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Abstract

Background: In crop species, QTL analysis is commonly used for identification of factors contributing to variation
of agronomically important traits. As an important pasture species, a large number of QTLs have been reported for
perennial ryegrass based on analysis of biparental mapping populations. Further characterisation of those QTLs is,
however, essential for utilisation in varietal improvement programs.

Results: A bibliographic survey of perennial ryegrass trait-dissection studies identified a total of 560 QTLs from
previously published papers, of which 189, 270 and 101 were classified as morphology-, physiology- and resistance/
tolerance-related loci, respectively. The collected dataset permitted a subsequent meta-QTL study and
implementation of a cross-species candidate gene identification approach. A meta-QTL analysis based on use of the
BioMercator software was performed to identify two consensus regions for pathogen resistance traits. Genes that
are candidates for causal polymorphism underpinning perennial ryegrass QTLs were identified through in silico
comparative mapping using rice databases, and 7 genes were assigned to the p150/112 reference map. Markers
linked to the LpDGL1, LpPh1 and LpPIPK1 genes were located close to plant size, leaf extension time and heading
date-related QTLs, respectively, suggesting that these genes may be functionally associated with important
agronomic traits in perennial ryegrass.

Conclusions: Functional markers are valuable for QTL meta-analysis and comparative genomics. Enrichment of
such genetic markers may permit further detailed characterisation of QTLs. The outcomes of QTL meta-analysis and
comparative genomics studies may be useful for accelerated development of novel perennial ryegrass cultivars with
desirable traits.

Keywords: Quantitative variation, Pasture grass, BioMercator software, Comparative genetics, Genetic map,
Molecular breeding
Background
Perennial ryegrass is a native species of Europe, temper-
ate Asia and North Africa and is widely cultivated in
temperate regions as a pasture crop [1,2]. This obligate
outbreeding diploid species (2n = 2x = 14) is classified
within the Pooideae sub-family of the Poaceae (grass
and cereal) family [3]. The Pooideae sub-family contains
a broad range of important cereal and forage crop
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species; hexaploid wheat (Triticum aestivum L.) and bar-
ley (Hordeum vulgare L.) are taxonomically classified
into the Triticeae tribe; oat (Avena sativa L.) is a repre-
sentative member of the Aveneae tribe; and perennial
ryegrass, tall fescue (Festuca arundinacea Schreb.) and
meadow fescue (F. pratensis Huds.) are included in the
Poeae tribe [4]. Genome analysis studies have suggested
that species in the Pooideae sub-family share a similar
chromosomal structure, having been derived from a
common ancestor with 7 chromosome pairs [5].
In crop species, agronomically important traits, such

as grain number and salinity stress tolerance, are gov-
erned by multiple loci with relatively small individual
effects, which are known as QTLs [6]. Favorable alleles
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of QTLs are able to be efficiently introduced into elite
cultivars through marker-assisted selection (MAS) tech-
nology to generate new varieties with enhanced yield
performance and adaptability to environmental condi-
tions [7-9]. During the last decade, a number of molecu-
lar genetic studies of perennial ryegrass have been
conducted to reveal the genetic basis of herbage quality
and productivity. A one-way pseudo-testcross popula-
tion, designated p150/112, was established through
crossing between a multiple heterozygous parent of
complex descent (C3) and a doubled haploid parent
[10,11]. Using this population, the first comprehensive
genetic linkage map for perennial ryegrass was con-
structed using simple sequence repeat (SSR), amplified
fragment length polymorphism (AFLP) and restriction
fragment length polymorphism (RFLP) markers [11,12].
The seven linkage groups (LGs) were numbered in ac-
cordance with conserved synteny with the genetic maps
of the Triticeae cereal species [12]. The p150/112 popu-
lation was also subjected to QTL analyses for plant
architecture traits, herbage yield and quality characters,
cold tolerance, heading date variation and seed produc-
tion [13-15]. Following effective use of the p150/112
population, a number of successor mapping populations
were developed for QTL identification across a range of
common and additional traits [16-20].
The process of QTL meta-analysis was proposed as a

means to identify consensus loci reported in numerous
distinct studies [21]. The BioMercator software was
designed to perform meta-QTL (MQTL) analysis using
published data [22]. MQTL analysis has been achieved
with the BioMercator software for a wide range of crop
species, such as rice (Oryza sativa L.), wheat and soy-
bean (Glycine max L.) [23-25]. Despite complexities of
genome structure, 5 and 12 relatively large MQTLs were
successfully identified in soybean and hexaploid wheat,
respectively [24,25]. Due to properties of stability under
different environmental and genetic backgrounds, such
meta-QTLs (MQTLs) are likely to be of particularly high
value for breeding activities [24,26]. The MQTLs identi-
fied in the previous studies provide primary targets for
fine-structure mapping and gene identification activities
[24,25]. As the number of published trait-dissection
studies has increased for perennial ryegrass, so this spe-
cies has become a viable target for QTL meta-analysis.
Macrosyntenic relationships of genome structure be-

tween perennial ryegrass and taxonomically related cereal
species, such as rice, wheat and oat have been demon-
strated through cross-species mapping of functional gen-
etic markers [12,27]. By permitting transfer of knowledge
from the related species, such colinearity has been used
for identification of candidate genes that potentially
underpin QTL-containing regions. For instance, co-
locations were demonstrated between candidate ortholoci
of rice heading date control genes and QTLs for flowering
time variation in perennial ryegrass, suggesting functional
similarity of these genes between the two species
[15,28,29]. Similarly, the LpABCG5 gene was proposed to
contribute to a plant architecture QTL effect in perennial
ryegrass, based on a comparative genomics approach be-
tween related species, including rice [30]. The value of
such an approach for gene identification is currently
higher than for map-based cloning strategies in species
such perennial ryegrass, as compared to inbreeding spe-
cies, due to an obligate outbreeding reproductive habit
and relatively large genome size [31].
In this study, a bibliographic survey of QTLs that were

identified through use of perennial ryegrass-based gen-
etic mapping populations during the last decade is pre-
sented. An MQTL analysis for selected loci across a
range of functional categories, in concert with compara-
tive analysis with rice QTL databases, was performed.
Putative candidate genes were identified and subjected
to a genetic linkage analysis with the p150/112 reference
mapping population, providing the basis for assessment
of QTL co-location in present and future studies.

Methods
Bibliographic survey and QTL categorisation
In order to collate information on perennial ryegrass
QTLs, 23 previously published studies were identified,
details of which are summarised in Additional file 1
[2,13-15,17,18,20,29,32-46]. Prefixes relating to nomen-
clature of the genetic marker classes are explained in
Additional file 2 [47]. QTLs were categorised into 3
functionally related groups (morphology, physiology and
resistance/tolerance), and 6–10 sub-groups (e.g. leaf/
pseudostem), depending on trait features as previously
described in an equivalent study of rice [48].

MQTL analysis for pathogen resistance QTLs
Identification of consensus QTLs was performed using
the BioMercator software [22]. The p150/112, NA6 and
AU6 maps were initially integrated and then aligned with
the WSCF2, MFA, MFB and SB2 x TC1 genetic maps
[11,12,17,33,34,36,41,43,44]. Locations of QTLs for
pathogen resistance were extrapolated onto the consen-
sus map on the basis of common genetic marker posi-
tions. Co-location of QTLs was determined on the basis
of the Akaike’s information criterion (AIC), and the best
fit model was selected for MQTL prediction.

In silico comparative genomic analysis
DNA sequence information was obtained from the NCBI
(http://www.ncbi.nlm.nih.gov/), GrainGene (http://www.
gramene.org/) and Phytozome (http://www.phytozome.
net/) databases. The physical locations of orthologous
genes were identified using the Phytozome database.

http://www.ncbi.nlm.nih.gov/
http://www.gramene.org/
http://www.gramene.org/
http://www.phytozome.net/
http://www.phytozome.net/
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Candidate genes for perennial ryegrass QTLs were identi-
fied using the Q-TARO [48] (http://qtaro.abr.affrc.go.jp/)
and GRAMENE QTL (http://www.gramene.org/qtl/) data-
bases and by bibliographic search of the NCBI database.

Genetic marker development and linkage analysis
The p150/112 one-way pseudo-testcross mapping popu-
lation was generated through crossing of a multiply het-
erozygous genotype to an artificially generated (doubled
haploid) homozygote. In this mating design, single nu-
cleotide polymorphisms (SNPs) exhibit segregation pat-
terns of the type AB x AA or AB x CC [10-12]. As a
bin-mapping population sub-set, 46 genotypes, which
represent individuals with maximal genetic recombin-
ation, were selected. Candidate orthologues for rice
genes were identified through local BLAST searches.
Locus-specific PCR primers were designed using the
SequencherTM software version 4.7 for windows (Gene-
codes) and Oligo Calc program [49]. PCR amplification
was performed using ImmolaseTM DNA polymerase
(BIOLINE, London UK) following the product instruc-
tions. The PCR amplification was examined on a 2.0%
(w/v) agarose gel with 0.5 x SYBRW Safe DNA gel stain-
ing (Invitrogen). The PCR products were treated with
exonuclease I (0.5 U) and shrimp alkaline phosphatase
(SAP; 0.5 U) at 37°C for 60 minutes, and enzymes were
then deactivated by heat treatment at 85°C for 20 min-
utes. Sequencing analysis was performed with the Big-
DyeTM terminator chemistry (Applied Biosystems, at
present Applera, Foster City California USA), following
the manufacturer’s instructions, and the resulting pro-
ducts were analysed on the ABI 3730xl Prism sequencer
(Applied Biosystems). SNPs in the targeted sequence
were identified using the SequencherTM software, and
genotyping data were scored. A genetic linkage map was
constructed using the JoinMAP 3.0 application [50].

Results
Assembly of information on previously identified
perennial ryegrass QTLs
A total of 560 QTLs were described in previously pub-
lished studies, of which 149 were identified from analysis
of perennial ryegrass x Italian ryegrass interspecific hybrid
populations [33,34,41,45,46]. Totals of 189 (34%), 270
(48%) and 101 (18%) were categorized as morphology-,
physiology- and resistance/tolerance-related QTLs, re-
spectively (Additional file 1: Table S1). Of the 6 sub-
classes of morphological QTLs, the proportion of leaf/
pseudostem-related loci was 36% (68 QTLs), followed by
panicle/flower (24%) and plant mass-related loci (23%).
The most consistently reported physiological QTLs were
fibre content-related loci. In the resistance/tolerance-
related QTL group, 27 hydrate/dehydrate stress, 26 cold
stress and 27 crown rust resistance-related loci were
found. Totals of 106 and 100 QTLs were located on LGs 1
and 4, respectively, while relatively smaller number of loci
were identified on LGs 5 (49 QTLs) and 6 (46 QTLs). This
trend was also observed within each trait class (Table 1;
Additional file 3).
The 560 QTLs were classified depending on percen-

tages of phenotypic variances explained (Vp) (Figure 1).
About 60% of the QTLs displayed a Vp value of less than
15%, while 28 QTLs (5%) explained more than 40% of
the phenotypic variance. The average and median values
of Vp were 15.8% and 13.1%, respectively.

MQTL analysis
A consensus map was constructed based a combination
of the p150/112, AU6, NA6, WSCF2, MFA, MFB and
SB2 x TC1 maps. Due to insufficiency of common gen-
etic markers, map melding was not performed with link-
age maps from the other published studies. Pathogen
resistance QTLs were subjected to analysis performed
with the BioMercator software. Two MQTLs, designated
mqResis-2 and mqResis-6, were identified on LGs 2 and
6 of the consensus map, respectively (Table 2). The
mqResis-2 MQTL contained a grey leaf spot resistance
and three crown rust resistance QTLs, while the
mqResis-6 MQTL was a consensus of two grey leaf spot
resistance loci and a crown rust resistance locus.

Cross-species candidate gene identification
Information required for the comparative candidate gene
identification approach was obtained through the biblio-
graphic survey of QTLs (Additional file 1). Of the 560
QTLs, putative functional markers were identified in the
flanking regions of 265 loci. For 212 QTLs, orthologous
regions in the rice genome were predicted using se-
quence information from flanking genetic markers. The
candidate regions for 19 QTLs were not, however,
located on orthologous chromosomes. For 45 perennial
ryegrass QTLs, equivalent QTLs in orthologous regions
of the rice genome were identified. A total of 10 rice
candidate genes, for which ortholoci may contribute to
perennial ryegrass QTL variation, were tentatively recog-
nised (Table 3) [51-60].
A total of 6 candidate genes were identified for plant mor-

phogenesis traits. The PSR162-derived marker was located
within the confidence interval containing a plant height QTL
(Plantheight_C3_1) on perennial ryegrass LG1. A putative
ortholocus for PSR162 was identified at the 25.5 Mb location
on rice chromosome 5, and the rice EUI1 (elongated upper-
most internode1) gene, which is responsible for control of
internode length, was found at the closely adjacent 23.7 Mb
position of the same chromosome.
A total of 5 herbage yield-related QTLs (Leafwidth_C3_3,

Plantheight_C3_3, Tillersize_C3_3, LET_WSCF2_3 and
qFG-03-m3) were observed to be linked to the CDO345-

http://qtaro.abr.affrc.go.jp/
http://www.gramene.org/qtl/


Table 1 Perennial ryegrass QTLs classified by trait class

Trait class Trait sub-class Number of QTL

LG1 LG2 LG3 LG4 LG5 LG6 LG7 Total

Morphological Plant mass 5 8 10 8 5 2 6 44

Plant height/type 4 3 3 4 1 0 5 20

Leaf/pseudostem 13 7 17 15 3 5 8 68

Panicle/flower 5 11 7 13 4 3 3 46

Root 2 1 1 2 0 0 0 6

Seed 2 0 1 1 0 0 1 5

Physiological Heading date 1 4 4 8 2 3 9 31

Growth 6 4 9 7 5 6 3 40

Fertility 3 2 0 1 0 0 3 9

Protein content 3 8 3 3 2 0 1 20

Carbohydrate content 6 3 3 1 2 7 3 25

Fibre content 14 9 6 0 5 10 16 60

Alkaloid 8 3 0 10 2 0 4 27

Other/unknown content 16 13 2 11 0 0 8 50

Digestibility 0 0 3 1 0 0 2 6

Other 0 0 0 2 0 0 0 2

Resistance-Tolerance Hydrate/dehydrate stress 8 0 8 2 5 4 0 27

Cold stress 2 3 5 6 10 0 0 26

Crown rust resistance 4 5 4 4 3 2 5 27

Stem rust resistance 3 0 0 0 0 2 4 9

Grey leaf spot resistance 0 1 3 1 0 2 0 7

Powdery mildew resistance 0 0 1 0 0 0 2 3

Wiltiness 1 1 0 0 0 0 0 2

Total 106 86 90 100 49 46 83 560
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Figure 1 Distribution of Vp values for perennial ryegrass QTLs.
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Table 2 Characteristics of pathogen resistance MQTLs

MQTL Location Composing QTL QTL feature Vp Reference Flanking functional marker

Name Name Name Position

mqResis-2 LG2; 25.93 cM qCrownrust04_WI1_MFA2 Crown rust resistance 13.1 [41] Lpest0222-472 LG2; 22.4 cM

qCrownrust04_WI2_MFA2 Crown rust resistance 11.4 [41] BCD1184 LG2; 25.7 cM

qCrownrust05_WI1_MFA2 Crown rust resistance 15.3 [41]

qGLS6082gc_MFA_2 Grey leaf spot resistance 8.9 [34]

mqResis-6 LG6; 101.83 cM qCrown_rust_PS_2005_NA6_6 Crown rust resistance 5.9 [17] CDO497 LG6; 100.2 cM

qGLSGG9gc_1_MFA_6 Grey leaf spot resistance 9.5 [34] RZ273 LG6; 101.9 cM

qGLSGG9gc_2_MFA_6 Grey leaf spot resistance 9.2 [34]
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derived marker on perennial ryegrass LG3. A candidate
CDO345 ortholocus was identified at the 37.9 Mb position
on rice chromosome 1, and 3 plant size-related genes
(DGL1, GA20ox-2 and Ph1) were observed in the 28.2-38.3
Mb region of the same chromosome.
Leaf length QTLs (qLL_WSC_7 and qLL_p150/112_7)

were located on perennial ryegrass LG7, of which the
maximum LOD score was observed at the Hd3a locus.
On rice chromosome 6, the D3 gene (2.7 Mb) was
located closely adjacent to the rice Hd3a gene (2.9 Mb).
A fall growth QTL, qFG-04-f3.2, was closely associated

with the CDO460-derived marker. A putative CDO460
Table 3 Genetic locations of candidate gene-derived markers
denotes chromosome

Candidate rice ortholocus Reference Prerennial ryeg

Gene Physical location (Chr.: Mb) QTL

EUI1 Chr. 5: 23.7 Mb [51] qPlantheight_

PDT Chr. 7: 30 Mb [52] qCP-Sep-03

qCP-Sep-03

qCP-04-m

qCP-04-f

qCP-su-gh-0

OsGA3ox2 Chr. 1: 4 Mb [53] qFG-04-f3

DGL1 *b Chr. 1: 28.2 Mb [54] qLeafwidth_

GA20ox-2 *b Chr. 1: 30 Mb [55] qPlantheight_

Ph1 *b Chr. 1: 38.3 Mb [56] qTillersize_C

qLET_WSCF

qFG-03-m

Pi37 Chr. 1: 33.1 Mb [57] qPMR1_INF1_

qCrownrust04_W

OsPIPK1 Chr. 3: 28.2 Mb [58] qHD_PxA

qHD_WSC

qHD_C3_

Pib Chr. 2: 35.1 Mb [59] qGLSGG9gc_1_

qGLSGG9gc_2_

D3 Chr. 6: 2.8 Mb [60] qLL_p150/1

qLL_WSC

*a Location of candidate orthologue in rice.
*b Candidate genes for Leafwidth_C3_3, Plantheight_C3_3, Tillersize_C3_3, LET_WS
ortholocus was identified at the 1.4 Mb position of rice
chromosome 1, relatively close (at the 4 Mb coordinate)
to the dwarf growth locus OsGA3ox2.
A single candidate gene was identified for nutritive qual-

ity traits. Crude protein concentration QTLs (qCP-Sep-03-
f2, qCP-Sep-03-m2, qCP-04-m2, qCP-04-f2 and qCP-su-
gh-01_2) were identified on perennial ryegrass LG2, linked
to the CDO385, CDO418, CDO59, RZ395, CDO1376 or
CDO405-derived markers, for which candidate orthologues
were located in the 18.5-27.6 Mb interval of rice chromo-
some 7. A rice phenylalanine biosynthesis gene, PDT, was
identified at the 30.0 Mb position of rice chromosome 7.
and QTLs on the p150/112 reference genetic map. Chr

rass QTL LG Reference Anchor marker

Marker Physical location *a(Chr.: Mb)

C3_1 1 [13] PSR162 Chr. 5: 25.5 Mb

-f2 2 [46] CDO418 Chr. 7: 27.6 Mb

-m2 2 [46] CDO59 Chr. 7: 26.4 Mb

2 2 [46] RZ395 Chr. 7: 24.6 Mb

2 2 [46] CDO405 Chr. 7: 27.6 Mb

1_2 2 [14] CDO405 Chr. 7: 27.6 Mb

.2 3 [45] CDO460 Chr. 1: 1.4 Mb

C3_3 3 [13] CDO345 Chr. 1: 37.9 Mb

C3_3 3 [13] CDO345 Chr. 1: 37.9 Mb

3_3 3 [13] CDO345 Chr. 1: 37.9 Mb

2_3 3 [44] CDO345 Chr. 1: 37.9 Mb

3 3 [45] CDO345 Chr. 1: 37.9 Mb

VrnA 3 [40] LRGA4 Chr. 1:20.6 Mb

I2_MFB3 3 [41] RZ444 Chr. 1:29.7 Mb

_4 4 [29] CDO795 Chr. 3: 30.1 Mb

_4 4 [15] CDO795 Chr. 3: 30.1 Mb

4 4 [15] CDO795 Chr. 3: 30.1 Mb

MFA_6 6 [34] CDO686 Chr. 2: 31.8 Mb

MFA_6 6 [34] CDO686 Chr. 2: 31.8 Mb

12_7 7 [15] Hd3a Chr. 6: 2.9 Mb

_7 7 [15] Hd3a Chr. 6: 2.9 Mb

CF2_3 and qFG-03-m3.



Table 4 PCR primer sequence for candidate QTL-related
gene and SNP type used for genotypic analysis

Candidate genes Primer sequence (5'→3') SNP

LpEUI f: ACG TAC CTG TAC TGG CTG C/G

r: TTG CAG TTG TCC ACC ACG AA

LpPDT f: GCA GAA CAA AAA CTC CAA GA n.a. *a

r: TTG GAT CAG CCA TAG ACG CC

LpGA3ox2 f: CGC GCT ACT TCG ACT TCC n.a. *b

r: GAA GAA GGA GGA GAT GGG C

LpDGL1 f: GTT AAC ATT GAT GAA GTT GC A/G

r: ACA CTC TTC TGG ACC TTG GC

LpGA20 f: GGG TGT ACC AGG AGT ACT G n.a. *a

r: TTA CCA TGA AGG TGT CGC CG

LpPh1 f: GCA TTA ATG ATG AAT GGG CT A/G

r: CAT CCA CAC CAG TTA TTC TC

LpPi37 f: CCA GCG GAT ATG CGC AAT CT C/T

r: CAA ATG CTC TCG GCT GAA GG

LpPIPK1 f: GGC CCT TGT AAA TAG TCT CC G/T

r: CCC TTG ACT GTA ATT GGC TC

LpPib f: TCA CGG ATG AGA TCA TGG AC A/T

r: CTG AAG AAG TGT GAT GGA CT

LpD3 f: CCA AGA TGA AAT TGG ACC TC A/G

r: CTG CAT GTC CCG CAA GTT TG

*a no SNP was identified in PCR amplicon.

*b PCR amplicons were not obtained.

Shinozuka et al. BMC Genetics 2012, 13:101 Page 6 of 12
http://www.biomedcentral.com/1471-2156/13/101
The role of PDT is to control accumulation level of the
amino acids phenylalanine and tryptophan.
A single candidate gene was identified for reproductive

development traits. Maximum LOD values for heading
date variation QTLs (qHD_PxA_4, qHD_WSC_4 and
qHD_C3_4) were identified close to the CDO795-
derived marker on perennial ryegrass LG4. A heading
date locus (OsPIPK1) was located at the 28.2 Mb pos-
ition of rice chromosome 3, close to the predicted
CDO795 ortholocus (23.1 Mb).
A total of three candidate genes were identified for

pathogen resistance traits. QTLs for resistance to pow-
dery mildew (PMR1_INF1_VrnA) and crown rust
(qCrownrust04_WI2_MFB3) pathogens were located on
perennial ryegrass LG3, in linkage to the LRGA4 and
RZ444 loci, respectively. The Pi37 blast resistance locus
is located at the 33.1 Mb position on rice chromosome
1, relatively close to putative ortholoci for LRGA4 (20.6
Mb) and RZ444 (35.9 Mb).
The CDO686-derived marker was located in linkage with

grey leaf spot resistance QTLs (qGLSGG9gc_1_MFA_6 and
qGLSGG9gc_2_MFA_6) on perennial ryegrass LG6. A pu-
tative CDO686 ortholocus is located at the 31.8 Mb pos-
ition of rice chromosome 2, and the rice Pib locus, which is
responsible for resistance to rice blast, was observed at the
35.1 Mb coordinate on the same chromosome.
MQTLs were also subjected to the cross-species map-

ping approach. Sequences orthologous to BCD1184 and
Lpest0222, which were located close to mqResis-2, were
identified on rice chromosome 2 at the 29.4 Mb and
30.1 Mb positions. A candidate orthologous region for
mqResis-6 was identified on rice chromosome 7,
through identification of putative CDO497 and RZ273
ortholoci at the 23.7 Mb and 30.7 Mb coordinates, re-
spectively. No equivalent rice QTL was, however, identi-
fied for the MQTLs.
Genetic mapping of candidate genes
PCR primers for the putative perennial ryegrass ortho-
loci of the 10 rice candidate genes were designed, and
PCR fragments from 9 of the target genes were obtained
from the p150/112 C3 (heterozygous) parent (Table 4).
Successful amplification was not observed when the
OsGA3ox2 ortholocus-directed primer pair was used.
Direct sequencing analysis identified SNPs in 7 of 9
amplicons, DNA sequence polymorphism being absent
from amplicons corresponding to the GA20ox-2 and
PDT genes. The p150/112 bin mapping set was geno-
typed to obtain successful sequencing data from 30–46
individuals. Selected SNP loci from the EUI1, DGL1,
Ph1, OsPIPK1 and D3 gene orthologues were assigned to
locations on those LGs that were anticipated on the
basis of conserved synteny, while those in Pi37 and Pbi-
like sequences were assigned to LGs 4 and 5, respect-
ively (Figures 2 and 3).

Discussion
QTL meta-analysis in perennial ryegrass
As a pasture crop species, a predominant focus on vegeta-
tive yield-related characters has been observed during
trait-dissection studies of perennial ryegrass, leading to
identification of a large number of leaf/pseudostem and
plant mass-related QTLs (Table 1). In contrast, as a grain
crop, panicle/flower and seed-related traits have received
more attention in rice QTL identification activities [48]. In
the present study, lower QTL numbers were identified on
LGs 5 and 6. In comparison, a meta-study for hexaploid
wheat grain yield-related QTLs identified relatively smaller
numbers of QTLs were identified on the homoeologous 5,
6 and 7 groups of chromosomes [24], which exhibit exten-
sive macrosynteny with perennial ryegrass LGs 5, 6 and 7
[12]. Hence, despite divergent trait-specific biases between
perennial ryegrass and hexaploid wheat, a similar chromo-
somal distribution pattern of QTLs was exhibited (Table 1).
In a previous study of grain yield under drought stress
conditions, conservation of QTL locations between differ-
ent Poaceae species was observed [26]. As perennial rye-
grass and wheat are relatively closely related within the
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Figure 2 Genetic locations of candidate gene-derived markers and QTLs on LGs 1 and 3 of the p150/112 reference genetic map.
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cool-season grasses, the similarity of QTL distribution pat-
terns between these two species suggests that conserved
regions corresponding to wheat homoeologous chromo-
somes 5, 6 and 7 show lower importance than others for
agronomic traits, including both vegetative and seed yield
characters. Due to a large genome size, the perennial rye-
grass genome has not yet been completely sequenced and
assembled. Full assembly of genome sequence information
from chromosomes that are rich in important QTLs may
be more valuable, and should perhaps be prioritised, in
comparison to that from other chromosomes.
The bibliographic survey identified putatively conser-

vation of QTL locations under different environmental
and across different genetic backgrounds. Plant height
QTLs on LG1 were reported in three distinct studies,
and heading date QTLs on LGs 4 and 7 were identified
with various parental combinations at multiple geo-
graphic locations, although further analysis is required
to determine whether the common QTLs are controlled
by identical genetic factors [13,15,18,29,32,42]. The two
pathogen resistance MQTLs are also putatively
conserved under multiple environmental conditions and
genetic backgrounds. Conversely, evidence was also
obtained for a relatively large number of QTLs that are
either genotype- or environment-specific. QTL analysis
studies with two-way pseudo-testcross populations have
demonstrated the presence of QTLs only on single par-
ental genetic maps for traits measured under identical
environmental conditions [2,17,32]. Several studies also
subjected single populations to QTL analysis under vari-
ous environmental conditions, and reported environment-
specific QTLs [33,42,45,46]. The p150/112 mapping
population was developed for the activities of the Inter-
national Lolium Genome Initiative (ILGI) and was sub-
jected to QTL analysis for traits such as leaf length, leaf
width, and variation for heading date in both Japan and
the UK, identifying unique QTLs at the two geographic
locations [13,15]. Leaf length and width QTLs were
identified on LGs 5 and 3, respectively under Japanese
conditions, while QTLs for both traits were found on
LG7 in the UK-based trial. Only a single heading date
QTL on LG4 was detected in Japan, while two QTLs on
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LGs 4 and 7 were found in the UK, probably associated
with vernalisation genes (Vrn-1 and Hd3a orthologues,
respectively). These results suggest that although stable
QTLs may be detected under different environmental
and genetic backgrounds, QTL identification largely
depends on both genetic and environmental factors in
perennial ryegrass.
The frequency distribution of Vp demonstrated in this

study (Figure 1) was also similar to that obtained from a
previous study in rice, in which the mean Vp value was
calculated to be c. 13%, based on a sample of 231 QTLs
[61]. In both studies, although the distribution range
was skewed towards lower Vp values, a considerably
small number of QTLs were classed in the 0-5% cat-
egory. The probable presence of loci of minor effect,
which could be excluded from identification due to the
requirement for threshold LOD values for QTL detec-
tion, was also described for the rice study, and such
minor undetected QTLs are also likely to be present in
perennial ryegrass. Although F2 and BC1 genetic map-
ping populations have been generally employed for rice,
construction of perennial ryegrass linkage maps has been
commonly based on use of one-way and two-way
pseudo-testcross strategies, due to the effect of an out-
breeding reproductive habit. These crossing formats may
not achieve such precise estimation of QTL effects as
the F2 and BC1 designs, due to complexity of genetic
background [62]. Despite this difference, the distribution
patterns of Vp values were largely similar between the
two species.
Due to the relatively small sizes of discovery popula-

tions (typically in the range from 100–200 genotypes)
that have been used for trait-dissection in perennial rye-
grass, the magnitudes of QTL effects have probably been
over-estimated. Several studies have identified failures to
deliver anticipated genetic gains through marker-assisted
QTL selection, due apparently to both over-estimation
and imprecise estimates of location [63,64]. The basis of
these problems has been extensively discussed, and has
in most cases been attributed to the influence of ex-
perimental population size, the so-called Beavis effect
[65-67]. QTL identification in progressively larger popu-
lation sets, up to 500–1000 individuals, has been theor-
etically and empirically demonstrated to enhance the
accuracy of QTL effect measurement. Alternatively,
more accurate estimates of locus-specific effect are likely
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to derive from implementation of genome-wide associ-
ation studies (GWAS). For example, a GWAS for 14
agronomic traits in rice identified six characters asso-
ciated with colours, grain quality and grain width that
exhibited a small number of significant loci with large
effects, while the remaining traits were influenced by
multiple loci with relatively small effects [68]. Equivalent
studies in perennial ryegrass might be anticipated to
generate similar results.
The BioMercator software assisted the melding of link-

age maps resulting from distinct studies. This process,
however, was not fully accomplished in the present
study, except for the p150/112, AU6, NA6, WSCF2,
MFA, MFB and SB2 x TC1 maps, due to insufficiency of
common genetic markers. In previous studies, non-
functional DNA-based markers, such as genomic DNA-
derived SSR, AFLP and restriction site-associated DNA
(RAD) systems, were predominantly used [18,32,37].
Such assays are not ideally suited to comparative map-
ping studies, as multiple locus amplification is often
observed for genomic DNA-derived SSR markers, and
both AFLPs and RADs are more genotype-specific than
functional markers [11,31,37]. Enrichment of functional
markers is hence essential for a further meta-analysis. A
recent study assigned over 700 gene-derived markers to
perennial ryegrass LGs with public release of the corre-
sponding information [69]. The outcomes may permit
efficient functional marker enrichment in specific
chromosomal regions of interest.

Prediction of candidate gene status
Two putative MQTLs were identified for pathogen re-
sistance (Table 2). Both mqResis-2 and mqResis-6 were
identified as consensus loci containing both grey leaf
spot and crown rust resistance QTLs, implying non-
specific activities for several pathogens, rather than race-
specific resistance QTLs. Through the process of genetic
map alignment and MQTL analysis, additional function-
ally associated markers that are putatively linked to the
QTLs were identified. Information from functional
markers may support development of novel flanking
DNA-based markers for a given target locus based on a
comparative genetics approach, enabling candidate
gene-based selection and association genetics studies
[15,70]. Although further characterisation is required,
both MQTLs and flanking functional markers may be
useful for deployment in perennial ryegrass breeding.
Comparative analysis demonstrated close proximity be-

tween genetic markers related to the DGL1, Ph1 and
OsPIPK1 ortholoci and the corresponding perennial rye-
grass QTLs. This observation suggests that the DGL1 and
Ph1 ortholoci are related to, and may provide candidate
genes for, the herbage yield-related QTLs on LG3. In a
previous study, the CDO795-linked heading date QTLs
were suggested to be equivalent to a rice heading date
QTL, dth3.3 (Gramene QTL Acc. ID AQFE011) [15,71].
The physical location of the OsPIPK1 gene was located in
the candidate interval (5.7 Mb) of dth3.3. These results
suggest that the perennial ryegrass OsPIPK1 ortholocus
may be related to the heading date QTLs on LG4. For
both yield and flowering time traits, plausible evidence for
related candidate genes has been obtained.
In contrast, markers linked to the EUI1 and D3 ortho-

loci were located over 10 cM distant from the maximum
LOD values for the target QTLs. In a wide range of
plant species, genes causing variation in quantitative
traits have been identified to be located within genetic
distances of less than 3 cM from the LOD maximum lo-
cation [72]. It seems, therefore, unlikely that LpEUI1
and LpD3 genes are plausible candidates for QTL func-
tion. For issues arise for candidate genes associated with
disease resistance.
The Pi37 and Pbi genes encode NBS-LRR proteins

[51,59]. Molecular studies have shown a rapid evolution-
ary rate and limited cross-species synteny of NBS-LRR
genes [51,59,73,74]. The comparative approach may not
be so effective for such species-specific genes, due to un-
resolved paralogous relationships between species, and
hence accounting for the failure of putative ortholoci to
map in regions predicted on the basis of conserved
synteny.

Conclusion
In this study, meta-analysis of QTL architecture in per-
ennial ryegrass has permitted evaluation of the range of
typical genetic effects across a range of biological trait
categories. Additionally, MQTL analysis identified two
consensus QTLs for pathogen resistance, as well as pu-
tatively linked functional markers. Comparative genetics
analysis for a sample of putative candidate genes
revealed ortholoci of three rice genes that may plausibly
be causally related to QTLs for correlated functions. En-
richment of functional markers may permit further
Meta-analysis and comparative approach for those
QTLs. Outcomes from those studies may be utilised in
the MAS framework for varietal development of peren-
nial ryegrass with desirable traits.

Additional files

Additional file 1: Summary information on QTLs identified through
use of perennial ryegrass-based genetic mapping populations. QTLs
are designated according to the following nomenclature: trait/date/
condition abbreviation_experiment replication number/location_genetic
map/population name_LG location_QTL identity (e.g. a or b) for the
purpose of locus discrimination, as needed. For analysis type, IM, SIM,
CIM, MQM and SMR stand for interval mapping, simple interval mapping,
composite interval mapping, multiple QTL mapping and single-marker
regression. When multiple parameters (e.g. SIM and CIM) are used for
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shown. For population type, 1-way, 2-way and F2 stand for one-way
pseudo-testcross population, two-way pseudo-testcross population and
F2 genetic mapping population types.

Additional file 2: Nomenclature of prefixes denoting classes of
DNA-based marker.

Additional file 3: Distribution of QTLs in each trait class on the
seven perennial ryegrass LGs.
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