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Abstract

Background: Contemporary dairy breeding goals have broadened to include, along with milk production traits, a
number of non-production-related traits in an effort to improve the overall functionality of the dairy cow. Increased
indirect selection for resistance to mastitis, one of the most important production-related diseases in the dairy
sector, via selection for reduced somatic cell count has been part of these broadened goals. A number of genome-
wide association studies have identified genetic variants associated with milk production traits and mastitis
resistance, however the majority of these studies have been based on animals which were predominantly kept in
confinement and fed a concentrate-based diet (i.e. high-input production systems). This genome-wide association
study aims to detect associations using genotypic and phenotypic data from Irish Holstein-Friesian cattle fed
predominantly grazed grass in a pasture-based production system (low-input).

Results: Significant associations were detected for milk yield, fat yield, protein yield, fat percentage, protein
percentage and somatic cell score using separate single-locus, frequentist and multi-locus, Bayesian approaches.
These associations were detected using two separate populations of Holstein-Friesian sires and cows. In total, 1,529
and 37 associations were detected in the sires using a single SNP regression and a Bayesian method, respectively.
There were 103 associations in common between the sires and cows across all the traits. As well as detecting
associations within known QTL regions, a number of novel associations were detected; the most notable of these
was a region of chromosome 13 associated with milk yield in the population of Holstein-Friesian sires.

Conclusions: A total of 276 of novel SNPs were detected in the sires using a single SNP regression approach.
Although obvious candidate genes may not be initially forthcoming, this study provides a preliminary framework
upon which to identify the causal mechanisms underlying the various milk production traits and somatic cell score.
Consequently this will deepen our understanding of how these traits are expressed.

Background
Dairy production is an economically important sector of
global agriculture with the top 10 leading dairy companies
turning over in excess of $114 billion in 2009 [1]. Dairy
cows account for 84% of global dairy output [1] so conse-
quently there is great interest placed upon the production
potential and health of these animals. Until recently, the
majority of international dairy breeding programmes
selected solely for increased milk production, however,

breeding goals have diversified to include health and func-
tional traits in an effort to minimise and reverse the
decline in these traits [2]. Prominent among these health-
related traits is mastitis (commonly measured using
somatic cell score (SCS) as an indicator trait), which is one
of the most important and costly production diseases in
the dairy industry. Selection for improved milk production
traits and reduced SCS (indicating increased mastitis resis-
tance) can potentially be improved through the identifica-
tion of quantitative trait loci (QTL) associated with these
traits of interest by allowing geneticists to infer and com-
prehend the genetic and molecular mechanisms underly-
ing the traits.
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QTL associated with milk production and SCS have
been extensively reviewed by, amongst others, Khatkar
et al. [3] and Smaragdov et al. [4]. Milk production QTL
have been reported most often on chromosomes 1, 3, 6,
10, 14 and 20 while SCS QTL were most frequently
observed on chromosomes 5, 8, 11, 18 and 23. Many of
the reviewed studies utilised family-based studies and
microsatellite markers to identify areas of the genome
associated with a particular trait, however, these studies
were often limited by the relatively low number of
genetic markers sparsely distributed across the genome.
The sequencing of the bovine genome and the subse-

quent HapMap project made large amounts of genetic
markers available in the form of single nucleotide poly-
morphisms (SNPs). This massive increase in marker num-
bers allied with the emergence of high-throughout
genotyping technologies allowed routine genome-wide
association studies (GWAS) to be performed in cattle
populations. GWAS allow screening of the genome utilis-
ing a large number of genetic markers spread across the
entire genome to detect genetic variants associated with a
particular disease or trait. The majority of recent GWAS
employ SNPs as genetic markers. SNPs may not them-
selves be responsible for the variation observed in a trait,
however, due to their close proximity to un-genotyped
causal variants they have been co-inherited and so can act
as proxies for the unknown causal variants [5]. In this way,
SNPs significantly associated with a disease or trait may
indicate a region of the genome which harbours genetic
variants influencing the expression of that disease or trait.
In general, GWAS studies act as an initial screening tool,
from which significantly associated regions can be further
refined using a higher marker density (potentially by
re-sequencing), with the ultimate goal of identifying candi-
date genes believed to underlie the trait(s) of interest.
Candidate genes can then be characterised further in an
attempt to identify the functional mechanisms underlying
a trait. This will lead to a greater understanding of mole-
cular basis and regulation of the trait in question. A num-
ber of recent studies in dairy cattle have detected
associations with production and functional traits using a
GWAS approach [6-8].
In general, GWAS studies to date have identified

important genomic regions using single locus association
methods whereby each individual SNP is tested for asso-
ciation with the trait of interest. This method has proved
useful in its straight-forward implementation and inter-
pretation, however, it has been hampered by the large
number of false positive results produced due to the
large number of markers and hence individual statistical
tests. This problem has been somewhat addressed
through multiple correction techniques such as the false
discovery rate (FDR) [9], yet markers with small effects
are liable to be lost in this manner. Multi-locus and

validation-based approaches stand as possible alternatives
to tackle the amount of false positives produced from a
GWAS. An example of a validation-based approach is a
two-stage GWAS where an initial genome-wide scan is
performed in a large group of animals to identify a subset
of significant SNP. This is then replicated in an indepen-
dent population of animals to validate the significant
associations. Such an approach has been used in a
GWAS investigating bull fertility [10].
Irrespective of the statistical approach or study design

used, most QTL studies to-date in cattle have largely
been undertaken using phenotypic data originating from
high-input, concentrate-based dairy production systems.
Genotype by environment (GxE) interactions have, how-
ever, been reported between high- (i.e. animals predomi-
nantly kept in confinement and fed a concentrate-based
diet) and low-input production (i.e. animals fed a predo-
minantly forage-based diet in a pasture-based production
system) systems [11-14]. In general, interaction effects
tend to be scaling effects where animals retain the same
ranking across different environments, however, re-rank-
ing of bulls between pasture and total mixed ration feed-
ing systems has been reported [15]. Indeed, Interbull [16]
issues separate sets of results of it’s Multiple Across
Country Evaluation to each participating country due to
potential re-ranking of sires via GxE interactions. Conse-
quently, we hypothesised that some QTL for milk pro-
duction traits and/or SCS may vary across may vary
across different production systems.
The objective of this study was to identify regions of the

genome associated with milk production traits and SCS in
cattle fed a basal diet of grazed grass (low-input system)
using single SNP regression in a dataset of 914 Holstein-
Friesian sires. A multi-locus, Bayesian approach in the
same population and a single SNP regression analysis in a
separate population of Holstein-Friesian cows were con-
ducted to provide further support to the associations.

Results
Significant associations
Two populations of 914 Holstein-Friesian AI sires and
493 Holstein-Friesian cows were used to quantify associa-
tions between genotypic and phenotypic data. A sum-
mary of the various phenotypes and the correlations
between them in the sire dataset are detailed in Table 1
and Table 2 respectively. The corresponding information
for the cows is detailed in Additional file 1 and Addi-
tional file 2 respectively. A set of haplotype blocks was
defined using the 40,668 SNPs from the sires. Using
these SNPs, 10,958 haplotype blocks were defined which
accounted for ~1 Gb of the genome. On average, the
blocks were 97,006 Kb in length and contained 2.84
SNPs; the majority of SNPs (n = 31,157 SNPs) were
located within haplotype blocks. The remaining 9,511
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SNPs were not located within any haplotype block. Two
statistical approaches, a frequentist single SNP regression
approach and a multi-locus Bayesian method, were used
to detect significant associations with milk, fat and pro-
tein yield, milk fat and protein percentage and somatic
cell score (SCS). In total, 1,529 and 37 associations were
detected in the sires using a single SNP regression and a
Bayesian method respectively. Of these, 276 associations
were found to be novel (i.e. had a q-value ≤ 0.05 and
were located outside any known QTL regions for the par-
ticular trait) in the sires using the single SNP regression
approach. There were 103 associations in common
between the sires and cows across all the traits. The results
of the Bayesian analysis were tested for robustness to the
prior probability of a SNP being associated with the phe-
notype. Only SNPs with a posterior probability of associa-
tion ≥ 0.8 for two out of the three priors were considered
significant. The results using different priors were gener-
ally consistent within a trait with the same SNP or a SNP
in the same region of the genome indicated as significant
across all priors. This Bayesian approach allowed a multi-
locus statistical approach while also providing the oppor-
tunity to validate any significant associations found using
the single SNP regression approach in the same popula-
tion of sires (figure 1). Indeed numerous SNPs were
detected as significant using the Bayesian approach which
were also significant using the single SNP regression.
The use of a single SNP regression approach in a

population of 493 Holstein-Friesian cows endeavoured

to replicate any previous associations in a semi-indepen-
dent population. The average additive relationship
among the sires was 0.046, was 0.040 among the cows,
and was 0.038 between the sires and cows. Significant
associations detected for the two statistical approaches
in the sires and the single SNP regression in the cows
are detailed for each trait in Additional file 3.
A number of SNPs were significantly associated with

more than one trait. We combined all significant asso-
ciations (i.e. from both sire statistical models and the
cow validation dataset) detected for a trait and identified
232, 83, 52 and 3 SNPs which were significantly asso-
ciated with 2, 3, 4 and 5 traits, respectively (Additional
file 3).

Milk yield
Using the single SNP regression approach, 370 SNPs
were identified as being significantly associated (q ≤ 0.05)
with milk yield at the 5% FDR in the sire population. The
majority of these SNPs (311/370) were located in known
QTL regions for milk yield [17-20]. Several genomic
regions contain clusters of SNPs associated with the trait,
including several on chromosome 14 in close proximity
to the DGAT1 gene, which is known to affect milk yield
[21-23]. Indeed, the top-ranked SNP for milk yield (q =
8.33 × 10-12) was located 146 base pairs from the
DGAT1. A cluster of SNPs on chromosome 20, in a
region also known to be associated with milk yield
[18,19,24], was also identified. Notably, 59 SNPs, which
do not appear to be located within known QTL regions
for milk yield, were detected on nine different chromo-
somes (Additional file 3). However, none of these novel
SNPs were significant using the Bayesian model or in the
cows. Of potential interest was a cluster of significant
SNPs on chromosome 13 from ~45-49 Mb which con-
tained numerous SNPs of moderate association (lowest
q-value = 5.14 × 10-6). The genes in this region are listed
in Additional file 3.
There were two SNPs significantly associated with milk

yield using the Bayesian approach in the sires (Additional
file 3). These two SNPs, rs42211964 located ~27 Mb on
chromosome 8 and rs109421300 located ~0.4 Mb on

Table 1 Summary statistics for the phenotypic data in
the sires

Trait N Mean s

Milk Yield (kg) 914 158.3 231.2

Fat Yield (kg) 914 6.1 7.6

Sires Protein Yield (kg) 914 5.8 6.6

Fat Percentage (kg) (× 1000) 914 4.9 142.3

Protein Percentage (kg) (× 1000) 914 -0.96 82.7

Somatic Cell Score (loge SCC) (× 1000) 773 34.2 104.9

Summary statistics include the total number of phenotypic records (N), mean
and standard deviation (s) for each trait in the sires. Phenotypes in the sires
are expressed as daughter yield deviations on a PTA scale

Table 2 Pearson correlations between phenotypes for the sires

Trait Milk Yield Fat Yield Protein Yield Fat % Protein % SCS

Milk Yield 0.57 0.87 -0.60 -0.70 0.12

Fat Yield 0.57 0.75 0.34 -0.02 0.16

Protein Yield 0.87 0.75 -0.25 -0.23 0.17

Fat % -0.60 0.34 -0.25 0.76 0.01

Protein % -0.70 -0.02 -0.23 0.76 0.01

SCS 0.12 0.16 0.17 0.01 0.01

Fat % = fat percentage; Protein % = protein percentage; SCS = somatic cell score

Correlations between phenotypes in the sires expressed as daughter yield deviations on a PTA scale
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chromosome 14 were also significantly associated with
milk yield using the single SNP regression in the sires.
Both of these occurred in known QTL regions [17,19]
with the latter in close proximity to the DGAT1 gene
known to affect milk yield in dairy cattle [21].

Fat yield
A total of 370 SNPs were significantly associated (q ≤ 0.05)
with fat yield using the single SNP regression in the sires

(Additional file 3). As with milk yield, the majority (281/
370) of these were located in known QTL regions for fat
yield [22,25-27]. Additionally, the most significantly asso-
ciated SNPs were also located close to the DGAT1 gene
[21] with one SNP in this region, rs109421300 (q = 5.15 ×
10-39), being the most significant association for fat yield.
However, 89 significant SNPs were detected outside
known QTL regions from Cattle QTLdb [28] and were
considered novel (i.e. a q-value ≤ 0.05 and located outside

Figure 1 Location of significant SNPs from the single SNP regression in the sires for all traits. Associations (-log Q-value) of all SNPs using
the single SNP regression model in the sires for each trait across all 29 autosomes. The minus log of the q-value (y-axis) is plotted for each
chromosome (Chr) (x-axis). The 5% significance threshold is indicated with a red line.

Meredith et al. BMC Genetics 2012, 13:21
http://www.biomedcentral.com/1471-2156/13/21

Page 4 of 11



any known QTL regions for fat yield). The most interest-
ing and strongly-associated of these novel SNPs were two
clusters of SNPs at 34 Mb and 39 Mb which are in close
proximity to the GHR and PRLR genes, respectively. Of
the 89 novel SNPs, one SNP in a similar region of chro-
mosome 20 was also significant in the Bayesian method.
We were unable to replicate these associations in the cow
dataset, possibly due to the reduced power in that data
(see discussion).
Using the Bayesian approach, 12 SNPs across eight chro-

mosomes were significantly associated with fat yield in the
population of 914 sires. Several of these SNPs (4/12),
located on chromosomes 5, 7, and 14, were assigned pos-
terior probabilities of association ≥ 0.8 using all three
Bayesian priors and were located within known QTL
regions [22,29,30]. One of the eight SNPs located in
known QTL regions, rs29016908 on chromosome 5, was
positioned 28 kb from the EPS8 gene which binds with
the EGFR gene to alter responsiveness to EGF [31]. EGF is
believed to affect various milk production traits [32]. An
additional four significant SNPs, located on chromosomes
11, 20 and 25, did not overlap with known QTL regions
and appear to be novel. Over half (7/12) of the SNPs sig-
nificantly associated with fat yield in the Bayesian
approach were also significant in the single SNP regression
in the sires, providing further evidence of their association.

Protein yield
Using the single SNP regression model, 385 SNPs were
significantly associated (q ≤ 0.05) with protein yield in
the sires. Most of these SNPs (305/385) were found to lie
within known QTL regions for protein yield [26,33,34].
Unlike milk and fat yield, the largest associations were
not focused on chromosomes 14 and 20 but were instead
distributed across numerous other chromosomes. The
most significantly associated SNP across all chromo-
somes was rs42327956 (q = 3.86 × 10-4) located at ~50,6
Mb on chromosome 1. Several significantly associated
SNPs were clustered on chromosome 1 in a region which
overlaps with known QTL regions for protein yield
[33-35]. The genes in this region are supplied in Addi-
tional file 3. There were 80 significant SNPs located out-
side known QTL regions with a cluster of SNPs located
on chromosome 8. However none of these 80 novel SNPs
were significant in the Bayesian approach or in the cows.
There were two SNPs significantly associated with

protein yield in the sire population using the Bayesian
approach. These SNPS, located on chromosomes 11 and
27 were both located in known QTL regions for protein
yield [34,36]. One SNP, rs41257411 located on chromo-
some 27, was also significantly associated with protein
percentage using the single SNP regression in the popu-
lation of 914 sires.

Fat percentage
Using the single SNP regression approach in the sires, a
total of 216 SNPs were significantly associated (q ≤ 0.05)
with fat percentage with 199 of these located within
known QTL regions for fat percentage [22,24,35,37,38].
The location of significant associations was similar to that
of fat yield with strongest associations harboured in a
region encompassing the first 6 Mb of chromosome 14.
Similar to milk yield, the strongest association (q = 3.91 ×
10-92) was detected for a SNP close to the DGAT1 gene, a
gene known to heavily affect milk fat percentage [21,23].
Several significantly associated SNPs were also detected in
a segment of chromosome 20 from ~34-37 Mb which are
located close to the GHR gene, which is also known to
affect milk production traits [38]. There were 17 poten-
tially novel significant SNPs (q ≤ 0.05) detected outside
known QTL regions for fat percentage. Of particular inter-
est was a number of novel SNPs on chromosome 13
located at 46 Mb. A potentially novel association for milk
yield was also detected in this region. However, none of
these novel SNPs were detected as significant using the
Bayesian approach or in the cows.
A total of 12 SNPs were significantly associated with fat

percentage using the Bayesian approach in the sire popula-
tion. Nine of these SNPs were located in known QTL
regions [24,35,39]. Two SNPs, rs109421300 on chromo-
some 14 and rs110482506 on chromosome 20 located in
close proximity to the DGAT1 and GHR genes, respec-
tively. Surprisingly, only two SNPs significantly associated
with fat percentage were also significantly associated with
fat yield using the Bayesian approach, however, several sig-
nificant SNPs were located in similar genomic regions to
those associated with fat yield. Furthermore, three SNPs
located on chromosomes 9, 21 and 27 did not occur in
any known QTL regions for fat percentage. Of the 12 sig-
nificant SNPs detected in the Bayesian approach, four of
these were also significant for fat percentage in the sires
using the single SNP regression approach.

Protein percentage
Using the single SNP regression in the sires, there were
229 SNPs significantly associated (q ≤ 0.05) with protein
percentage of which 204 SNPs were within known QTL
regions for protein percentage [19,24,26,30]. Like the
majority of the milk production traits, clusters of associa-
tions were located on chromosomes 14 and 20. A cluster
of significant SNPs in a region 0-6 Mb on chromosome 14
contained the strongest association (q = 7.44 × 10-16) for a
SNP close to the DGAT1 gene which has been shown to
affect protein percentage [22,23]. In addition, a segment of
chromosome 20 from 29 to 40 Mb, which contains the
GHR gene, harboured a large number of significantly asso-
ciated SNPs. Several strong associations were also detected
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on chromosome 6 between 80 and 90 Mb, a region that
contains the Casein gene cluster which has been asso-
ciated with changes in the protein composition of bovine
milk [40]. However, all the aforementioned associations
were located within known QTL regions for protein per-
centage [19,24,26,41,42]. An additional 25 significant SNPs
were found outside known QTL regions and these
occurred across 10 different chromosomes. Of these
rs41573791 (q = 9.94 × 10-4) on chromosome 8 was the
most strongly associated with protein percentage. In addi-
tion a number of novel SNPs located at 50 Mb on chro-
mosome 15 were also moderately (q-value = 0.002)
associated. One of these 25 novel SNPs, located on chro-
mosome 5, was also detected as significant when using the
Bayesian approach, however, none were significant in the
cows.
There were eight SNPs significantly associated with pro-

tein percentage using the Bayesian approach in the sires
with five of these SNPs overlapping known QTL regions
[19,26,43]. The remaining three SNPs, located outside
known QTL regions for protein percentage, were located
on chromosomes 5, 12 and 18. Furthermore, five out of
the eight significantly associated SNPs were also signifi-
cantly associated with protein percentage using the single
SNP regression in the sire population.

Somatic cell score
Only nine SNPs were significantly associated (q ≤ 0.05)
with SCS using the single SNP regression in the sires,
three of these were located within known QTL regions
for SCS. These three SNPs were located on chromosomes
6 and 10 [34,44,45]. The remaining six SNPs, located out-
side known QTL regions for SCS, were spread across
chromosomes 6, 15 and 20 with the most significant (q =
0.014) of these located on chromosome 20. None of
these six novel SNPs were significant in the Bayesian
approach or in the cows. All SNPs significantly associated
with SCS are listed in Additional file 3 along with genes
close to or overlapping them.
Only a single SNP, rs41590209 located at ~97 Mb on

chromosome 4, was significantly associated with SCS
using the Bayesian approach and this fell into a known
QTL region for SCS [46]. However, neither this SNP nor
any SNP on chromosome 4 was significantly associated
with SCS using the single SNP regression in the popula-
tion of 773 sires.

Discussion
The objective of this study was to identify QTL asso-
ciated with milk production traits and SCS in Holstein-
Friesian cattle from a low-input production system. Both
a frequentist and a Bayesian statistical approach were
employed to test for association between genotypes and
phenotypes. The QTL identified using both the sire and

cow populations were spread across all 29 autosomes; the
location and frequency of these QTL were in general
agreement with those previously reported [3,4].
A large number (1,529) of significant associations were

detected across all traits. The majority of these significant
associations were located within known QTL for the trait
of interest. This shows that our methodology is effective
in detecting associated regions of the genome. Also, our
findings will help to further refine QTL regions pre-
viously detected with microsatellites [47]. The detection
of a large number of known QTL regions in our study
would suggest that a large number of QTL that are
important in high-input, confinement, concentrate-based
systems are also important in low-input, pasture-based
systems such as ours. In spite of this, 276 novel SNPs
were detected in the sires using the single SNP regression
approach. Of these novel SNPs, a number of promising
clusters of SNPs were identified for each trait which may
indicate potential new QTL regions. These regions
include an area of chromosome 13 significantly asso-
ciated with milk yield and fat percentage. Also, significant
novel associations were detected on chromosome 20 for
fat yield and somatic cell score close to the GHR and
PRLR genes reported to be associated with milk produc-
tion traits and SCS [38,48]. In addition, particular areas
of interest were separately detected for protein yield and
percentage on chromosomes 8 and 15, respectively.
These genomic regions may consist of QTLs that are
unique to or advantageous in a low-input system such as
ours.
Several significant associations, both within and outside

known QTL regions, were detected for SCS. However,
associations were considerably less numerous and weaker
compared with those for the milk production traits. This
may have been due to several inherent problems with the
SCS phenotype resulting in reduced power to detect
associations. Firstly, the reliability of the SCS proofs,
which is an indicator of the amount of information avail-
able for an animal, was lower than that of the milk pro-
duction traits in both the sires and cows. Decreased
reliability of SCS means greater uncertainty as to the true
breeding value of the animal for that trait. Furthermore,
in the sire population, there were 138 fewer animals used
to test for associations with SCS which would also
decrease the power to detect significant associations. In
addition, the lower heritability of SCS when compared to
that of the milk production traits may also contribute to
the weaker associations identified for SCS (i.e. a greater
number of animals may be required for SCS
The Bayesian analysis used provided a number of advan-

tages/alternatives to the standard single SNP regression
approach. This Bayesian approach fits all markers in the
analysis simultaneously and it was noticeable that this
approach detected only 1-2 significantly-associated SNPs
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where the single SNP regression detected a cluster of
numerous significantly-associated SNPs (i.e. on chromo-
some 14 for fat percentage). Additionally, the ability to
allow a priori information to be factored into the statistical
model appears to have merit where different traits mat be
controlled by varying numbers of genetic variants [49].
The prior appears to be robust, with similar genomic
regions detected as significant even when using different
priors.
Genome-wide association studies are susceptible to

detection of false positives due to the large number of
statistical approaches being performed. One method to
confirm or validate a SNP association/QTL is via replica-
tion of the association in a separate population as the
probability of detecting the same associated variant in
two separate populations is small [50]. Our use of a sepa-
rate population of Holstein-Friesian cows allowed valida-
tion of a number of associations from the sires, however,
the size of this population was probably insufficient to
validate SNPs of smaller effect (i.e. power was lower).
Also the reliabilities of all traits in the cows were much
lower than those of the sires resulting in potentially less
accurate phenotypes to quantify the associations.
A number of SNPs in this analysis were significantly

associated with more than one trait suggesting that genes
with pleiotropic action may have been detected. Typi-
cally, in this study, a SNP affected multiple production
traits with no association with SCS. Examples of this are
three SNPs which were significantly associated with all
five production traits (Additional file 3). This indicates
that certain regions of the genome may affect various dif-
ferent production-related traits and this should be taken
into consideration when selecting animals for a particular
breeding goal. In addition, four SNPs were significantly
associated with a production trait and SCS, in particular
three SNPs on chromosome 20 were associated with a
concurrent decrease in milk yield and SCS. This observa-
tion agrees with the well-known positive correlation that
exists between milk yield and SCS [51]. Of these three
SNPs, two lie in close proximity to the PRLR gene which
has been reported to be associated with milk production
[48] and changes in SCC [52]. QTL regions such as this
may help elucidate how to select for increased milk yield
without the associated detrimental effect on resistance to
mastitis.

Conclusion
A large number of significant associations were detected
in this analysis which either overlapped known QTL
regions or were novel associations found outside these
QTL regions. Those associations found within known
QTL regions can help to further refine large QTL regions
potentially leading to the discovery of the underlying cau-
sal mechanisms. A number of strongly-associated regions

were detected among the 276 novel SNPs found outside
known QTL regions. These genomic regions may indeed
be unique to a low-input, pasture-based system. These
QTL regions can form the basis towards identifying
potential candidate genes and genetic variants underlying
the traits of interest.

Methods
Sire DNA extraction
Thawed frozen semen was washed twice in phosphate-
buffered saline (pH 7.4), and cell pellets were harvested via
centrifugation and re-suspended in 450 μL of pre-warmed
extraction buffer (10 mM Tris, pH 8.0; 10 mM EDTA, pH
8.0; 1% SDS; 100 mM NaCl); 15 μL of 2-mercaptoethanol
was added. Samples were incubated at 55°C for 15 minutes
followed by the addition of 10 μL of proteinase K (20 mg/
mL). Lysis occurred following overnight incubation at
60°C. DNA was then extracted using the Maxwell instru-
ment (Promega Corp., Madison, WI) according to the
manufacturer’s instructions. Details of the DNA extraction
method used in the cow dataset are available in Additional
file 4.

Sire genotypic and phenotypic data
In total 54,001 biallelic SNPs for 1,957 Holstein-Friesian
AI sires with progeny in Ireland were genotyped in this
study; the sires were representative of the germplasm used
in Irish dairy herds in past years. All animal procedures
were carried out according to the provisions of the Irish
Cruelty to Animals Act (licenses issued by the Department
of Health and Children). Sires were genotyped using the
Illumina BovineSNP50 Genotyping Beadchip (Illumina
Inc., San Diego, CA). SNP positions were based on BTAU
4.0. The 2,419 SNPs that were on the X chromosome or
whose positions on the genome were unknown were
eliminated from the dataset. SNPs on the X chromosome
were removed due to large-scale discordance between
SNP genotypes and animal sex (i.e. numerous SNP on the
X chromosome, outside the pseudoautosomal regions,
were called as heterozygous in male animals) indicating
poor SNP calling. A further 230 SNPs were discarded that
did not conform to Mendelian inheritance patterns
between sire and son based on analysis of a larger dataset
of animals [53]. The remaining 51,352 SNPs were sub-
jected to additional SNP editing in the following order;
SNPs were removed if they were monomorphic (n =
4,772), had a minor allele frequency ≤ 5% (n = 5,087), if
greater than 5% of SNP calls were missing (n = 770), if
there was poor SNP clustering (n = 14) or the proportion
of heterozygotes for a SNP was > 90% (n = 41). Following
all edits 40,668 SNPs remained.
Daughter yield deviations (DYD) for milk yield, fat

yield, protein yield, fat percentage, protein percentage
and SCS along with their respective reliabilities were
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available from national genetic evaluations undertaken
in January 2010 by the Irish Cattle Breeding Federation
(ICBF). Summary statistics for the phenotypic data is
presented in Table 1. DYD for the aforementioned milk
production traits and average SCS (i.e., loge SCC) are
estimated in Ireland using a repeatability animal model
across the first five lactations [54]. The parental contri-
bution to the reliability of each trait was removed using
the method described by Harris and Johnson [55]. Only
sires with an adjusted reliability of ≥ 80% for milk pro-
duction or ≥ 70% for SCS were retained. In total 914
sires met these criteria for inclusion in the analysis of
milk production and 773 sires were included for SCS.
Details regarding the genotypic and phenotypic data in
the cows can be seen in Additional file 4.

Statistical analyses
A single SNP regression model and a Bayesian method
were both used to detect regions of the genome associated
with milk production traits and SCS. In both approaches
the dependent variable was either the DYD (sires) or YD
(cows). SNPs were included in all models as continuous
variables. A pedigree file, containing at least the previous
four generations of the genotyped animals ancestors, was
generated for each of the sire and cow datasets, respec-
tively. The pedigree consisted of 5,479 animals for the
sires and 4,476 individuals in the cows. The relatedness
within and between the sires and cows was determined by
calculating the average additive relationship between ani-
mals using the available pedigree information.

Single SNP regression model
The dependent variable (i.e. the respective trait (daughter)
yield deviation) was regressed on each SNP individually in
a mixed animal model accounting for relationships among
animals using the additive genetic relationship matrix in
ASReml [56]. The individual animal was included as a ran-
dom effect. Estimates of SNP effect and the associated
standard error were recorded for each SNP. A false discov-
ery rate (FDR) approach as described by Storey and Tib-
shirani [9], was used to correct for multiple testing. This
was done in R version 2.12.0 [57] using the q-value pack-
age [58] to calculate q values (q). Q-values ≤ 0.05 were
defined as significant.

Bayesian model
The Bayesian method used was BayesB as described by
Meuwissen et al. [59] modified to allow weightings based
on the reliability of the dependent variable. An inverse
chi-square distribution (v = 4.234 S = 0.0429) was used as
a prior to reflect the assumption that, within a given popu-
lation, only a subset of all loci truly affect the phenotype
while the remainder have no effect at all on the phenotype.
A prior value was assigned to π which quantifies the

probability a SNP is associated with a phenotype. In this
case the same value of π was used for all SNPs within a
trait and thus π reflects the overall proportion of SNPs
assumed to be associated with a particular phenotype.
Here, π was calculated for each trait separately by dividing
the total number of significant SNPs from the single SNP
regression model for that trait in the sires by the total
number of SNPs in the analysis (i.e. 40,668 SNPs). Addi-
tional BayesB analyses were run with different values for π
to test the sensitivity of the associations to this prior; these
priors included twice or half the original prior and are pro-
vided in Table 3. Further values of π (e.g. π = 0.0001,
0.00001) were tested in the Bayesian approach to gauge
the influence of prior values on the Bayesian approach.
The Markov Chain Monte Carlo chains were used to sam-
ple from the posterior distribution and these were run for
300,000 cycles with the first 150,000 cycles discarded as
burn-in. Convergence was determined visually by plotting
the model log-likelihood for all iterations. The number of
times a SNP had a non-zero effect after the burn-in was
recorded for each SNP; this number was then divided by
the total number of iterations after burn-in to give the
posterior probability of association (PPA). The PPA, ran-
ging from zero (no association) to one (highly associated),
indicated the strength of evidence from the posterior dis-
tribution that the particular SNP was associated with the
phenotype in a manner roughly equivalent to a frequentist
p-value.

Assignment of SNP to genes
Genotypic data from the sires consisting of 40,668 SNPs
typed across 914 individuals were used to estimate hap-
lotype blocks. The ‘Solid Spine of LD’ method (based on

Table 3 Values of π (prior) used in the Bayesian analysis
in the sires

S.S. in Sires Total SSR SSR/2 SSRx2

Milk Yield 370 40,668 0.0091 0.0045 0.0182

Fat Yield 370 40,668 0.0091 0.0045 0.0182

Protein Yield 385 40,668 0.0095 0.0047 0.0189

Fat % 216 40,668 0.0053 0.0027 0.0106

Protein % 229 40,668 0.0056 0.0028 0.0113

SCS 9 40,668 0.0002 0.0001 0.0004

Fat % = fat percentage; Protein % = protein percentage; SCS = somatic cell
score; S.S. in Sires = number of significant SNPs from the single SNP
regression model in the sires for a particular trait; Total = total number of
SNPs in the analysis; SSR = value of π based on the number of significant
SNPs from the single SNP regression model in the sires (i.e. for milk yield,
370/40668 = 0.0091); SSR/2 = half the value of π than that of the SSR prior;
SSRx2 = twice the value of π than that of the SSR prior

For the Bayesian analysis three different priors were used for each trait; these
priors represent the proportion of SNPs believed to affect the particular trait.
The SSR prior for a trait is calculated by dividing the total number of
significant SNPs from the single SNP regression analysis in the sires by the
total number of SNPs in the analysis (i.e. 40,668). The other two priors, SSR/2
and SSRx2 are simply the half and double the SSR prior respectively
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the D prime statistic) in Haploview [60], with default
settings, was used to estimate the blocks. Bovine gene
start and end positions were sourced from Ensembl [61]
based on build BTAU 4.0. SNPs were assigned to genes
using an in-house Perl [62] script which worked in the
following manner. If a SNP was located within a parti-
cular haplotype block then all genes that overlapped
with that haplotype block were assigned to the SNP.
Any SNP located outside a haplotype block was assigned
to the closest gene. The assignment of SNPs to genes
allowed a list of associated genes to be generated for
each trait from the significant SNPs detected across all
statistical approaches in the sires and cows.

Checking for overlap with known QTL regions
All significant associations were examined to determine if
they overlapped with known QTL regions using an in-
house Perl script; if any significant SNP did not overlap
with a known QTL region it was considered novel. The
location of known QTL regions for the milk production
traits and SCS were sourced from Cattle QTLdb [28].
We used the ‘QTL Span’ and/or ‘QTL Peak Location’
values in CattleQTLdb to define the boundaries of these
known QTL. The keywords used for searches in the data-
base were ‘milk yield’, ‘milk fat yield’, ‘milk protein yield’,
‘milk fat percentage’, ‘milk protein percentage’ and
‘somatic cell score’ for the traits milk yield, fat yield, pro-
tein yield, fat percentage, protein percentage and somatic
cell score, respectively.

Additional material

Additional file 1: Summary statistics for the cow dataset. This file
contains summary statistics for the phenotypic data in the cow validation
dataset mentioned in the manuscript. Summary statistics include the
total number of phenotypic records (N), mean and standard deviation (s)
for each trait in the cows. Phenotypes in the cows are expressed as yield
deviations on a PTA scale.

Additional file 2: Correlations between phenotypes for the cow
dataset. This file contains Pearson correlations between phenotypes in
the cow dataset expressed as yield deviations on a PTA scale.

Additional file 3: All Significant Associations. This file contains all
significant SNPs detected across all the analyses in the sires and cows.
Significant associations are presented separately for each analysis with
separate worksheets for each trait.

Additional file 4: Cow Dataset Materials and Methods. This file
contains information on the materials and methods used for the cow
validation dataset mentioned in the manuscript.
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