000] 1.2404 [0.4929, 1.8773] 04729 [04275, 0.4994]
0.85 0.5000 [0.5000, 0.5000] 0.7836 [0.5244, 0.9533] 04731 [04308, 0.4994]
0.90 0.5000 [0.5000, 0.5000] 0.6255 [0.5325, 0.7240] 04738 [04312, 0.4994]
0.95 0.5000 [0.5000, 0.5000] 06322 [0.4716, 0.7902] 04749 [0.4376, 0.4994]
1.00 0.5000 [0.5000, 0.5000] 0.6887 [0.5749, 0.8131] 04754 [0.4358, 0.4991]

The means and the 95% credible intervals of the posterior samples are given for the ABC estimate using regression and transformation, using regression but
without transformation, and without using regression (i.e., only using rejection). See text for a detailed explanation of the different versions of the ABC approach
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of the pairs of summary statistics (mean difference across
the 26 pairs of summary statistics equaled 0.055). How-
ever, there were pairs of summary statistics that per-
formed poorly - at the level of single summary statistics -
for example, pairs that include Fsz generally performed
poorly, as well as pairs that included similar types of
data, such as the number of distinct haplotype-alleles
(NOA) and the number of private haplotype-alleles
(NPA, Figure 7, Additional file 1: Table S2). The combi-
nation of all eight summary statistics estimated the diver-
gence time T accurately (the mean difference was 0.0203
and the mean width of the 95%-credible interval was
0.1669), but several pairs of summary statistics performed
at the same level. Although this comparison of summary
statistics was by no means exhaustive, we noted that 1)
combining summary statistics generally provided more
accurate inference, and ii) there was a large variation in
performance across pairs of summary statistics. These
two observations suggested that combining several sum-
mary statistics that capture different population-genetic
phenomena may be a powerful approach for making

accurate inferences at the same time as keeping the num-
ber of summary statistics low, both important features
for any ABC investigation [4].

Increasing the number of loci

We used a simulation approach to investigate the
impact of the number of loci on accuracy of the ABC
estimation, in particular the accuracy of the divergence
time estimate and the migration rate estimates. We
simulated 147 “observed” dataset from model 1 (each
true parameter was varied for 49 values, T = 0.01, 0.02,
vy 0.49; M35 = 0.1, 02, .., 4.9; and #1y; = 0.1, 0.2, ..., 4.9,
and the other true parameters were set as in Table 1)
for increasing numbers of loci (100; 500; 1,000; 2,000;
3,000; 4,000; 5,000; 6,000; 7,000; 8,000; 9,000 and 10,000
genome-regions) and used the ABC approach to infer
the divergence time T and migration rates. For increas-
ing numbers of loci, Figure 8 shows the mean difference
(across 49 choices of true parameter values for each
parameter) of the true value and the mean of the poster-
ior sample and the width of the 95% credible interval for
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the divergence time T and the migration rate m,; (the
results for m;, were very similar to m,;). The mean
values of the posterior samples rapidly approach the
true parameter value when the number of loci increases
from 100 to 1,000 and the width of the 95% credible
intervals rapidly decrease until about 2,000 loci, and
continue to decrease at a low rate for increasing num-
bers of loci.

Discussion

From the comparison of the three different models, it
was clear that the accuracy in the parameter estimates
was lower for the more complex model 3 with seven
unknown parameters compared to models 1 and 2,
which have three and four unknown parameters. This
observation was not surprising since the less complex
models were nested models within model 3. More gener-
ally, by increasing the number of simulated data sets in
the ABC procedure, the parameter estimation was
improved (especially the 95% credible interval). For
example, for model 3, five of the seven parameter esti-
mates were substantially improved if 50,000 replicates
were used instead of 10,000 replicates, and the remaining
two parameter estimates (the two current population
sizes) were very similar regardless of the number of repli-
cates. This result confirms that we can overcome some of
the difficulties in parameter estimation for complex mod-
els by increasing the number of simulation steps in the
ABC procedure, but it will mainly decrease the Monte
Carlo error and allow a reduction of the tolerance level.
However, the number of replicate simulations can be a
limiting factor for ABC analyses of large scale genome-
wide data because of computing time. In our case,
approximately 8-9 minutes of CPU time was needed to
generate one simulated dataset (10,000 genome regions

of size 100 kb) for model 3 using ms [31], which corre-
sponds to about 7,000 computer hours for 50,000 simu-
lated datasets.

Among the seven parameters in our models, the migra-
tion rates and present population sizes were the most dif-
ficult to estimate. A divergence model without migration
and an island migration model may result in quite similar
gene genealogies for sampled individuals and there will
be little information contained in most types of summary
statistics to distinguish the differences [13]. Moreover, in
a divergence model, the estimates of migration rates may
depend on the divergence time since a model with large
divergence time and large migration rates can generate
gene genealogies that are similar to the gene genealogies
of a model with short divergence time and small migra-
tion rates. However, under a scenario of divergence and
gene flow, the variation in genealogical histories for dif-
ferent parts of the genome could in principle be used to
separate migration rates and divergence times. To deter-
mine similarity between the “observed” data and the
simulated data, we used the means of the summary statis-
tics. Another option would be to use variance, quartiles
(e.g. [39]), or a combination of different summaries of the
distributions. We tested the performance of using the
variances (instead of the means) of the summary statistics
to infer the divergence time and the two migration rates
in model 1 (true T = 0.1, ;5 = 2.0, and m1,; = 1.0). How-
ever, the precision of the parameter estimates were
clearly more accurate based on means compared to using
variances (0.1003 vs. 0.1008 for 7, 1.9803 vs. 2.0915 for
Mo, and 0.9454 vs. 0.8234 for m,;). If we use both the
mean and the variance, the precision of the parameter
estimates were quite close to the result based only on
means, but with larger 95% credible intervals ([0.0952,
0.1063] vs. [0.0816 0.1218] for T, [1.6516, 2.1560] vs.
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[1.2458 3.0073] for m;,, [0.5033, 1.3935] vs. [0.1575
1.6617] for m,;). Note also that the number of summary
statistics for the combined case is twice the number of
summary statistics for the case based on means. The
lower quality of the estimates may be related to increas-
ing the dimensionality of the problem as the number of
summary statistics increases when considering both
means and variances [8].

In models 2 and 3, it is assumed that the population
sizes grow exponentially and the populations spend a
very short amount of time with a size close to the ‘pre-
sent population size’, hence the populations are far from
being at an equilibrium. The summary statistics that we
used capture events over a long period of time, and dur-
ing most of this time, the populations have much smal-
ler sizes compared to the present population sizes.
Therefore, little information about present population
sizes was contained in the summary statistics, which
could explain the difficulty in estimating present popula-
tion sizes compared to past population sizes.

We investigated cases where the true parameter value
was outside the range of the prior distribution (Table 6) in
order to determine its effect on the parameter estimation
and the potential warning signals to pay attention to. If we
use the ABC approach with local linear regression adjust-
ment including the transformation step, the posterior sam-
ple will be limited to the range of the prior distribution so
the ABC practitioner needs to be observant of posterior
distributions that are pushed close to the boundaries of
the prior. For comparison, the ABC approach with local
linear regression adjustment without a transformation step
produce mean values of the posterior samples that were
often fairly close to the true values despite that the range
of the prior distribution did not overlap with the true
value (but note that such results violate Bayes’ theorem,
see above). In many Bayesian analyses, when the prior dis-
tribution does not include the true value of the parameter
in its support, the posterior sample might be skewed
towards the true value indicating that something might be
wrong with the choice of prior distribution. The ABC
approach with local linear regression adjustment and
transformation seem to preserve this property, which is
reassuring. In practice, if the posterior distribution ends
up close to a bound on the prior, we should adjust the
range of prior distribution, so that the posterior is well
within the prior distribution.

Huang et al. 2011 [28] demonstrated increasing power
for inferring divergence times with increasing numbers
of loci, but limited their investigation to relatively small
numbers of loci (< 100). We investigated much larger
numbers of loci and found that the mean values of the
posterior sample approach the true values when approx.
1,000 loci (or more) were used (Figure 8). The width of
the 95% credible interval decreases rapidly as the
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number of loci increase from 100 to some 2,000, after
which the decrease rate of the 95% width was lower.
The same trends were observed for both the divergence
time and migration rates (Figure 8). These results sug-
gest that increasing the number of loci from around a
hundred to several thousand improves the accuracy of
parameters estimation using ABC. Although the greatest
improvement appears for less than 2,000 loci, we note
that model 1 is a relatively simple model, and for more
complex models, the accuracy of the parameter estima-
tion may continue to improve beyond 2,000 loci.

Both the mutation and the recombination rates are
likely to vary across the genome. However, we assumed
that the mutation and recombination rates did not vary
along the genome, and they were fixed to a known
value for the simulations used in the ABC. We further
demonstrate that this assumption works well even if the
mutation and the recombination rates vary around some
mean values as long as these mean values are similar to
the fixed values used in the ABC. To make the simula-
tions in the ABC approach even more realistic, we could
draw mutation and recombination rates for each gen-
ome-region from some distribution and potentially esti-
mate the empirical mutation and recombination rates.
Alternatively, the mutation and recombination rates
could be treated as nuisance parameters that are only
included to make the simulated data better resemble the
empirical data.

Conclusions

To conclude, we find that increasing the amount of data
from a few loci, or a few hundred loci, to thousands of
loci can substantially improve the accuracy of parameter
estimation using ABC. In contrast to many full-likeli-
hood inference approaches, the ABC approach is well
suited for analyzing large amounts of population geno-
mic data, using for example haplotype-based summary
statistics.

Additional material

Additional file 1: Table S1. Outline of the investigations of the
performance of ABC using simulated datasets (called “observed” data) to
mimic empirically observed data. Table S2. The mean difference
between the true and estimated divergence time T (across 49 choices of
true T) and the mean width of the 95% credible interval of the posterior
sample given by single summary statistics, pairs of summary statistics,
and the combination of all eight summary statistics. The results are
based on model 3. See also Figure 7 in main text.
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