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Abstract

Background: Squalius alburnoides is an Iberian cyprinid fish resulting from an interspecific hybridisation between
Squalius pyrenaicus females (P genome) and males of an unknown Anaecypris hispanica-like species (A genome). S.
alburnoides is an allopolyploid hybridogenetic complex, which makes it a likely candidate for ploidy mosaicism
occurrence, and is also an interesting model to address questions about gene expression regulation and genomic
interactions. Indeed, it was previously suggested that in S. alburnoides triploids (PAA composition) silencing of one
of the three alleles (mainly of the P allele) occurs. However, not a whole haplome is inactivated but a more or less
random inactivation of alleles varying between individuals and even between organs of the same fish was seen.

assessment of gene expression patterns.

rivers over a wide geographic range.

In this work we intended to correlate expression differences between individuals and/or between organs to the
occurrence of mosaicism, evaluating if mosaics could explain previous observations and its impact on the

Results: To achieve our goal, we developed flow cytometry and cell sorting protocols for this system generating
more homogenous cellular and transcriptional samples. With this set-up we detected 10% ploidy mosaicism within
the S. alburnoides complex, and determined the allelic expression profiles of ubiquitously expressed genes (p/8;
gapdh and B-actin) in cells from liver and kidney of mosaic and non-mosaic individuals coming from different

Conclusions: Ploidy mosaicism occurs sporadically within the S. alburnoides complex, but in a frequency
significantly higher than reported for other organisms. Moreover, we could exclude the influence of this
phenomenon on the detection of variable allelic expression profiles of ubiquitously expressed genes (rpl8; gapdh
and B-actin) in cells from liver and kidney of triploid individuals. Finally, we determined that the expression
patterns previously detected only in a narrow geographic range is not a local restricted phenomenon but is
pervasive in rivers where S. pyrenaicus is sympatric with S. alburnoides.

We discuss mechanisms that could lead to the formation of mosaic S. alburnoides and hypothesise about a
relaxation of the mechanisms that impose a tight control over mitosis and ploidy control in mixoploids.

Background

The chromosome theory of heredity rests on the consis-
tency and stability of chromosome number and compo-
sition [1]. This consistency and stability is achieved by
the existence of extremely precise and tightly controlled
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mechanisms of chromosome replication and segregation
during cell divisions [2]. However, genetic information
and the way it is inherited are not so invariant and rig-
orous as previously thought [3]. Experimental findings
in reproductive genetics have shown that basic processes
such as mitosis, meiosis/gametogenesis, fertilization and
embryogenesis are often imprecise and present some
level of plasticity [4]. It is through this mechanistic plas-
ticity and the ability of organisms to cope with see-
mingly low frequencies of genetic aberrations that
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hybridization and polyploidy emerge as naturally occur-
ring phenomena. In this light, allopolyploids, like the
cyprinid fish Squalius alburnoides, constitute a paradig-
matic example of successful escapers from the canonical
rules of reproductive biology and heredity [5-9].

The Squalius alburnoides complex is endemic from
the Iberian Peninsula. It resulted from interspecific
hybridisation between females of Squalius pyrenaicus (P
genome) and males of an unknown species related to
Anaecypris hispanica (A genome) [reviewed in [10]].

S. alburnoides is described as an allopolyploid hybri-
dogenetic complex, where allopolyploid refers to an
increased ploidy level and hybrid genome composition
of particular forms within the system; hybridogenetic
refers to an alternative mode of reproduction; and com-
plex is the technical terminus denoting a natural system
composed of parental species and their hybrids, with
altered modes of reproduction and reproductive interde-
pendence [10].

Presently, and due to the altered reproductive modes
adopted by S. alburnoides and the reproductive relation-
ship established with several allopatric bisexual Squalius
species, mainly S. carolitertii (C genome) and S. pyrenai-
cus, a multitude of ploidy levels and genomic constitu-
tions can be found [10]. These include diploids (PA,
CA), triploids (PAA, PPA, CAA, CCA) and tetraploids
(PPAA, CCAA) depending on the geographical location
(Additional file 1, Figure S1). In the Iberian southern
basins an additional form is present, composed exclu-
sively of males designated as “nuclear non-hybrid AA’s”.
These males are also considered hybrids because they
carry mtDNA of S. pyrenaicus [6], despite their nuclear
non-hybrid genome composition that is maintained
through the reproductive dynamics of the complex
[reviewed in [11]].

Being composed of allopolyploid individuals, the S.
alburnoides complex is suited for qualitative and quanti-
tative assessments of allele-specific transcriptional con-
trol (e.g. P and A). In a recent work, Pala et al. [12]
showed a preferential expression of A alleles and an
absence of P allele transcripts in most PAA triploids
from one southern population (Sorraia River, Tejo
basin, additional file 1, Figure S1). Contrastingly, in two
analysed northern populations (from Douro and Mon-
dego river basins), for the majority of individuals, both
C and A genome alleles were simultaneously detected,
irrespective of ploidy level or genomic composition. As
such, the different patterns of allele usage found within
the complex correlate with the presence of P or C gen-
omes in the hybrid triploid forms, suggesting that differ-
ential expression regulation is due to differential
genome interactions [12]. Nonetheless, while for C-con-
taining forms the specimens were collected from two
distinct Northern river basins, the P-containing
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individuals were all from the same river (Sorraia, Tejo
basin) [12,13]. Thus, this phenomenon could not be
considered to be generally connected to the simulta-
neous presence of P and A genomes, or whether it is a
population-specific feature of the Sorraia River and/or
Tejo basin. This, however, is crucial information to bet-
ter understand the putative genomic interactions and/or
other mechanisms regulating gene transcription
dynamics in this allopolyploid organism.

The overrepresentation in whole organ extracts of a
specific allele could be explained by the presence of sev-
eral cell types, contributing unevenly to the total RNA
extracted. Moreover, this effect can be more evident in
an allopolyploid context when comparing organ-specific
expression patterns between individuals of different
ploidy and genomic constitutions. As such, the detection
of expression differences between individuals and/or
between organs can be the result of mosaicism within
an organ and of different levels of mosaicism between
organs. Indeed, ploidy mosaicism is well established and
documented in vertebrates [14,15]. Natural ploidy
mosaicism appears often associated with interspecific
hybridization, as in the case of the reproductive com-
plexes of the fish Poecilia formosa [16], Cobitis taenia
[17] and lizards of the genus Lacerta [18]. Hence, in this
context, the S. alburnoides complex is a likely candidate
for the occurrence of this phenomenon. Moreover, in
some species like Platemys platycephala diploid-triploid
mosaics appear to be geographically and population
dependent [19].

To determine ploidy and gene expression profiles, we
developed a flow cytometry and cell sorting protocol for
S. alburnoides tissues. This ensured a more homoge-
neous cells sampling for each organ with respect to cell
number, size and complexity. In these samples we deter-
mined the expression profile of three widely expressed
genes (rpl8, gapdh and B-actin) in liver and kidney of
diploid and triploid forms of S. alburnoides from three
major Portuguese southern river basins.

Methods

(a) Specimens collection, preliminary genotyping and
preparation of cell suspensions

Samples of S. alburnoides and S. pyrenaicus were col-
lected (and handled) with the approval of the portu-
guese National Forest Authority (AFN, fishing credential
n° 29/2011) from several locations, distributed by three
major river basins, corresponding to the southern distri-
bution range of the complex in sympatry with S. pyre-
naicus (Tejo, Guadiana and Almargem basins)
(Additional file 1, Figure S1). All individuals were
brought alive to the laboratory, morphologically identi-
fied and maintained under international ethical guide-
lines (ASAB, 2006).



Matos et al. BMC Genetics 2011, 12:101
http://www.biomedcentral.com/1471-2156/12/101

From each individual a fin clip was obtained and each
specimen was identified following the method described
in Morgado-Santos et al. [20]. DNA was obtained by
standard phenol/chloroform extraction from fins and
the specimens were genotyped according to Indcio et al.
[21]. Each individual was sacrificed with an overdose of
the anaesthetic MS222 and blood was collected directly
from the heart, diluted in freezing solution (40 mM
citric acid trisodium salt, 0.25 M sucrose, and 5%
dimethyl sulfoxide) and immediately frozen at -80°C for
at least 30 minutes (to allow stabilization). Liver and
kidney were collected and immediately digested for 15
minutes in 0.25% Trypsin (Sigma) and mechanically dis-
sociated/homogenized using 26 G needle syringes. A
HBSS solution containing 2% FBS was added to each
sample to inactivate the enzymes and an 1100 rpm cen-
trifugation for 8 minutes at 4°C was performed. Cells
were resuspended in a HBSS + 2% FBS solution and fil-
tered through a 40 pm nylon mesh. Cell numbers, mor-
phology and viability (percentage of living cells from
each organ after digestion treatment) were assessed
using a Hemocytometer and Trypan blue staining.

(b) Ploidy assessment

After preparation of the cell suspensions from liver, kid-
ney and blood, nuclear staining was performed to assess
ploidy diversity among cells of each organ in a subsam-
ple of each cell suspension. DRAQ5 (Biostatus) was
added to aliquots of 0.5 x 10° or 1 x 10° cells of each
cell suspension according to manufacturer instructions.

Chicken blood (2.5 pg of DNA per erythrocyte) was
used as standard.

Cells were analysed on a FACSAria cytometer (BD
Biosciences, San Jose, CA) equipped with both a 488
nm (15 mW output) Coherent Sapphire solid state laser
(for light scatter analysis) and a 633 nm (18 mW out-
put) JDS Uniphase HeNe air cooled laser for Draq5
excitation. Draq5 emission was detected using a 660/20
bandpass filter. Data was acquired using FACSDiva soft-
ware (BD Biosciences, San Jose, CA) and acquisition of
cells was performed with gating to exclude cell doublets
and debris (FSC-W x FSC-A). The total number of col-
lected events for ploidy determination was >10,000 per
sample.

(c) Cell sorting

To the remaining fraction of the cell suspensions of liver
and kidney (DRAQ5 free), propidium iodide (P.I: 1/5 of
stock solution at 0.5 ng/ml) was added and incubated
for 20 min at room temperature. Cells were analysed on
a FACSAria high-speed cell sorter using the 488 nm (15
mW output) Coherent Sapphire solid state laser for
light scatter analysis and P.I. excitation. P.I. emission
was detected using a 695/40 band-pass filter. Data were
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acquired using FACSDiva software and acquisition of
cells was performed with gating to exclude cell doublets
and debris (FSC-W x FSC-A), and dead cells (P.I.
positive).

From the light scatter dot plots (FSC-A x SSC-A)
obtained from each organ digestion, a consistent pattern
of events was identified between samples of the same
organ, and two main regions (A and B: Ap and By in
liver, Ak and By in kidney) were defined for each organ.
For a set of individuals that presented homogeneous
ploidy level, one region (B from liver and By from kid-
ney) was chosen for cell sorting to increase the intra
and inter sample homogeneity. Also, from three non-
mosaic individuals (Sq18, Sq29 and Sq31), composed
exclusively of 3 n cells, both A and B populations from
both organs were sorted to assess whether expression
mosaics correlate with different cell types. In one of the
individuals where ploidy mosaicism was detected, both
regions (A and B) from each organ were independently
sorted because they roughly corresponded to 2 n and 3
n cells.

At least 2 replicates of 100,000 cells were sorted from
each organ/fish directly to Buffer RLT Plus of the All-
Prep DNA/RNA Mini Kit (Qiagen) and immediately fro-
zen at -80°C for posterior nucleic acid extraction.

(d) Genotyping and genome expression determination of
the sorted cells

RNA and DNA were obtained from the previously fro-
zen cells using AllPrep DNA/RNA Mini Kit (Qiagen).

The isolated DNA of By sorted cell population of each
fish was used as template for the amplification of (-
actin gene. Genotyping of that cell population was per-
formed based on analyses of ff-actin PCR products
according to Sousa-Santos et al. [22].

From the extracted RNA, first-strand cDNA was
synthesized with RevertAid First Strand cDNA Synthesis
Kit (Fermentas) by using oligo dT primers. Three genes,
fS-actin, rpl8 and gapdh were amplified with specific pri-
mers (Additional file 2, Table S1) and according to the
following PCR conditions: pre-heating at 94°C for 5
min, 35 cycles at 94°C for 1 min, 53°C (rpl8)/56°C
(gapdh and fS-actin) for 1 min and 72°C for 1 min 30 s
and a final extension at 72°C for 15 min. The PCR pro-
ducts were directly sequenced and analysed. Poly-
morphic sites for the two genomes (P and A) for
Almargem and Guadiana fish populations were identi-
fied for the three genes using genome control sequences
obtained from S. pyrenaicus and “nuclear non-hybrid” S.
alburnoides from the mentioned rivers [GenBank acces-
sion numbers: JN790945; JN802520-JN802528;
JN813376-JN802582]. For Tejo specimens the work of
Pala et al. [12,13] provided the sequences for Tejo P
and A genome specific polymorphisms for the three
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genes [EU199435-6; EU542913-6]. In hybrid samples,
the presence of cDNAs derived from single genome
copies or from both genomes was determined through
sequence comparison by sequence alignment using
Sequencher ver. 4.0 (Gene Codes Corporation, Inc.) and
based on the identified polymorphic sites between gen-
omes (P and A). Forward and reverse sequences for
each gene were obtained per individual/per organ.

Results

(a) Intra-organ differences in ploidy - Detection of mosaic
individuals

A total of 40 fish were analysed using flow cytometry for
ploidy determination in blood, liver and kidney cell sus-
pensions: four S. pyrenaicus, three nuclear non-hybrid S.
alburnoides and 33 hybrids S. alburnoides (Table 1).

All the analysed S. pyrenaicus and nuclear non-hybrids
S. alburnoides displayed exclusively diploid cells in liver,
kidney and blood. From the analysis of the hybrid indi-
viduals, four were identified as ploidy mosaics (Figure
la; Table 1): three from Almargem and one from
Guadiana. In all four specimens, mosaicism was detected
both in liver and in kidney but not in blood (Figure 1a).
For mosaic individuals, the percentage of 2n and 3n
cells within each organ was assessed (Table 2). In kid-
ney, the percentages of 2n and 3n cells were quite con-
stant between individuals, amounting to around 50%. In
liver, the inter-individual variability was higher, and in
three of the four cases there were more of 3n than 2n
cells composing the organ. In blood, 100% of the cells
were diploid in one mosaic specimen and 100% triploid
in two others. In the fourth mosaic specimen vestigial
amounts, less than 1.5%, of 2n cells were detected.

(b) Determination of genotype and allele-specific
expression in mosaic and non-mosaic individuals

From the analysis of each cell suspension in the flow
cytometer a light scatter dot plot (FSC-A x SSC-A) of
each organ was obtained for all individuals (Figure 2).
The light scatter dot plots from all blood samples pre-
sented just one homogenous population and one region
was detected (Ap) (Figure 2a). From the light scatter
plots obtained from liver and kidney, despite some
variability found between individuals, two main dot
regions, (A and B: Ap and By in liver, Ak and By in kid-
ney) could be identified for each organ for each speci-
men (Figure 2b and 2c¢).

b1) Gene expression patterns according to organ and
geographical location

The allele expression pattern of fS-actin, rpl8 and gapdh
genes of By and By cells was assessed for a total of 20
individuals pooled from the Tejo, Almargem and Guadi-
ana samples (Table 3). As expected, all PA individuals,
regardless of the basin of origin, expressed
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Table 1 Specimens’ genotype, river basin, stream of
capture and ploidy status in liver, kidney and blood

Genotype' Code Basin Stream  Liver Kidney Blood
AL Bl Ax Bx Ag
AA Sq1  Almargem Almargem 2n 2n  2n  2n  2n
Sq22;
AA Sg23  Guadiana Murtega 2n 2n  2n  2n  2n
PA Sq6”  Almargem Almargem 3n 2n 2n/ 3n  2n
3n
PA Sq7;  Almargem Almargem 2n 2n  2n  2n  2n
Sq8
Sq24;
PA Sg25; Guadiana Foupana 2n 2n 2n  2n  2n
Sq26
PA Sq27  Guadiana Murtega 2n 2n 2n  2n  2n
PA Sq32 Tejo Ocreza 2n 2n 2n 2n  2n
Sq12;
Sq13;
Sq14;
Sq15;
PAA Sq17;  Almargem Almargem 3n 3n  3n 3n  3n
Sq18;
Sq19;
Sq20;
Sg21
PAA Sq11?  Almargem Almargem 3n 2n 2n/ 3n  3n
3n
PAA Sq16” Almargem Almargem 3n 2n 3n  2n 2n/3n
PAA Sg28; Guadiana Murtega 3n 3n 3n 3n  3n
Sg29
PAA 5q30°  Guadiana Caia 3n 2n 3n 2n 3n
PAA Sg31  Guadiana Caia 3n 3n 3n 3n  3n
Sq33;
PAA Sq34; Tejo Ocreza  3n 3n 3n 3n  3n
Sg35
Sq39;
PAA Sq40 Tejo Sorraia 3n 3n 3n 3n  3n
PP Sg2;  Almargem Almargem 2n 2n  2n  2n  2n
Sa3;
594;
Sa5
Sq36;
PPA Sq37 Tejo Ocreza  3n 3n 3n 3n  3n
PPA Sq38 Tejo Sorraia 3n 3n 3n 3n  3n

'Genotyping from DNA extracted from fin clips
2Ploidy mosaic specimen

A_ and B, defined cell dot regions in liver; A and B cell dot regions in
kidney

simultaneously A and P alleles (biallelic expression) in
both analysed organs for the 3 analysed genes (f-actin,
rpl8 and gapdh). In triploid PAA’s from Guadiana, the
expression of all 3 genes was also biallelic, both in liver
and kidney. rp/8 expression was as well consistently
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Figure 2 Typical FSC,;SSC dot plots obtained from the tissues
digestion. (a) whole blood (b) liver and (c) kidney cell suspensions
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Figure 1 DNA flow histograms of S. alburnoides liver, kidney
and whole blood cell suspensions. (a) example of one 2n/3n
mosaic specimen, (b) control diploid and triploid specimens. Plots

obtained from the analysis of Sq30; Sq2 and Sq9 respectively.
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biallelic in both organs in all analysed triploid PAA’s.
On the other hand, the expression profile of f-actin and
gapdh in PAA individuals from Almargem and Tejo was
more variable. Despite the majority of biallelic expres-
sion detected for the 3 genes in both organs in the indi-
viduals from Almargem, there was one individual (Sq9)
where only A-gapdh genome transcripts were detected
in kidney and in liver samples. In two individuals from
Tejo (Sq33 and Sq40), only A allele expression of gapdh
was detected in kidney, but it was biallelic in the liver of
these specimens and in both organs of the other Tejo
individuals. fS-actin expression was biallelic in liver and
kidney of all individuals irrespective of the geographic
origin, except in the liver of one Almargem specimen
(Sq14), which presented only A transcripts.

The expression pattern of triploid PPA’s from Tejo
was also determined for fS-actin, rpl8 and gapdh genes,
and it was found to be biallelic for the 3 genes in both
organs.

The genotype of both A and B cells in liver and kid-
ney of controls for expression mosaic (non ploidy
mosaic triploid Sq18, Sq29 and Sq31) was PAA, and the
expression outcome was biallelic (Table 3) for all the

Table 2 Percentage of diploid and triploid cells in liver,
kidney and blood of mosaic S. alburnoides

Code Liver cells Kidney cells Blood
2n (%) 3n(%) 2n(%) 3n(%) 2n (%) 3n (%)
Sq6 31 69 56,6 434 100 0
Sgi 23,6 76,4 549 45,1 0 100
Sq16 206 794 52 48 13 98,7
5930 58,5 415 51,2 488 0 100

individuals for both organs and for both A and B cell
fractions.

b2) Analysis of ploidy mosaics

In two of the individuals (Sq16 and Sq30) where ploidy
mosaicism was detected, the 2n and 3n cell pools (P3,
and P,,) in liver and kidney corresponded to the light
scatter defined A and B regions in each organ (P3, = Ay
= A and P,, = Bx = By) for both organs. This natural
separation allowed sorting of 2n and 3n cells from liver
and kidney without nuclear staining. The use of interca-
lating dyes for cellular DNA content measurements
proved to be not compatible with on column DNA/
RNA extraction (tested on samples Sq6 and Sql1, that
were this way lost, data not shown). Only from Sql6
and Sq30 individual P,,, and P, sorted cells were iso-
lated without nuclear staining but only from Sq16 good
quality DNA and RNA were obtained from both diploid
and triploid cell pools.

The 2n and 3n cell pools were genotyped as P, = Ak
= Ap = PAA genotype and P,, = Bx = By = AA
genotype.

The genome specific allele expression of gapdh, 3-
actin and rpl8 in both 2n and 3n cell pools was as well
assessed. It revealed that P3, = Ax = A where P and A
transcripts were detected, and in P, = Bx = B where
only A transcripts were detected.

Discussion

In the present work we studied the expression pattern of
S. alburnoides specimens from three southern Portu-
guese drainages (Tejo, Guadiana and Almargem), using
RNA obtained from homogeneous pools of cells form
whole organs. We used flow cytometry and cell sorting
to obtain homogeneous cell pools for RNA extraction
and to screen for the occurrence of somatic ploidy
mosaics in S. alburnoides.

Flow cytometry clearly revealed the occurrence of
diploid-triploid mosaicism in S. alburnoides complex.
The detected frequency of this phenomenon was
approximately 10%, indicating that the diploid-triploid
mosaics represent a non-regular component of the
genetic system of this complex rather than a stably
incorporated feature of its reproductive dynamics, as
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Table 3 B-actin, rpl8 and gapdh P and A allele-specific transcripts detected in liver and kidney cells of individuals from
Almargem, Guadiana and Tejo populations of the S. alburnoides complex

Code River Basin River site Ploidy Genotype' Liver expression Kidney expression
B-actin rpl8 gapdh B-actin rpl8 gapdh
Sq22 Guadiana Murtega 2n AA A A A A A A
Sq23 Guadiana Murtega 2n AA A A A A A A
Sql Almargem Almargem 2n AA A A A A A A
Sg3 Almargem Almargem 2n PP P P P p P p
Sq4 Almargem Almargem 2n PP p P p p p p
Sg5 Almargem Almargem 2n PP p P p p p p
Sq27 Guadiana Murtega 2n PA PA PA PA PA PA PA
Sq8 Almargem Almargem 2n PA PA PA PA PA PA PA
Sq29 Guadiana Foupana 3n/3n PAA PA/PA PA/PA PA/PA PA/PA PA/PA PA/PA
Sg31 Guadiana Caia 3n/3n PAA PA/PA PA/PA PA/PA PA/PA PA/PA PA/PA
Sq9 Almargem Almargem 3n PAA PA PA A PA PA A
Sq13 Almargem Almargem 3n PAA PA PA PA PA PA PA
Sq14 Almargem Almargem 3n PAA A PA PA PA PA PA
Sq18 Almargem Almargem 3n/3n PAA PA/PA PA/PA PA/PA PA/PA PA/PA PA/PA
Sqlé Almargem Almargem 3n/2n PAA/AA PA/A PA/A PA/A PA/A PA/A PA/A
Sq38 Tejo Sorraia 3n PPA PA PA PA PA PA PA
Sq40 Tejo Sorraia 3n PAA PA PA PA PA PA A
Sq36 Tejo Ocreza 3n PPA PA PA PA PA PA PA
Sq37 Tejo Ocreza 3n PPA PA PA PA PA PA PA
Sg33 Tejo Ocreza 3n PAA PA PA PA PA PA A

'DNA extracted from liver cells

reported in Platemys platycephala [19] and Liolaemus
chiliensis [23]. Interestingly, the observed 10% ploidy
variation is qualitatively different from previous reports
of the same nature such as P. formosa [16] where this
frequency was 2 orders of magnitude lower. In this case,
being the occurrence of mosaic P. formosa very rare, the
phenomenon has been considered as a mistake of a
complicated reproductive system without evolutionary
meaning. On another hand, being higher, the S. albur-
noides mosaic frequency raises questions about whether
the phenomenon has a real impact on the evolutionary
dynamics of the species.

According to Dawley and Goddard [14], there are two
possible main mechanisms that lead to diploid/triploid
mosaicism: delayed fertilization and genome loss.
Delayed fertilization occurs when the sperm pronucleus
is slow to fuse with the female pronucleus and so, fails
to participate in the first mitotic division. In this case
the sperm nucleus is kept in one of the daughter cells
(blastomeres) and fuses with a maternal nucleus only
later, after a variable number of mitotic divisions. Con-
sequently, a mosaic arises with triploid cells resulting
from fertilization and diploid cells resulting from an
initial “gynogenetic” development. This is the case of
the diploid-triploid mosaics of Misgurnus anguillicauda-
tus [24] and possibly of the naturally occurring 2n/3n
mosaic P. formosa [16]. Another mechanism is genome

loss. Here, one parental chromosome set is selectively
eliminated. This selective loss of a whole genomic set
has been documented to occur during oogenesis of
hybridogenetic unisexuals, such as Rana esculenta [25]
and Bufo pseudoraddei baturae [26]. Both of the above
mentioned mechanisms may be causing mosaicism in S.
alburnoides, since this hybrid complex presents many
reproductive pathways with altered oogenesis (with
genomic exclusion) and spermatogenesis [reviewed in
(11]].

Considering the 2n(AA)/3n(PAA) mosaic individual
(Sql6), the possible routes (Figure 3) leading to this
mixed genotype can be explained considering the repro-
ductive modes of the different S. alburnoides forms
[reviewed in [11]]. PAA triploid individuals are the most
abundant form of the complex, and they are normally
produced throughout the syngamy of a diploid PA
oocyte with a haploid A sperm, or also by syngamy of
one haploid A oocyte with a diploid PA sperm.
Although uncommon, other path that leads to PAA for-
mation is the syngamy of a diploid AA oocyte (produced
by PAA females) with a haploid P sperm. If a P sperm
nucleus enters a diploid AA ovum, initially remaining
quiescent but later undergoing amphimixis with an early
cleavage cell (Figure 3, route I), a 2n(AA)/3n(PAA)
mosaic individual would arise through delayed fertiliza-
tion. Another delayed fertilization scenario that could
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Somatic genomic exclusion

At

Figure 3 Possible mechanisms leading to the formation of 2n
(AA)/3n(PAA) mosaic S. alburnoides. Alternative developmental
routs within the two main mechanisms of mosaic establishment
(delayed fertilization and genomic exclusion) that can lead to the
formation of 2n(AA)/3n(PAA) mosaics. Eggs (large circles) and sperm
(small circles with tail) contribute with P .and A genomic
complements (maternal genomic contributions in black and
paternal genomic contributions in grey).

Delayed fertilization

-6-8-
-@- zas
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lead to the occurrence of a 2n(AA)/3n(PAA) mosaic is
dispermy (Figure 3, route II). In such case a haploid
oocyte has been fertilized by two sperm cells carrying
distinct genomics sets. If karyogamy occurred only
between the oocyte nucleus (A) and the sperm carrying
the homologous genome, while the P sperm nucleus
remains inactive during one or more embryo cleavages
and only later fusing with an AA blastomere, a chimeric
2n(AA)/3n(PAA) organism would be obtained.

The 2n(AA)/3n(PAA) mosaics may also result from
the loss of a whole P genome from single dividing cells
in a triploid PAA embryo (Figure 3 routs III; IV, V and
VI). Genomic exclusion is documented to occur during
gametogenesis in hybridogenetic unisexuals, S. albur-
noides including. Studies in the hybridogenetic water
frogs Pelophylax esculentus [27] revealed that the gen-
ome exclusion from the germ line occurs prior to meio-
sis, during the prolonged phase of oogonial
proliferation. So, the extension of this phenomenon to
non-germinal lineages is not a big leap. In fact, the pro-
cess of elimination of chromatin from pre-somatic and
somatic cells is not an oddity, being in fact a very com-
mon mechanism in differentiation and development
[reviewed in [3]]. The viable occurrence of 2n/3n
human mosaics (or mixoploids) is also known [reviewed
in [28]] and was, at least circumstantially, related to
genomic exclusion and a phenomenon described as
postzygotic diploidization. These human mixoploids had
two paternal genomic contributions, so they originated
through a process similar of what is illustrated in routes
V or VI of Figure 3.

Regarding the other S. alburnoides specimens diag-
nosed as 2n/3n mosaics, we were not able to genotype
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the 2n and 3n cell populations from liver and kidney, so
they might present other genomic compositions than 2n
(AA)/3n(PAA). Therefore, the possible ways and routes
that could lead to S. alburnoides 2n/3n mosaics may go
beyond the ones sketched in Figure 3.

Another aspect worth discussing is the percentage of
triploid and diploid cells that characterizes the mosaic
individuals. According to Lamatsch et al. [16], either in
the mosaics resulting from delayed fertilization or from
genomic exclusion (if occurring early in development), a
greater proportion of diploid cells, compared to triploid
ones, would be expected. Occurring early in develop-
ment, due to the lower DNA content, these diploid cells
should probably replicate their DNA faster than the tri-
ploid cells and would, therefore, be able to divide more
often than triploid cells. Nilsson and Cloud [29] postu-
lated that in organs in which cells are rapidly replicat-
ing, triploid cells are prone to lose extra chromosomes
and resume diploidy. So, if our results point to a phe-
nomenon of postzygotic diploidization by genomic
exclusion, it occurred in a not so early stage of develop-
ment, since no strong bias was detected towards diploid
cells (Table 2).

An unexpected result was found in blood ploidy mea-
sures. In this tissue, 100% of the cells were triploid in
two of the mosaic specimens, 100% diploid in another
and some vestigial 2n cells were detected in one sample
(less than 1.5%). Some cases confirm that the use of
blood is an accurate determinate of overall ploidy levels
[19], once the comparison of the proportions of diploid
and triploid cells in the blood with the ones determined
in other tissues of the same individual, it showed only
minor deviation. On the contrary, in our case, if only
blood have been analysed, the mosaics would have been
misdiagnosed as complete diploid and/or triploid indivi-
duals. The reasons why mosaicism is not present in the
S. alburnoides blood samples is difficult to explain, but
also in some specimens of the mosaic P. platycephala,
blood presented a non-mosaic phenotype while some
solid tissues of that same specimens were clearly 2n/3n
mixoploid [19]. In one case reported in humans, a 46,
XX/69,XXY mosaic also displayed a similar variation
between tissues. While the 2n/3n ratio was 2:3 in fibro-
blasts, in blood (lymphocytes) the ratio was 24:1 [30].
An explanation for these results is that the blood is
derived from the hematopoetic stem cells and has a
continuous proliferating ancestry which is different to
kidney and liver. While kidney and liver mosaicism may
reflect a situation that goes back to the embryo when
both organs were formed, the blood is reflecting the
adult situation. It may well be that in the hematopoetic
stem cell pool only one type of the two ploidy stages
will become more prevalent. If one ploidy state is advan-
tageous, there might be selection in the multiple rounds
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of hematopoetic stem cell divisions. So 2n could be fas-
ter cycling than 3n and finally only 2n cells will be seen.
On the other hand 3n stem cells might have a greater
allelic repertoire and this could be advantageous.

The choice of liver, kidneys and blood as target organs
was related to technical issues, because the procedure
was attempted also in other organs but with no success.
The analysis of gonads would have been particularly
interesting because it is know from experimental crosses
that triploid S. alburnoides females can in fact, sporadi-
cally produce haploid and triploid eggs [7].

Beyond the existence of ploidy mosaicism, also the
possible occurrence of expression mosaics within the
organs was cursorily prospected (Table 1: Sq18, Sq29
and Sq31). No differences were detected, neither
between cell populations nor genes, being the expression
pattern constantly biallelic (PA) so we have not found
expression mosaicism at this level of analysis.

The prospection for mosaicism was one of the goals of
this work because if happening it could have some
impact in the expression patterns within and between
organs. The pattern of preferential homologue genome
usage previously detected for Tejo (Sorraia River popu-
lation) [12,13] could have been affected or biased due to
mosaicism. So, we analysed the expression pattern of
three genes, rpl8, gapdh and B-actin, for several S.
alburnoides individuals (which ploidy status had been
assessed), not only from Sorraia River (Tejo basin), but
also from some other populations of Tejo and other
southern drainages (Guadiana and Almargem). We
detected for all analysed specimens from Tejo a prefer-
ential biallelic expression in the cells sorted, both from
liver and kidney, for B-actin and rpl8 genes, and also in
liver cells for gapdh gene. Nevertheless, P genome tran-
scripts of gapdh were not detected in the kidney cells of
two non-mosaic triploid PAA’s, one coming from Sor-
raia and one from Ocreza. Consequently, we can con-
clude that a) the detection of only A transcripts is a
phenomenon independent of ploidy mosaicism; and b)
although P genomic complement is present, it is not
transcribed in some tissues and from some genes, as
presented and discussed by Pala et al. [13]. This allele
silencing is not restricted to individuals from a single
river (Sorraia), but also occurs in other river (Ocreza)
from the same drainage (Tejo basin), and in different
drainages (observed also in Almargem basin), along the
range of sympatry with S. pyrenaicus.

When a preferential allelic usage of A in PAA fish
happens, that could be interpreted as a matter of geno-
mic homology. If genomic homology plays a role in reg-
ulating allelic expression we would predict that in PPA
individuals we should detect P expression, predomi-
nantly. Therefore, we extended the analysis of Tejo
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triploid S. alburnoides to three PPA individuals, a pre-
viously not analysed genomic constitution. For these
animals, expression is constantly biallelic (PA) suggest-
ing that genetic homology is unlikely to be at play in
regulating the profiles of allelic expression of triploid
individuals.

Also, the occasional occurrence of ploidy mosaics does
not correlate with the sporadically absent P allele
expression. Only A allele expression was observed to
occur in non-mosaic individuals, and when analysing
the expression pattern of the Sq16 mosaic specimen
(2n-AA/3n-PAA), the expression was biallelic (PA) for
the 3n (PAA) cells despite the monoallelic (A) expres-
sion of the 2n (AA) cells that composed the organs of
that individual.

In this work we detected the occurrence of ploidy
mosaics among S. alburnoides specimens, but we could
discard the influence of this phenomenon on the detec-
tion of variable allelic expression profiles in triploid
individuals. Alternatively, as previously proposed [13],
the absence of P allele transcripts in some genes of tri-
ploid PAA S. alburnoides, as we also report (Table 3),
can be explained by the occurrence of compensation by
gene-copy silencing. Consequently, PAA’ triploid indivi-
duals would only transcribe two alleles per gene (PA or
AA or PA). In fact, some studies predominantly in poly-
ploid plants [31,32] have been pointing to a process of
functional diploidization as a way to balance gene
dosage [33]. So, if a functional diploidization is neces-
sary and is in fact the way through which S. alburnoides
can cope with allopolyploidy, the ploidy status of the
organism is not relevant. In this scenario, the occur-
rence of mixoploidy may emerge from the relaxation of
the mechanisms that impose a tight control over mitosis
and ploidy control.

Conclusions

We have shown that ploidy mosaicism occurs sporadi-
cally within the S. alburnoides complex, but in a fre-
quency significantly higher than reported for other
organisms. Moreover, we could exclude the influence of
this phenomenon on the detection of variable allelic
expression profiles of ubiquitously expressed genes in
cells from liver and kidney of triploid individuals.

Finally, we determined that the expression patterns
previously detected only in a narrow geographic range is
not a local restricted phenomenon but is widespread in
rivers where S. pyremaicus is sympatric with S.
alburnoides.

Altogether, our results point to interesting avenues of
research on the evolutionary and mechanistic interplay
between mitotic checkpoints, polyploidization and
mosaicism.
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Additional material

Additional file 1: Figure S1-Distribution of S. alburnoides in Portugal
and areas of sympatry with other Squalius species involved in the
S. alburnoides polyploid reproductive complex. Figure S1-Distribution
of S. alburnoides in Portugal and areas of sympatry with other Squalius
species involved in the S. alburnoides polyploidy reproductive complex.
Distribution of S. alburnoides in Portugal and areas of sympatry with
other Squalius species involved in the S. alburnoides polyploid
reproductive complex. Rivers from which S. alburnoides and S. pyrenaicus
were sampled are marked in red in the first panel: a) Ocreza; b) Sorraia,
) Caia; d) Murtega; e) Foupana and f) Almargem. In the second panel
the major Portuguese river basins are identified.

Additional file 2: Table S1. Primer sequences and references for
each gene. Table S1. Primer sequences and references for each gene.
Primer sequences and references for each gene amplified for this work.
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