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Discovering joint associations between disease
and gene pairs with a novel similarity test
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Abstract

Background: Genes in a functional pathway can have complex interactions. A gene might activate or suppress
another gene, so it is of interest to test joint associations of gene pairs. To simultaneously detect the joint
association between disease and two genes (or two chromosomal regions), we propose a new test with the use of
genomic similarities. Our test is designed to detect epistasis in the absence of main effects, main effects in the
absence of epistasis, or the presence of both main effects and epistasis.

Results: The simulation results show that our similarity test with the matching measure is more powerful than the
Pearson’s c2 test when the disease mutants were introduced at common haplotypes, but is less powerful when
the disease mutants were introduced at rare haplotypes. Our similarity tests with the counting measures are more
sensitive to marker informativity and linkage disequilibrium patterns, and thus are often inferior to the similarity
test with the matching measure and the Pearson’s c2 test.
Conclusions: In detecting joint associations between disease and gene pairs, our similarity test is a complementary
method to the Pearson’s c2 test.

Background
Genes in a functional pathway can have complex inter-
actions. A gene might activate or suppress another gene,
so it is of interest to test joint associations of gene pairs.
Differing from epistasis (generally defined as the interac-
tion between different genes [1]), joint associations
herein include both main effects and interactions.
Haplotypes from two receptors can trigger significant
interactions affecting disease status [2]. Moreover,
detecting associations with the use of haplotypes con-
structed by several adjacent and highly correlated single-
nucleotide polymorphisms (SNPs) is an economical
strategy. These all enlighten us regarding ways to
develop methods for discovering gene pairs in associa-
tion with disease by using haplotypes.
There is a growing interest in detecting gene-gene

interactions [1,3,4], and some methods have been pro-
posed to detect interactions. A well-known approach to
detecting SNP-SNP interactions, the multifactor dimen-
sionality reduction (MDR) method [5-8], however, has

not been developed for testing haplotype-haplotype
interactions. Another commonly used method is the
classification and regression trees (CART) [9-12]. This
concept has been extended to analyze haplotype data,
known as the HapForest approach [13].
In this paper, we do not focus only on interactions

because the definition of independence between two
genes is arbitrary, often varying according to the field
under discussion, such as biology, statistics or epide-
miology [1]. Instead, we focus on detecting joint associa-
tions. To simultaneously detect joint association between
disease and two genes (or two chromosomal regions),
we propose a new test with the use of genomic similari-
ties. Similarity-based methods are less vulnerable to the
penalty of testing many markers or haplotypes, and can
be more powerful than conventional association meth-
ods in some situations [14]. Our proposed test is
designed to detect epistasis in the absence of main
effects, main effects in the absence of epistasis, or the
presence of both main effects and epistasis. We further
compare our method with the HapForest approach [13],
the Pearson’s c2 test, and the tests for SNP × SNP epis-
tasis via simulation studies.
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Methods
Similarity Measures

Let Sij
G1 and Sij

G2 be the marginal similarities of the ith

and jth subjects at genes G1 and G2, respectively. They
can be obtained based on unphased multi-marker geno-
types or statistically inferred haplotypes, and they can be
scaled from 0 to 1. Here we list some commonly used
similarity measures, which can be traced back to [15,16].
A. Diplotype perspective
A.1. Similarity measure based on identity-by-state (IBS)
allele sharing (referred to as ‘IBS’):
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where L is the number of loci considered in Gk; gi
k l,

and g j
k l, are respectively the genotypes of the ith and jth

subjects at the lth locus in Gk; s g gi
k l

j
k l( , ), , is the num-

ber of alleles shared in common for the ith and jth sub-
jects at the lth locus in Gk, which has possible values of
0, 1, and 2.
A.2. Similarity measure based on IBS inversely

weighted by genotype frequencies (referred to as
‘W-IBS’):
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k l( ), is the

frequency of genotype gi
k l, . The implication of this

weight is that subjects sharing rare alleles may have
more similar genomes than do subjects sharing common
alleles.
Joint Similarity Regarding Two Genes
A similarity measure accounting for the joint association
of genes G1 and G2 for the ith and jth subjects is

S S Sij
G G

ij
G

ij
G1 2 1 2, ,= × (1)

where Sij
G G1 2, ranges from 0 to 1, too. The joint simi-

larity ( Sij
G G1 2, ) will be high if both of the two marginal

similarities ( Sij
G1 and Sij

G2 ) are high. That is, with

respect to the two genes, the ith and jth subjects will be
regarded as ‘similar’ if they are similar in both genes.
B. Haplotype perspective
B.1. Similarity based on the counting measure for haplo-
types (referred to as ‘COUNT’):
Let hi and hj be the ith and jth categories of haplotypes

in a gene, hi
l and h j

l are the alleles at the lth locus on

hi and hj, respectively. The similarity based on the
counting measure for haplotypes is

S

s h h

Lh h

i
l

j
l

l

L

i j,

( , )

,= =
∑

1

where s h hi
l

j
l( , ) is 1 if the alleles at the lth locus

match for the ith and jth haplotypes.
B.2. Similarity based on the matching measure for

haplotypes (referred to as ‘MATCH’):
Let hi and hj be the ith and jth categories of haplotypes

in a gene, then the similarity based on the matching
measure for haplotypes is

S s h hh h i ji j, ( , ),=

where s(hi, hj) is 1 only when all alleles match for the
ith and jth haplotypes, otherwise s(hi, hj) is 0.
Joint Similarity Regarding Two Genes

Let h h hiu
k
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k= ( / )1 2 be the uth possible diplotype (i.e.,

the pair of haplotypes a subject possesses) in Gk of the

ith subject, where u n
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k= 1, , , and where n
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number of possible diplotypes in Gk for the ith subject.
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k( | ) is the posterior probability that the ith sub-

ject has the uth possible diplotype in Gk, given the

unphased genotypes ( gi
k ). P h giu

k
i
k( | ) can be inferred

by the expectation-maximization (EM) algorithm [17].
Then a similarity measure accounting for the joint asso-
ciation of genes G1 and G2 for the ith and jth subjects is
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the counting measure or the matching measure. Sij
G G1 2,

ranges from 0 to 1, too.
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Similarity Test
Let the dissimilarity accounting for the joint association
of genes G1 and G2 for the ith and jth subjects be

D Sij
G G

ij
G G1 2 1 21, ,= − . The test statistic to detect the joint

association of genes G1 and G2 is
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where nCS and nCN are the numbers of cases and con-

trols, respectively; ˆ
( , )p G G1 2

and ˆ( , )q G G1 2
are the vectors

of joint haplotype/genotype frequencies of genes G1 and
G2, for the case and control samples, respectively;

ΠD G G( , )1 2
is the dissimilarity matrix of the joint haplo-

types/genotypes of G1 and G2 (see Appendix I). When

ˆ ˆ( , ) ( , )p qG G G G1 2 1 2
= (cases and controls have a same hap-

lotype/genotype distribution), the test statistic is 0.5.

When ˆ ˆ( , ) ( , )p qG G G G1 2 1 2
≠ , the test statistic is larger than

0.5. This statistic tests whether the average dissimilarity
between cases and controls (between-group dissimilarity)
is significantly large, with the adjustment of the dissimi-
larity within the case group and that within the control
group (within-group dissimilarity). This is to mimic the
F test to compare the between-group variability with the
within-group variability. However, because of the com-
plex correlation introduced by pair-wise similarities, the
distribution of the test statistic is difficult to derive ana-
lytically, and permutation is required to obtain P values.

Simulation Study
Simulation studies were conducted to evaluate the per-
formance of our method. We extended the simulation
scheme of Li et al. [18] to two chromosomal regions. In
each region, 4,000 haplotypes across 300 kb were gener-
ated using the coalescent-based program ms [19]. The
effective population size was set at 10,000, the recombi-
nation rate per base pair (bp) per generation was set at
10-9, and 300 SNPs were simulated in each region. For
the human genome, recombination occurs at an average
rate of about 10-8 per bp per generation [20]. Our
recombination rate, 10-9 per bp per generation, is the
low end of the recombination rates in the human gen-
ome [18], representing a stronger linkage disequilibrium
(LD). We chose this rate because multi-marker

approaches are primarily designed for strong-LD
regions. In each chromosomal region, 2,000 diplotypes
were generated by randomly pairing the 4,000 haplo-
types. Then the 2,000 diplotypes of the first region were
randomly paired with the 2,000 diplotypes of the second
region, to form 2,000 subjects. In this way, we generated
300 datasets.
We then considered nine disease models listed in

Additional file 1. Additional file 1 lists the causal allele
frequencies, the penetrance values of two-locus geno-
types, and the marginal penetrance values of one-locus
genotypes, for all disease models. Model 0 was used to
evaluate Type-I error rates, while the other eight models
were used to evaluate powers. Models 1-6 exhibit inter-
actions in the absence of main effects when genotypes
conform to Hardy-Weinberg equilibrium. We used
these six disease models because they further challenged
the ability of our method to discover the joint associa-
tions (or ‘interactions’ in this situation) of gene pairs.
Models 7 and 8 exhibit both interactions and main
effects. Model 7 is the jointly dominant-dominant
model, which requires at least one copy of the disease
allele from both loci to be affected [21,22]. Model 8 has
the same penetrance table with Model 3, but has differ-
ent causal allele frequencies. We deliberately let the cau-
sal allele frequency of one locus be smaller than that of
another locus.
For each dataset, we first randomly selected two SNPs

(each from among 300 SNPs in a region) with similar
MAFs to those of the causal SNPs (the tolerable differ-
ence was set to be 0.02), pretending them as the two
causal SNPs. We then used the H-clust method [23,24]
to choose tag SNPs with a subset formed by 200 sub-
jects randomly drawn from the pool of 2,000 subjects.
Tag SNPs were chosen with quality (MAF > 0.1) and
correlation (the cut-off value for finding clusters was set
to be 0.85). In each repetition, cases and controls were
sampled with replacement from the pool of 2,000 sub-
jects, where case/control status was assigned according
to the genotypes of the two causal SNPs. After generat-
ing the phenotypes, the genotypes of the causal SNPs
were removed from our datasets. Each chromosomal
region was formed by eight SNPs - four to the left and
four to the right of every causal SNP.
We evaluated the performance of our method with the

matching measure (‘MATCH’) and the counting mea-
sure (‘COUNT’) of haplotypes. We also used two geno-
type similarity measures: ‘IBS’ and ‘W-IBS’. We
compared these with the HapForest approach [13]. Hap-
Forest is based on a tree structure, and is naturally suita-
ble for analyzing interactions. Following the instructions
of HapForest, we first invoked SNPHAP [25] to estimate
the haplotype frequencies for each individual. Then
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HapForest was used to identify haplotypes and haplo-
type-haplotype interactions in association with the dis-
ease. This method suggests potential epistasis among
significant haplotypes. For HapForest, a rejection of null
hypothesis was defined as the identification of at least
one significant haplotype from any of the two chromo-
somal regions.
The Pearson’s c2 test was also performed for compari-

son, in which the joint haplotype distributions of the
two chromosomal regions were compared between cases
and controls. Rather than using the asymptotic c2 distri-
bution, we randomly assigned the disease status in each
permutation and determined the P value of observed c2

statistics. To calculate haplotype similarities from
unphased multi-marker genotypes, we first inferred hap-
lotype phases by the EM algorithm, using the function
of ‘haplo.em’ in the ‘haplo.stats’ package [17]. The
obtained posteriors were then treated as weights, and all
possible haplotype pairs were considered with their
probabilities (see equation (2)). All the haplotypes with
frequencies less than 0.01 are considered to be rare hap-
lotypes. To avoid possible genotyping errors, we follow
Sha et al. [26] to merge each rare haplotype with its
most similar common haplotype (see the modified EM
algorithm proposed by Sha et al. [26]). For example,
Haplotype A (1-1-1-2-1-1-1-1) is considered to be a rare
haplotype because its frequency is less than 0.01. Haplo-
types C (1-1-1-1-1-1-1-1) and F (1-1-1-2-2-1-1-1) are
the most similar haplotypes to Haplotype A (both with
a similarity of 0.875 by using the counting measure),
and their haplotype frequencies are 0.2 and 0.1, respec-
tively. We merge Haplotype A with Haplotype C, the
most similar haplotype with the highest frequency. We
then update the haplotype data by replacing Haplotype
A with Haplotype C.
We also compared our methods with the tests for

SNP × SNP epistasis by using case-control data or case-
only data (with the –fast-epistasis command implemen-
ted by PLINK-1.07) [27]), hereafter referred to as ‘CS-
CN’ and ‘CS’, respectively. In our simulation, each chro-
mosomal region was formed by eight SNPs, and there
were 64 tests for SNP × SNP epistasis. We recorded the
minimum P value (Pmin) from among all the 64
P values, and then adjusted this Pmin on the basis of
Sidak correction [28], with an effective number of tests,
Meff. That is, we adjusted the minimum P value (Pmin)

by P Pcorrected adjusted
Meff

min, , min( )= − −1 1 .

We then evaluated the validity and power of the eight
tests with the 300 datasets. For each dataset, we
recorded the P values of 50 repetitions (so there were
15,000 P values in total); in each repetition, P values
were obtained with 1,000 permutations. Given a signifi-
cance level, the type I error rate (if under Model 0) or

power (if under Models 1-8) was the proportion of the
number of P values smaller than the significance level to
the total number of P values.
For CS-CN and CS, the P value used was

P Pcorrected adjusted
Meff

min, , min( )= − −1 1 . The effective

number of tests (Meff) was estimated by the eigenvalue-
based approach [29,30]. For each subject, we had 8+8
genotype coding values (0, 1, or 2), and 64 pair-wise
products of genotype coding values, one from a SNP in
region 1 and another from a SNP in region 2. Based on
n subjects, we obtained a 64 × 64 correlation matrix for
these 64 pair-wise products of genotype coding values.
Then the eigenvalues of this correlation matrix were cal-
culated to estimate the effective number of tests (see
[29,30], or see [31] for a nice review).

Results
Type-I Error Rates
In Additional file 1, Model 0 (disease status independent
of the composite genotypes) was used to evaluate the
type-I error rates. This model demonstrates our null
hypothesis: no main effects and no interactions. In this
model, the penetrance of each composite genotype was
set to be 0.05. The sample size was set at 200 subjects,
of which half were cases and half were controls. Figure
1 presents the type-I error rates under different nominal
significance levels (a). For a smaller than 0.2, the type-I
error rates of all the tests corresponded to the nominal
significance levels (a), suggesting the validity of these
tests. (For a larger than 0.2, the type-I error rates of

Figure 1 Type-I error rates under different nominal significance
levels. The x-axis is nominal significance level, and the y-axis is type-I
error rate.
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HapForest failed to match with the nominal significance
levels. HapForest reported P values as 1.0 when the
association signal was not strong. However, this makes
no influence on our following discussions because a is
usually set at a small value.)

Statistical Power
For all models except for Models 2 and 7, the total sample
size was set at 1,000 subjects, of which half were cases and
half were controls. For Models 2 and 7, the total sample
size was set at 150 and 50, respectively. If the sample size
was also set at 1,000 for Models 2 and 7, the powers of
these tests would be all close to 1. Therefore, we chose
two smaller sample sizes for effectively exploring the
power difference between these tests. The power perfor-
mances of these tests vary with the property of disease
mutants introduced at rare/common haplotypes.
We first define two scores to distinguish the two

situations. Let SC f fh
G

j k h
G

j k1
1 20 1 0 1= ≥ × ≥∑ ∑I I( . ) ( . )

and SC f fh
G

j k h
G

j k2
1 20 2 0 2= ≥ × ≥∑ ∑I I( . ) ( . ) , where

I(·) is the indicator function, fh
G

i

g is the frequency of

the ith high-risk haplotype at Gg, g = 1, 2. We estimated
haplotype frequencies based on all 2,000 subjects in a
dataset when calculating the scores of SC1 or SC2.
While the score of SC2 is designed for Models 1-4 and
7, SC1 is designed for Models 5, 6, and 8 (because of
their relatively low causal allele frequencies). Disease
mutants were considered to be introduced at rare/com-
mon haplotypes if SC2 ≤ 1/SC2 >1 (for Models 1, 2, 7);
SC2 = 0/SC2 = 1 (for Models 3, 4); SC1 = 0/SC1 = 1 (for
Models 5, 6); SC1 ≤ 1/SC1 >1 (for Model 8).
Figure 2 presents the powers of the eight tests when a

is set to be smaller than 0.1, stratified by the property of
disease mutants introduced at rare/common haplotypes.
For most models, the two most powerful tests are our
similarity method with the matching measure (MATCH)
and the Pearson’s c2 test. MATCH is more powerful
than the Pearson’s c2 test when the disease mutants
were introduced at common haplotypes. Conversely,
MATCH is less powerful than the Pearson’s c2 test
when the disease mutants were introduced at rare hap-
lotypes. For Model 1, haplotype-perspective methods
provide no power, while diplotype-perspective methods
(IBS and W-IBS) and the test for SNP × SNP epistasis
by using case-only data (CS) have better performances.
HapForest is not as powerful as MATCH and the

Pearson’s c2 test. HapForest suggests potential epistasis
among significant haplotypes. At each step, it builds a
classifier that optimally distinguishes cases from controls
based on haplotype data. This divides the whole sample
into smaller and smaller subgroups by maximizing the

local optimality at each node. However, the combination
of local optimalities does not assure us of an overall
optimality [32].
The tests for SNP × SNP epistasis by using case-con-

trol data or case-only data (CS-CN and CS) are not
powerful under most disease models. Although our dis-
ease status was influenced by the joint effects of two
SNPs (see Additional file 1), the tests for SNP × SNP
epistasis suffered from power loss because of the need
of corrections for multiple testing.
COUNT and IBS often have similar performances,

because similarity measure based on the number of
alleles in common between haplotypes (COUNT) is simi-
lar to that based on the number of alleles in common
between individuals (IBS). Model 1 is an exception,
because haplotype-perspective methods would not pre-
sent any power under this model (see the penetrance
values of two-locus genotypes for Model 1). W-IBS is a
counting measure inversely weighted by genotype fre-
quencies, and it is more powerful than COUNT and IBS.
For most models (Models 2-6 and 8), COUNT, IBS, and
W-IBS are inferior to MATCH, because the counting
measures are more sensitive to marker informativity and
LD patterns (results not shown). For Model 7, it requires
at least one copy of the disease allele from both loci to be
affected. Because the disease status is influenced by the
counts of disease alleles, methods with the counting mea-
sures (COUNT, IBS, and W-IBS) are more powerful.

Discussion
Detecting joint associations of candidate genes responsi-
ble for common human diseases is a well-recognized
issue. A candidate gene can contain many SNPs, and
high-dimensionality becomes an important issue. The
Pearson’s c2 test and the tests for SNP × SNP epistasis
suffer from power loss because of large numbers of
degrees of freedom and the need of adjustment for mul-
tiple testing, respectively. Compared with these conven-
tional association methods, similarity methods are less
vulnerable to the penalty of high-dimensionality.
Some similarity methods have been proposed based on

this consideration. Tzeng et al. [15] compared the case-
case similarity with the control-control similarity, because
haplotypes around a causal locus might be more similar in
two cases than in two controls randomly selected from the
population. However, as pointed out by Sha et al. [26], this
consideration might not be very plausible for complex dis-
eases which were presumed to be affected by many genes
and gene-environment interactions. The similarity within
controls is not necessarily smaller than that within cases,
because controls could be more likely to share protective
haplotypes. Therefore, Sha et al. [26] proposed a test sta-
tistic that compared the between-group similarity with the
within-group similarity. Our test statistics is also based on
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this consideration. Our test and Sha et al.’s test [26] will
have similar performances, given a same similarity
measure.
In this paper, we use the product of similarities of two

genes/regions as a new similarity measure, which can
account for the joint association of the two genes/
regions, including main effects and/or interactions. This
new measure can be built in the similarity test statistic.
Furthermore, our equation (3) can be used to
test the main effects (see Appendix II) or the
joint associations of gene triplets by using:

D S S S Sij
G G G

ij
G G G

ij
G

ij
G

ij
G1 2 3 1 2 3 1 2 31 1, , , ,= − = − × × .

The computational burden of our method is reason-
able for real data analyses, although permutation is
required to obtain P values. If there are 100 candidate
genes (each with eight tag SNPs), there will be a total of
4,950 combinations of gene pairs. With our experiences
in simulations, it might take two to three days to test
the 4,950 combinations for approximately 1000 subjects,
given an Intel Xeon workstation with four 2.0 GHz
CPUs and 2.0 GB of memory.
In general, our similarity test with the matching mea-

sure (MATCH) and the Pearson’s c2 test have better
power performances. However, because both are haplo-
type-perspective methods, they are not appropriate for

Model 1. Under this model, only the four heterozygous
genotypes (AA-Bb, Aa-BB, Aa-bb, aa-Bb) lead to the
disease. The implication is that besides the within-locus
interference, there is some between-locus interference,
and the two interferences cancel out [21] (so the dou-
ble-heterozygosity genotype does not lead to the dis-
ease). The four heterozygous genotypes (AA-Bb, Aa-BB,
Aa-bb, aa-Bb) generate four combinations of haplotypes:
AB (one with allele A and one with allele B), Ab, aB, ab,
with a same probability. Therefore, the four combina-
tions of haplotypes are equally distributed in cases and
in controls, and the haplotype-perspective methods can-
not provide any power to this model.
The concept of testing joint associations can be used

in the genomic distance-based regression [16]. Let D be
the distance/dissimilarity matrix with elements:

D S S Sij
G G

ij
G G

ij
G

ij
G1 2 1 2 1 21 1, ,= − = − × , and let X be the

matrix containing information of phenotypes, which can
be binary or continuous. Then the pseudo-F statistic
can be used to test the association of phenotypic simi-
larity with genetic similarity. The genomic distance-
based regression [16] has the potential to adjust for cov-
ariate effects. With the need of adjusting for covariates,
one can consider this approach with the joint similari-
ties among genes.

Figure 2 Powers of the eight tests, stratified by the property of disease mutants introduced at rare/common haplotypes. The x-axis is
significance level, and the y-axis is power. The top row is for disease mutants introduced at rare haplotypes; the bottom row, at common
haplotypes. The numbers shown in the parentheses are the numbers of repetitions summed from all the datasets with disease mutants
introduced at rare/common haplotypes.
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Conclusions
In detecting joint associations between disease and gene
pairs, our similarity test is a complementary method to
the Pearson’s c2 test.

Appendix
Appendix I: Derivation of equation (3)
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Note that ˆ
( , )p G G1 2

and ˆ( , )q G G1 2
are the vectors of

joint haplotype/genotype frequencies of genes G1 and
G2, for the case and control samples, respectively;

ˆ
( , )p G G

k l1 2
is the joint frequency of the kth category of

haplotype/genotype at G1 and the lth category of haplo-

type/genotype at G2; ΠD G G( , )1 2
is the dissimilarity matrix

of the joint haplotypes/genotypes at G1 and G2, where

its element D G G G G
k l m n

( , ; , )1 2 1 2 is the dissimilarity

between ( , )G G
k l1 2 and ( , )G G

m n1 2 .

Appendix II: Test for main effects
When testing for main effects, we use only one gene/
region in equation (3), i.e.,
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where D Sij
G

ij
Gg g= −1 and Sij

Gg can be calculated from

haplotypes or genotypes; ˆ
( )p Gg

and ˆ( )q Gg
are the vectors

of haplotype/genotype frequencies at gene Gg, for the

case and control samples, respectively; ΠD Gg( ) is the dis-

similarity matrix of the haplotypes/genotypes at Gg.

Additional material

Additional file 1: Table S1. The penetrance tables and causal allele
frequencies of nine disease models.
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