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Abstract

Background: Brazil’s Atlantic Forest is a biodiversity hotspot endangered by severe habitat degradation and
fragmentation. Habitat fragmentation is expected to reduce dispersal among habitat patches resulting in increased
genetic differentiation among populations. Here we examined genetic diversity and differentiation among
populations of two Heliconius butterfly species in the northern portion of Brazil’s Atlantic Forest to estimate the
potential impact of habitat fragmentation on population connectivity in butterflies with home-range behavior.

Results: We generated microsatellite, AFLP and mtDNA sequence data for 136 Heliconius erato specimens from
eight collecting locations and 146 H. melpomene specimens from seven locations. Population genetic analyses of
the data revealed high levels of genetic diversity in H. erato relative to H. melpomene, widespread genetic
differentiation among populations of both species, and no evidence for isolation-by-distance.

Conclusions: These results are consistent with the hypothesis that the extensive habitat fragmentation along
Brazil’s Atlantic Forest has reduced dispersal of Heliconius butterflies among neighboring habitat patches. The
results also lend support to the observation that fine-scale population genetic structure may be common in
Heliconius. If such population structure also exists independent of human activity, and has been common over the
evolutionary history of Heliconius butterflies, it may have contributed to the evolution of wing pattern diversity in
the genus.

Background
Landscape structure has a fundamental influence on the
distribution of populations, affecting their demography
and genetics [1]. Some populations may be found continu-
ously distributed while others are patchily distributed
across their range, both of which may ultimately lead to
some degree of genetic differentiation. Such geographic
patterns of genetic variation reflect both historical pro-
cesses, such as natural selection, and contemporary gene
flow [2].
Gene flow determines the potential for genetic differ-

entiation among populations and for local adaptation
and the spread of novel adaptations [3,4]. In butterflies,
as in other organisms, the nature and extent of gene
flow is largely dependent on the mobility of individuals.

Species with high vagility may disperse over large dis-
tances and therefore have extensive gene flow over large
areas resulting in more homogeneous populations [5-8],
whereas in species with low vagility, the effect of
restricted dispersal will be evident at fine spatial scales
[9-11]. Furthermore, gene flow may also be affected by a
variety of ecological factors such as mating habits, gen-
der-biased dispersal, diet specialization, habitat and
population persistence, environmental factors and geo-
graphic distance [12].
Extensive studies using molecular markers on butter-

flies have shown how fragmentation leads to the reduc-
tion of gene flow among populations in different habitat
patches and increases genetic differentiation among
populations [9,13-15]. In fact, intra- and inter-population
genetic variability is generally more affected in small
patches of habitat and in small populations [6,16]. Frag-
mentation may even affect species with high vagility
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[8,11], leading to a decrease in genetic diversity due to
reduced gene flow between populations.
However, even though information on the relationship

between fragmentation and genetic diversity in butterflies
is available, many of these studies have been conducted
with temperate species [6,14,17,18]. To date, few such
studies have been conducted with tropical species. One
tropical region of particular interest for this type of study

is Brazil’s Atlantic Forest (Figure 1), a highly fragmented
biodiversity hotspot that has a high level of species ende-
mism [19], including butterflies [20,21]. After more than
500 years of intensive human occupation, less than 7% of
the original forest remains [22] and this region is now
considered a priority area for conservation [23].
Heliconius butterflies are a well-studied group of tro-

pical organisms [24-30], commonly found in New

Figure 1 Location of Heliconius collecting sites in Rio Grande do Norte, Brazil, relative to patches of undisturbed habitat.
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World tropical and subtropical forests [31]. Mark-
recapture studies of Heliconius have shown that popu-
lations remain fairly stable over time, usually at low
densities [26]. After a brief period of dispersal, Helico-
nius adults establish themselves in areas where they
remain for the rest of their lives [32]. Thus, popula-
tions of Heliconius are organized in moderately seden-
tary units, with little movement of individuals,
apparently as a result of home range behavior [32].
These behaviors suggest that gene flow among geogra-
phically separate populations may be low.
Yet, little is known about geographical structure of

Heliconius populations and the effects of fragmentation
on population connectivity. Most studies have employed
mark-recapture methods to infer population structure
[32-39], but some evidence from molecular markers is
available. For instance, Kronforst & Fleming [7] analyzed
population genetic structure of the highly vagile species
Heliconius charithonia using allozymes and found low
genetic diversity and no evidence of genetic subdivision
in south Florida. Additional studies with allozymes have
found little evidence for genetic differentiation in other
Heliconius species [40-42]. In contrast, Kronforst & Gil-
bert [43] found evidence for extensive genetic differen-
tiation and isolation by distance across multiple
Heliconius species in Costa Rica using AFLP markers.
Population genetic structure in Heliconius also has

important implications for the evolutionary dynamics of
mimicry. Heliconius erato and H. melpomene are dis-
tantly-related species belonging to different clades
within the genus [24,44]. These two species are Müller-
ian mimics of one another throughout their shared
range of Central and South America but they have both
diversified, in parallel, into over 20 geographic wing pat-
tern races. Historically, the co-mimetic radiations of
H. erato and H. melpomene were thought to have
occurred in parallel across time and space, possibly
facilitated by Pleistocene rainforest refugia [31]. How-
ever, data from a variety of sources, including modern
population genetic data [45-47], support an alternative
‘mimetic advergence’ hypothesis [48], with H. erato
radiating first and establishing the diversity of wing pat-
terns which H. melpomene later evolved to mimic. A
remaining issue then is how H. erato originally diversi-
fied, given the strong stabilizing selection expected on
warning coloration. One hypothesis is that stochastic
events in local populations have occasionally allowed
novel phenotypes to drift over the frequency threshold
necessary to become a learned, and hence protected,
warning pattern [49,50] and this may be playing out as
part of a larger “shifting-balance” type process [51-53].
This process requires small local population sizes as
well as drift, and existing molecular data provide mixed
evidence as to whether these conditions are generally

met in Heliconius; allozymes have generally shown little
structure while AFLPs have revealed more.
Our current analysis of population genetic structure

in Heliconius was hence motivated by two factors.
First, we were interested in determining the potential
impact of the highly fragmented habitat along Brazil’s
Atlantic Forest on population connectivity in butterfly
species with home range behavior. Second, we were
interested in whether replicate analyses of population
genetic structure in different geographic regions, and
with a diversity of molecular markers, provide evidence
for or against substantial population genetic structure
in Heliconius. The generality of this phenomenon has
important implications for the potential role of drift in
color pattern diversification, as long as it has also
occurred throughout the evolutionary history of Heli-
conius butterflies and independent of human activity.
To address these questions, we analyzed the popula-
tion genetic structure of co-mimics H. erato and
H. melpomene throughout a portion of Brazil’s Atlantic
Forest using three types of molecular markers; micro-
satellites, AFLPs, and mitochondrial DNA sequences.
Our results reveal substantial genetic differentiation
among populations and intriguing differences between
species and among molecular markers, reflecting the
unique population biology of our study system and its
geographic context.

Results and Discussion
Brazil’s Atlantic Forest is a biodiversity hotspot endan-
gered by extreme deforestation. To examine the poten-
tial impact of this habitat fragmentation on butterfly
dispersal, we measured genetic diversity and differentia-
tion among remnant forest patches for two co-mimetic
Heliconius butterfly species, H. erato and H. melpomene.
Our analysis included multiple populations of both spe-
cies and three distinct classes of molecular markers,
allowing us to compare and contrast patterns across
species, populations, and types of molecular data.

Genetic Diversity
Across all marker types, H. erato displayed greater
genetic diversity than H. melpomene (Table 1), which is
consistent with previous genetic comparisons between
the two species [43,45,47,54]. Elevated genetic diversity
in H. erato, relative to H. melpomene, is commonly
attributed to the fact that H. erato is generally more
abundant than H. melpomene [26,48,55,56], which could
result in a larger effective population size. Another
potential contributing factor is that the geographic
radiation of H. erato predates that of H. melpomene
[45], allowing more time for the accumulation of stand-
ing genetic variation. It is unclear whether these expla-
nations may apply to our sampling locations however.

Albuquerque de Moura et al. BMC Genetics 2011, 12:9
http://www.biomedcentral.com/1471-2156/12/9

Page 3 of 8



For instance, our collections revealed that H. melpomene
is as abundant, or more abundant, than H. erato across
most of our collecting sites. In addition, recent data sug-
gest that H. melpomene may have originated in coastal
Brazil while H. erato colonized this region after originat-
ing in western South America [47], which may mean
that the two species have occupied this area for similar
lengths of time. Regardless of the cause, our data
show that H. erato is 14 times more variable than
H. melpomene at mtDNA, seven times more variable at
AFLP markers, and 1.3 times more variable at microsa-
tellite loci (Table 1).

Differentiation and isolation-by-distance
Our analyses revealed widespread genetic differentiation
in both species but substantial variation across marker
types. Overall, H. erato displayed significant genetic dif-
ferentiation at both AFLPs and mtDNA but not micro-
satellites while H. melpomene displayed significant
genetic differentiation at microsatellites and AFLPs but
not mtDNA (Table 1). Pairwise comparisons among
populations revealed similar patterns. For instance,
based on microsatellites, seven population comparisons
were significant in H. melpomene while only two were
significant in H. erato (Table 2). With AFLPs, virtually
all pairwise comparisons were significant in both species
(Table 3). Finally, mtDNA revealed 13 significant com-
parisons in H. erato and only four in H. melpomene
(Table 4). Interestingly, mtDNA revealed much more

genetic differentiation in H. erato than did the nuclear
markers, suggesting females may be more sedentary
than males in this species. While genetic differentiation
appears to be widespread in both species, none of the
tests for isolation-by-distance were significant (Table 1).
This indicates that geographic distance alone is not a
good indicator of genetic distance among populations.

Implications for habitat fragmentation and mimicry
Human activity in Northeastern Brazil over the last five
hundred years has generated substantial habitat frag-
mentation in this region [57]. Today, much of Brazil’s
Atlantic Forest is highly fragmented with few stretches
of continuous forest [19]. Because Heliconius butterflies
are relatively sedentary, we expect this extensive frag-
mentation to limit migration among habitat patches and
potentially generate genetic differentiation among popu-
lations over time. Consistent with this expectation, our
analyses revealed widespread genetic differentiation
among populations of both H. erato and H. melpomene.
While it seems likely that the observed genetic differen-
tiation is at least partially related to extensive habitat
fragmentation, future comparative work in undisturbed
habitats will be required to quantify the exact impact of
fragmentation relative to baseline differentiation among
populations in a natural setting.
The extent of population subdivision across the range of

Heliconius species has potentially important implications
beyond estimating the impact of fragmentation on

Table 1 Summary population genetic statistics across species and molecular markers

Markers (N) Diversity FST IBD (Mantel r)

Dataset H. erato H. melpomene H. erato H. melpomene H. erato H. melpomene H. erato H. melpomene

msats 7 loci 5 loci HO = 0.594 HO = 0.456 0.011 0.020 -0.168 -0.011

(136 alleles) (31 alleles) (0.141 sd) (0.107 sd) (P = 0.160) (P = 0.002) (P = 0.280) (P = 0.520)

AFLP 1144 loci 1144 loci 0.368 0.053 0.020 0.086 -0.193 0.205

(1121 polys) (487 polys) (0.113 sd) (0.106 sd) (P < 10-4) (P < 10-4) (P = 0.116) (P = 0.189)

mtDNA 1600 bp 1600 bp π = 0.0086 π = 0.0006 0.145 0.017 0.094 -0.202

(81 SNPs) (15 SNPs) (0.0043 sd) (0.0005 sd) (P < 10-4) (P = 0.094) (P = 0.335) (P = 0.274)

Table 2 Pairwise population FST values based on microsatellite data; H. erato comparisons below diagonal,
H. melpomene above diagonal

MRT JND CTR CTL JQ FLN PP BF

MRT 0 - - - - - - -

JND 0.0226 0 0.0077 0.0440* 0.0190 0.0093 0.0239 0.0278

CTR 0.0083 0.0244** 0 0.0312* 0.0119 -0.0015 0.0317* -0.0060

CTL 0.0051 0.0061 0.0154 0 0.0139 0.0248* 0.0334* 0.0183

JQ 0.0029 0.0173* 0.0154 0.0094 0 0.0245* 0.0291* 0.0260

FLN -0.0039 0.0046 0.0044 0.0007 0.0016 0 0.0195 0.0090

PP 0.0046 0.0163 0.0152 0.0104 0.0160 -0.0095 0 0.0218

BF 0.0011 -0.0007 0.0108 0.0060 0.0056 -0.0097 -0.0023 0

P-values are indicated as follows: * P < 0.05, ** P < 0.01, *** < 0.001, (no asterisk) = not significant.
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population connectivity. For instance, it has been proposed
that novel color patterns may occasionally arise and
become locally abundant as a result of genetic drift [49,51].
From there, these patterns may spread out to neighboring
populations via a shifting balance type mechanism, thereby
generating the geographic patchwork of wing pattern races
which are particularly evident in H. erato and H. melpo-
mene [51,58]. The baseline conditions necessary for this
process to operate are small local population sizes and
genetic drift, but allozyme data from a variety of Heliconius
species have shown that populations are not genetically dif-
ferentiated, arguing against local population genetic struc-
ture and drift. In contrast, a recent study revealed
widespread genetic differentiation among Heliconius popu-
lations from Costa Rica based on AFLP data [43]. Here we
have shown that population genetic differentiation is com-
mon in Heliconius and evident in microsatellites and
mtDNA sequence data, in addition to AFLPs. If Heliconius
populations are generally subdivided, independent of
human induced habitat fragmentation, this may have
allowed drift to contribute to the establishment of novel
warning pattern phenotypes over their evolutionary history.

Conclusions
Brazil’s Atlantic Forest is a highly fragmented habitat
and a priority for conservation efforts. Here we have
shown that populations of two Heliconius butterfly

species from the northern Atlantic Forest display wide-
spread population genetic differentiation. These results
are consistent with the expectation that fragmentation
should reduce dispersal among neighboring habitat
patches. The results also lend support to the observation
that fine-scale population genetic structure may be com-
mon in Heliconius, which may have contributed to the
evolution of mimetic diversity in the genus.

Methods
Sample collection
Between January 2007 and January 2008, we collected
adult Heliconius erato and Heliconius melpomene speci-
mens from various populations throughout the State of
Rio Grande do Norte in northeastern Brazil (Figure 1).
Our final sample set consisted of 136 H. erato from 8
locations and 146 H. melpomene from 7 locations
(Table 5), with distances between sites ranging from 3
to 314 km. Seven sites were remnant patches of coastal
Atlantic Forest and one was a cooler habitat island in
the semi arid Caatinga scrub.

Microsatellite analysis
Using eight individuals from each species, we performed
an initial screen of fourteen microsatellite loci: nine
(Hel02, Hel04, Hel05, Hel08, Hel10-13, Hel15) described
by Flanagan et al. [59], four (Hm06, Hm08, Hm16,

Table 3 Pairwise population FST values based on AFLP data; H. erato comparisons below diagonal, H. melpomene
above diagonal

MRT JND CTR CTL JQ FLN PP BF

MRT 0 - - - - - - -

JND 0.01832** 0 0.13739*** 0.06361*** 0.03481** 0.08283*** 0.04566*** 0.12646***

CTR 0.01117* 0.02969*** 0 0.04576*** 0.12178*** 0.11645*** 0.10596*** 0.06254***

CTL 0.01519* 0.01937*** 0.02173*** 0 0.07282*** 0.08292*** 0.04716*** 0.07188***

JQ 0.01704*** 0.01656*** 0.02653*** 0.02037*** 0 0.07318*** 0.074*** 0.18178***

FLN 0.04009*** 0.02507* 0.03515*** 0.02235* 0.02294** 0 0.03954*** 0.16888***

PP 0.02068*** 0.01496*** 0.03057*** 0.01615*** 0.00698** 0.01170 0 0.12302***

BF 0.00223* 0.01850* 0.01383* 0.01485* 0.01445** 0.05357*** 0.02061** 0

P-values are indicated as follows: * P < 0.05, ** P < 0.01, *** < 0.001, (no asterisk) = not significant.

Table 4 Pairwise population FST values based on mtDNA sequence data; H. erato comparisons below diagonal,
H. melpomene above diagonal

MRT JND CTR CTL JQ FLN PP BF

MRT 0 - - - - - - -

JND 0.3290** 0 -0.0428 -0.0582 0.0665 -0.0229 -0.0456 -0.0706

CTR 0.1519* 0.0129 0 -0.0252 0.0800** 0.0074 -0.0082 -0.0305

CTL 0.4578*** -0.0160 0.0512 0 0.0852** 0.0006 -0.0181 -0.0425

JQ 0.1709* 0.0059 -0.0267 0.0564 0 0.0167 0.1105** 0.0784*

FLN 0.0441 0.4681** 0.2522* 0.5880** 0.3043* 0 0.0283 -0.0179

PP -0.0355 0.2651** 0.1282* 0.3519*** 0.1322* 0.0615 0 -0.0284

BF 0.2030* -0.0308 -0.0223 0.0381 -0.0008 0.3039 0.1520 0

P-values are indicated as follows: * P < 0.05, ** P < 0.01, *** < 0.001, (no asterisk) = not significant.
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Hm22) described by Mavárez & González [60], and one
(He-Ca-001) described by Tobler et al. [61]. The micro-
satellites that amplified consistently were selected for
analysis (Table 6). PCR amplification was performed
using standard conditions and reagents following Flana-
gan et al. [59] and Mavárez & González [60]. Fluores-
cent-labeled PCR products were separated with an
ABI3730 Genetic Analyzer (Applied Biosystems, Foster
City, CA.) and sized and scored using ABI GeneMapper
software v. 3.7.
For each locus we calculated standard population

genetic statistics such as allele frequencies, expected het-
erozygosity (HE), observed heterozygosity (HO), and
deviations from Hardy-Weinberg equilibrium using
Arlequin 3.0 [62]. In addition, we used Arlequin 3.0 to

estimate AMOVA-based [63] fixation indexes (FST) and
to perform Mantel tests, comparing population pairwise
FST values to straight line geographic distances, to test
isolation-by-distance (IBD).

AFLP analysis
We genotyped each individual with AFLPs using a plant
mapping kit (Applied Biosystems) and separated frag-
ments with an ABI3730 Genetic Analyzer. Three selec-
tive primer combinations were used to generate
fragments: EcoRI-ACT/MseI-CAT, EcoRI-ACT/MseI-
CTG and EcoRI-ACA/MseI-CTG. We separated frag-
ments with an ABI3730 Genetic Analyzer and scored
fragments between 50 and 500 bp using ABI GeneMap-
per software v. 3.7. For each species, we calculated
AFLP gene diversity using the Bayesian method of Zhi-
votovsky [64]. We calculated FST values and performed
Mantel tests using Arlequin 3.0.

Mitochondrial DNA analysis
We PCR amplified and sequenced a 1600 bp region of
mitochondrial DNA from each individual using the pri-
mers and methods described by Béltran et al. [65]. This
region spans the 3’ end of COI, tRNA-Leu, and COII.
Contigs were assembled with Sequencher 3.1 (Gene
Codes Corporation, Ann Arbor, MI) and aligned by eye.
Arlequin 3.0 was used to calculate nucleotide diversity
(π) and FST values as well as perform Mantel tests.
DNA sequences were submitted to GenBank under

Table 6 Details of microsatellite loci genotyped in H. erato and H. melpomene

Ta (
oC)

Locus Primer sequence (5’-3’) Core repeat GenBank number H. erato H. melpomene Ref.

Hel02 F: TCAAAATGTTGCAGACCGAG (GA)13(GAAA)2(GA)2 AF481467 55 - [59]

R: TGCACTTCATTGTAAGGCGT

Hel05 F: TGCTGTCCATACCCAACTCA (GA)14CA(GA)4 AF481470 52 55 [59]

R: CGAACTCACAACCATCAGTCA

Hel10 F: TCTCACTTTCCCACACAGCA (CA)7TA(CA)10 AF481475 55 - [59]

R: TGTGAAGAGACACATGGGGA

Hel11 F: TTTCTTTTGAGTCCCGATGG (CA)12 AF481476 55 55 [59]

R: ATCTCAGAACTGGTCGGCAG

Hel12 F: CGGCACTTCATGTTTCATTT (TAG)4 AF481477 55 - [59]

R: GGCATTTGACTTCAGAATGG

Hel13 F: ATTTCATAGTAACGCCCTCC (CA)13 AF481478 55 - [59]

R: TGACTTATCGCTAAGGTCAA

Hm06 F: AAATAGTGTGCGGCGGAATA (CA)7 DQ020077 55 - [60]

R: TGGAGTAGAAATGCGGGTTTA

Hm08 F: AAAGCCTGAGTGCCGTATTG (CA)17 DQ020079 - 55 [60]

R: GCAATGTCAGCATCGAATGT

Hm16 F: CGGATAGACATTTGTTAAAGTGTG (CA)14 DQ020086 - 55 [60]

R: ACGAGGATGCGGACTACG

Hm22 F: CCTCGTCCAAACTCCAAAAC (GA)16 DQ020090 - 52 [60]

R: AACAATGTCACAACCATCGC

Table 5 Number of H. erato and H. melpomene specimens
analyzed from the eight habitat fragments in Rio Grande
do Norte, Brazil

Site GPS coordinates H. erato (N) H. melpomene (N)

MRT 6°5’5"S, 37°53’59"W 9 0

JND 5°53’23"S, 35°21’8"W 29 11

CTR 5°53’14"S, 35°13’9"W 20 21

CTL 5°54’25"S, 35°14’17"W 25 24

JQ 5°55’33’’S, 35°11’42’’W 23 23

FLN 6°4’59"S, 35°11’1"W 5 26

PP 6°13’23"S, 35°4’14"W 18 26

BF 6°24’49"S, 35°4’50"W 7 15
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accession numbers GU330064 - GU330070, GU330108 -
GU330114, and HQ701917 - HQ702184.
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