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Abstract
Background: Several founder mutations leading to increased risk of cancer among Ashkenazi Jewish individuals have 
been identified, and some estimates of the age of the mutations have been published. A variety of different methods 
have been used previously to estimate the age of the mutations. Here three datasets containing genotype information 
near known founder mutations are reanalyzed in order to compare three approaches for estimating the age of a 
mutation. The methods are: (a) the single marker method used by Risch et al., (1995); (b) the intra-allelic coalescent 
model known as DMLE, and (c) the Goldgar method proposed in Neuhausen et al. (1996), and modified slightly by our 
group. The three mutations analyzed were MSH2*1906 G->C, APC*I1307K, and BRCA2*6174delT.

Results: All methods depend on accurate estimates of inter-marker recombination rates. The modified Goldgar 
method allows for marker mutation as well as recombination, but requires prior estimates of the possible haplotypes 
carrying the mutation for each individual. It does not incorporate population growth rates. The DMLE method 
simultaneously estimates the haplotypes with the mutation age, and builds in the population growth rate. The single 
marker estimates, however, are more sensitive to the recombination rates and are unstable. Mutation age estimates 
based on DMLE are 16.8 generations for MSH2 (95% credible interval (13, 23)), 106 generations for I1037K (86-129), and 
90 generations for 6174delT (71-114).

Conclusions: For recent founder mutations where marker mutations are unlikely to have occurred, both DMLE and the 
Goldgar method can give good results. Caution is necessary for older mutations, especially if the effective population 
size may have remained small for a long period of time.

Background
Several diseases occur at higher frequency among Ashke-
nazi Jewish individuals [1], and furthermore, specific
mutations have been identified that are at a higher fre-
quency in this population than in other populations
around the world. For example, the mutation
BRCA2*6174delT is present in approximately 1% of Ash-
kenazi Jews [2,3], and is present at increased frequencies
in early-onset Ashkenazi Jewish breast cancer cases and
families. Similarly, the mutation MSH2*1906 G->C leads
to increased risk of colorectal cancer among Ashkenazi
Jewish individuals [4], and the colorectal cancer-suscepti-
bility allele APC I1307K appears to confer a relative risk
of 1.5-2.0 for colorectal cancer (CRC) on carriers [5]. For

each of the above three mutations, cases carry a haplo-
type in common surrounding the mutation site, suggest-
ing that all cases are descendants of a recent founder. It
has been argued that the high frequency of some of these
mutations is due to various population bottlenecks that
the population has undergone over the centuries [6,7],
leading to a unique genetic signature [8]. It is, therefore,
interesting to estimate the ages of these mutations in
order to compare whether they arose at a similar period
in the history of this population, or whether they have
very different ancestries. Several quite different methods
have been proposed for estimating mutation age, and
hence here we evaluate and compare three approaches,
and make recommendations as to when and where each
method is preferable.

The simplest method for estimating mutation age, pro-
posed by Serre et al. (1990) [9] and popularized by Risch
et al. (1995) [6], is based on the expected decay of linkage
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disequilibrium due to recombination, between a marker
and the mutation, over the generations between the ori-
gin of the mutation and today. However, consideration of
gene genealogies and models for coalescent times for dif-
ferent chromosomal lineages can lead to richer models
capable of incorporating population growth and account-
ing for the randomness of the gene genealogy [10]. A sim-
ple model for gene genealogies is the star genealogy
where all copies of the disease-causing mutation are
assumed to have one common coalescent time. Under
this model, all the histories of each copy of the mutation
are independent of one another; this assumption is quite
reasonable for fast-growing populations where the proba-
bility of two lineages merging is small. The simple esti-
mate (Equation (1), Additional file 1) is the maximum
likelihood estimate under this model. However, the star
genealogy is unlikely to be realistic. Assuming a bifurcat-
ing genealogy where all lineages split at the same time,
Labuda et al. (1996) [11] showed that the estimate of
Risch (1995) was likely to be biased downwards. They
developed a correction factor that increases the esti-
mated age and accounts for the population growth rate
(see Additional file 1, part A).

A multiple-marker likelihood for estimating mutation
age was implemented by Goldgar [12] and used to esti-
mate the age of several mutations for BRCA1 and BRCA2
[12,13]. This likelihood-based method includes the
effects of both recombination and mutation and allows
for a particular mutation to occur independently more
than once, but requires mutation-carrying haplotypes to
be known. Different mutation rates can be set for differ-
ent types of markers (e.g. dinucleotide, tetranucleotide).
Population growth is not taken into account. We modi-
fied this likelihood to allow for haplotype uncertainty; all
possible mutation-carrying haplotypes were included in
the likelihood together with their probabilities, as esti-
mated by PHASE, and we refer to this approach as the
modified Goldgar method (Additional file 1, part C).

Rannala and Slatkin (1998) [14] used a continuous-time
birth-death process to develop a likelihood for the distri-
bution of the intra-allelic coalescent for a rare disease
mutation; the generality of this model allows for the pos-
sibility of population growth and selection at the disease
locus. It is also worth noting that their method estimates
the time of origin of the mutation, which could be sub-
stantially older than the time of the last coalescent event.
In [15], the model was extended to multipoint linkage
disequilibrium mapping by calculating the probabilities
of transitions between marker haplotypes, given the posi-
tion of the disease locus. Markov Chain Monte Carlo
methods were used to estimate the likelihood function,
by sampling in sequence for tree topology and coalescent
times, the haplotype on which the mutation arose, the
position of the disease locus, and the ancestral haplo-

types. The sampled likelihood can then be used to obtain
estimates of parameters of interest. Since haplotypes are
estimated, prior assumptions about phase are unneces-
sary. Software for fitting their multilocus model is avail-
able [16], and is known as DMLE.

Datasets
We compared these three methods for estimating muta-
tion age using three datasets containing cases and con-
trols of Ashkenazi origin. Firstly, we examined 16
colorectal cancer cases carrying MSH2 1906G > C,
together with 109 controls [4,17]. Among the Ashkenazi
Jewish cases, two were from Canada, nine from U.S.A.,
one from France, two from Germany, and two were from
Australia. The Ashkenazi Jewish controls were randomly
sampled individuals from Montreal whose mutation sta-
tus was unknown at time of sampling. None of the con-
trols carried the mutation. Nineteen markers spanning
12.3 Mb on chromosome 2 were available for analysis,
including 6 intragenic markers. Previously, it was shown
that all cases carried an extended haplotype around the
mutation, and furthermore that this haplotype was seen
in ~10% of controls as well [4]. This dataset will be
referred to as the MSH2 dataset.

Secondly, we analyzed 56 cases of colorectal cancer
known to carry the APC I1307K mutation, together with
32 mutation carriers without colorectal cancer [5]. These
individuals were recruited as part of a matched case-con-
trol study of incident colorectal cancer in northern Israel.
In the original case-control study, matching of cases to
controls was based on year of birth, gender, clinic, and
Jewish or non-Jewish heritage [5] Among the 88 muta-
tion carriers that we have analyzed, 56 were from the set
of colorectal cancer cases and 32 were matched control
individuals. There were three Sephardic individuals, two
Arabs, and two individuals of unknown background. The
remainding individuals were Askhkenazi Jewish. Six
markers spanning 4.9 kb near the gene were analyzed.
This dataset will be called the I1307K dataset.

Thirdly, we analyzed 34 cases of breast cancer and 63
controls [2]. Cases were Ashkenazi individuals seen in the
cancer genetics service at the Memorial Sloan-Kettering
Cancer Center. Twenty-three anonymous Ashkenazi Jew-
ish controls were purchased from Israel (from the
National Laboratory for the Genetics of Israeli Popula-
tions), and forty controls were randomly selected from a
pool of Ashkenazi Jewish individuals in the New York
area. The data were taken from a genome-wide SNP scan,
but we focused on the region encompassing the BRCA2
gene. All cases were known carriers of BRCA2*6174delT;
controls were unaffected by breast cancer. In a genome-
wide analysis of 8487 markers, two markers were identi-
fied near BRCA2 with significantly different frequencies
between cases and controls, after adjusting for multiple
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testing [2]. Neither of these two markers was immediately
adjacent to the BRCA2 gene; one (TSC599767) was 1.75
Mb proximal, and the other (TSC1378449) was 822 kb
distal. We examined several subsets of the 48 available
markers spanning the mutation on chromosome 13: a set
of 14 markers covering 10 Mb around the mutation and
including the two markers previously identified as associ-
ated, a set of 10 markers spanning 5 Mb, and a set of 6
markers immediately adjacent to the mutation. This data-
set will be called the BRCA2 dataset.

Estimates of mutation age are contrasted across the
datasets and methods.

Results
Tables 1, 2 and 3 show estimates of mutation age for the
MSH2 data, the APC data, and the BRCA2 data, respec-
tively. Single marker results were summarized by the
median of the results across the available markers, and
detailed results are shown in Additional files 2 and 3.

For the MSH2 data, DMLE and the modified Goldgar
method give very similar results of approximately 17 gen-
erations, or an estimated mutation age of 425 years,
assuming 25 years per generation (Table 1). The sizes of
the likelihood-based confidence interval and the credible
interval also agree quite closely, estimating plausible
ranges of 14 and 9.7 generations respectfully. Among the
single marker results, the four markers furthest from the
mutation give estimates of 12-50 generations, but the
markers less than 1 cM from the mutation give very large
results that are not believable.

For the I1307K data, the discrepancies between the
approaches are somewhat larger (Table 2). Niell et al.
(2003)[5] estimated the mutation age to be close to 100
generations, with a likely range spanning 30 generations.

Assuming a growth rate of 1.125 per generation, our sin-
gle marker estimates (87.9 and 117.6 generations) and the
DMLE estimate (105.7 generations), are quite similar to
this. However, the modified Goldgar estimate is some-
what smaller at only 65.6 generations. Altering the
growth rate to 1.25 per generation leads to a substantially
smaller DMLE estimate of only 69 generations. The sizes
of the likely ranges around these estimates are also quite
variable: the DMLE credible interval spans 42.7 genera-
tions, whereas the likelihood-based interval spans only 19
generations.

Using the original method developed by Goldgar [12],
based on 10 short tandem repeat markers around
BRCA2, the age of the BRCA2*6174delT mutation was
estimated to be 29 generations [13]; applying a median
Labuda correction for a growth rate of 1.125, this
becomes 53.31 generations. Here, our estimates of muta-
tion age depend dramatically on the method used (Table
3). Again assuming a growth rate of 1.125 generations, for
6 markers very close to the mutation, DMLE estimates
81.3 generations whereas our modified Goldgar method
estimates only 33 generations. Estimates for marker sets
spanning 5 Mb or 10 Mb are a little older: for the likeli-
hood method, the estimated mutation age increases to
approximately 40 generations, whereas for DMLE the
estimated mutation ages are near 90 generations.

Discussion
Estimating the age of founder mutations will always be an
inexact endeavour. The true recombination and mutation
history of the relevant chromosomal segments is
unknown, and all models make strong assumptions that
cannot be verified. Nevertheless, multi-marker
approaches tend to give more consistent estimates than

Table 1: Estimates of mutation age for MSH2 1906G > C1.

Method - Markers Estimated mutation age
(generations)

Estimated mutation age
including correction for

growth with r = 1.5

95% credible interval 
(DMLE) or 95% confidence 

interval (Goldgar)

Single marker results - median 
of 10 markers2

59.22 69.01

Single marker results - median 
of 6 markers3

35.76 42.27

DMLE with growth rate r = 1.5 N/A 16.84 [12.75, 22.45]

Goldgar method 11 17.623 Without growth [6, 20] With 
growth [13.62, 26.62]4

1 Estimates are from Sun et al. (2005) [17].
2 Results from the 10 markers, individually, are listed in Additional file 2.
3 The four markers closest to the mutation were excluded since recombination fractions cannot be accurately estimated at those distances.
4 A Labuda correction of 6.62 generations was applied. This is the median Labuda correction for the six markers further from the mutation.
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single marker estimates. For the latter, excellent recombi-
nation fraction estimates are crucial, and hence, estimates
are particularly unreliable for markers very close to the
mutation where the recombination fraction cannot be
well estimated. Since the single-marker estimates are
based simply on the expected decay of one haplotype, no
estimates can be obtained when the allele frequency on
control chromosomes exceeds the allele frequency on the
mutation-carrying chromosomes.

To implement the likelihood and the single-marker
methods, it is necessary to know which allele lies on the
ancestral haplotype containing the mutation (the muta-
tion-associated allele at each marker). To obtain this
information, we estimated haplotypes using PHASE [18-
20] and used haplotype predictions to estimate which
were the associated alleles at each marker. For the single
marker method, we used the most probable mutation-
associated allele, but for our modification of Goldgar's
likelihood method, we included all predicted mutation-
carrying haplotypes, with their probabilities.

The multi-marker likelihood for one haplotype is calcu-
lated by proceeding outwards from the known disease
locus, while calculating the probabilities needed to
explain the data at each new marker, assuming either
recombination or mutation events as required; these are
then combined in a weighted sum over the possible hap-
lotypes. Although the result can be expected to underes-

timate the true mutation ages since population growth is
not taken into account, we corrected the estimates for
growth using the median of the single-marker Labuda
growth rate corrections. Although this method incorpo-
rates parameters for mutation at each marker, unlike the
DMLE model, over the time frames estimated for these
three data sets, the probability of marker mutation or dis-
ease locus mutation is small. For older events and tightly
linked markers, however, this method should have an
advantage over methods based solely on recombination.

The DMLE method estimates time to the origin of the
mutation rather than to the most recent common ances-
tor. Furthermore, this method includes consideration of
the possible variability in genealogies when calculating
the posterior credible intervals. These two factors would
lead one to expect wider confidence intervals and older
age estimates.

Based on the DMLE estimate, the MSH2 mutation is
estimated to be approximately 17 generations old, or per-
haps 425 years old assuming 25 years per generation, and
the likelihood-based estimate is very similar. These esti-
mates place the origin of the mutation about in the year
1575, during a period when the community was reason-
ably large and undergoing fast population growth. It is
very plausible that any new mutation would become rap-
idly and widely disseminated under these conditions [10].

Table 2: Estimates of mutation age for APC I1307K.

Method Estimated mutation
age (generations)

Estimated mutation
age including

correction for growth
with r = 1.125

Estimated mutation
age including

correction for growth
with r = 1.21

95% credible interval
(DMLE) or 95%

confidence interval

Estimate from Niell et 
al. (2003)[5]

87.9 - 118

Single marker - marker 
D5S1351,3

60.9 87.93 79.94

Single marker - marker 
D5S3462,3

69.5 117.60 101.56

DMLE N/A 105.76 69.16 r = 1.21: [56.00, 83.22]
r = 1.125: [85.96,

128.62]

Goldgar method3 28 65.57 53.55 r = 1.0: [20-39]
r = 1.125: [57.57, 76.57]

r = 1.21: [25.55, 64.55]

1 The recombination fraction used for D5S135 was 0.0046.
2 The recombination fraction used for D5S346 was 0.000385.
3 Labuda growth rate corrections are used for the single marker method and the Goldgar method.
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In contrast, we see substantial disparities between the
two multi-marker methods for the other two mutations.
The I1307K mutation is estimated by DMLE to have
arisen in perhaps 650 BCE (assuming r = 1.125), yet at
350 CE by the likelihood approach. Despite the large dif-
ference, these origin estimates are consistent with the fact
that the mutation was seen in several Jewish populations
that are not Ashkenazi, but share a common haplotype
around I1307K [21]. In [14], the BRCA2 6174delT muta-
tion was estimated to have arisen 29 generations ago,

using the original version of the likelihood method. Here,
our estimates, using the modified likelihood method on
new marker data and without correction for population
growth, were quite a bit smaller (9-17 generations), and
the DMLE estimates (including corrections for growth)
were substantially larger at 60 or 90 generations. In this
case, the choice of method, and to a lesser extent, the
choice of markers, makes a substantial difference to the
result. It is worth noting, however, that the confidence
intervals for the likelihood based approach are extremely

Table 3: Estimates of mutation age for BRCA2 6174delT.

Method Estimated mutation 
age (generations)

Estimated mutation 
age assuming growth 

rate r = 1.125

Estimated mutation 
age assuming growth 

rate r = 1.21

95% credible interval 
(DMLE) or 95% 
confidence interval 
(Goldgar)

Neuhausen et al. 
(1998) [13]

29 1-LOD interval [22, 38]

Single marker results, 
median of 28 markers1

25.17 38.94 36.02

DMLE, 6 markers N/A 81.27 51.77 r = 1.125: [62.13, 
102.34]
r = 1.21: [40.53, 64.78]

DMLE, 10 markers N/A 88.56 58.65 r = 1.125:[67.19, 
113.57]
r = 1.21:[45.48, 74.46]

DMLE, 14 markers N/A 90.50 60.53 r = 1.125:[71.37, 
114.24]
r = 1.21:[48.49, 75.23]

Goldgar method2, 6 
markers

9 33.31 25.42 r = 1.0: [≤ 1, 124]
r = 1.125: [≤ 
24.31,148.31]
r = 1.21 [≤ 
17.42,141.42]

Goldgar method2, 10 
markers

17 41.31 34.42 r = 1.0: [≤ 1, 70]
r = 1.125: [≤ 24.31, 
94.31]
r = 1.25: [≤ 17.42, 
87.42]

Goldgar method2, 14 
markers

15 39.31 32.42 r = 1.0: [≤ 1, 42]
r = 1.125: [≤ 24.31, 
66.31]
r = 1.21: ≤ 17.42, 59.42]

1The single marker result shows the median estimate of mutation age across 28 out of 48 markers near the mutation for which a single marker 
estimate was possible (see Additional file 3). The correction for growth was based on the median Labuda correction across 28 markers for 
which a single marker estimate of mutation age was possible.
2Labuda corrections for growth are used.
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wide and include the DMLE estimates and most of their
credible intervals. Using DMLE, the 6174delT mutation
may have arisen at approximately 200 BCE (r = 1.125) but
the most recent common ancestor is estimated at 1000
CE by the Goldgar likelihood (allowing for population
growth). The earlier estimate agrees perhaps better with
the rare finding of the BRCA2 6174delT mutation in Sep-
hardi Jews [22]. How can these differences be reconciled?

Since the DMLE method attempts to identify the time
in history at which the mutation in question arose, rather
than the most recent common ancestor, it is possible,
therefore, that if a mutation were to arise in a relatively
isolated Jewish community, it could be transmitted
within that community for a substantial number of gener-
ations before branching out into ostensibly unrelated
Jewish individuals. In this situation, the most recent com-
mon ancestor could be considerably closer to the current
time than is the origin of the mutation. This phenome-
non, while entirely speculative, could explain the data
obtained here, wherein DMLE estimates for both the
APC and BRCA2 mutation place the origin of these
mutations considerably further back in time than do the
other methods. While it seems unlikely that the origin
and wide dissemination of a mutation could be separated
by more than 1000 years, we do not know in what place
or Jewish sub-group this mutation arose, and prolonged
geographical or cultural isolation could potentially lead to
such an effect.

Also, the DMLE results change quite a lot when the
growth rate is altered; it appears that a slower growth rate
leads to much more potential variability in genealogies in
this data set. We used simple estimates of recombination
rates based on physical distance, and hence results based
on the 6 closest markers may be less accurate than those
based on markers spanning a longer distance.

The accuracy of any method will be only as good as the
accuracy of the required parameters. Over short time
scales (in evolutionary terms) such as those observed in
all three of our data sets, mutation rates will be hard to
estimate, and over short physical distances, recombina-
tion rates will be imprecise. Assuming that the chromo-
somal region of interest is well-behaved, the optimal set
of markers to use when estimating age would include
markers far enough away that the recombination fraction
can be adequately estimated, yet not so far that the asso-
ciated haplotype is no longer identifiable. Furthermore,
the growth rate of the population has a very large impact
on the estimated age of the mutations. Over these time
periods and for the Jewish population of these three data
sets, some estimates of population size are available.
However, the assumption of a constant growth rate over
time, which is used in both the Labuda correction and in
DMLE, is known to be untrue. The Ashkenazi population
experienced distinct periods of fast population growth

and subsequent population bottlenecks [7], and these
events are not taken into account in the estimation of
mutation age. Nevertheless, since both DMLE and the
Labuda correction assume constant growth rates, our
comparison of methods is still interpretable.

Some other approaches for estimating mutation age
have been proposed. One method is based primarily on
the rate of occurrence of mutations over time, near the
locus of interest [23]. This approach, which is imple-
mented in the software BATWING, assumes no recombi-
nation, and hence is ideally suited to very small regions of
the genome, or to mitochondrial DNA where there is no
recombination. Since mutations occur quite rarely, this
approach is particularly suited to estimating events that
occurred a long time ago. A more recent approach [24]
examines haplotype sharing between individuals, and
constructs a phylogenetic tree from the similarity matrix.
This approach is less dependent on linkage disequilib-
rium, but does not take the possible variability in the
genealogies into account.

Conclusions
Knowing the probable age of a mutation is primarily of
academic interest, however, it does provide some insights
into demography and history in special populations. Sev-
eral different models have been proposed for estimating
mutation age. We have demonstrated here that single
marker, likelihood-based, or coalescent-based methods
are likely to agree well when a mutation is young and the
population is fast-growing. However, for older mutations,
different methods will give more variable results. If some
of the markers are likely to mutate, then our modified
Goldgar likelihood is a good choice. However, in general,
the coalescent model implemented in DMLE is probably
the best representation of the gene genealogies and their
variability. This has been recently demonstrated in a
study where the date of origin of a recent mutation was
known, and the DMLE estimate was very accurate [25].

Methods
Population allele frequencies were estimated by allele
counting in control individuals. When haplotypes were
required, we used the PHASE algorithm [18-20] to esti-
mate the distribution of possible haplotypes for each indi-
vidual. Mutation-carrying haplotypes were then selected
from these distributions, together with their probabili-
ties.

Population growth rates were estimated using formula;
p1 = p0 * rg . Here, g is the number of generations, p1 and
p0 are the population sizes at different times, and the
growth rate is er -fold per generation. From [6], in the year
1900, there were 5,000,000 Ashkenazi Jewish individuals,
and there were 560,000 in the year 1765. Therefore the
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growth rate was approximately 1.5-fold per generation
(assuming 25 years per generation) over this period. This
fast growth likely started near the year 1500, when there
were estimated to be approximately 11,000 Jewish people
in a north-eastern European region; again the growth rate
up to the year 1900 can be estimated to be near 1.5. How-
ever, prior to the year 1500 there are little data on the size
of the Jewish population, which probably fluctuated but
remained small. We assumed lower growth rate estimates
of 1.125 and 1.21 for analyses of older mutations. The for-
mer figure was obtained by assuming the population was
near 11,000 in the year 600, and grew to 5 million in the
year 1900. The latter figure was obtained under the same
assumptions but assuming the population was 11,000 in
the year 1100. Niell et al. (2003) [5] also used an esti-
mated growth rate of 1.125-fold per generation, although
they assumed this growth rate applied between 200BC
and AD 0.

Single marker estimates of mutation age assumed that
recombination rates were approximately 1 cM/Mb, and
used the formulae in Additional file 1, part A. Estimates
of mutation age using the DMLE software assumed that
the affected individuals' chromosomes carry the disease
mutation and that the population from which these chro-
mosomes are sampled follows an exponential growth
rate. Another key parameter in DMLE is the proportion
of the population sampled; Additional file 1, part B gives
details of this calculation for the three datasets.

The modified likelihood method obtains the maximum
likelihood estimates for the number of generations by
direct search. Hence, all our estimated ages are given as
integers, since we searched for the maximizing parameter
values over a grid of size one generation. 95% confidence
intervals were estimated from log-likelihood differences.
No correction for population growth is included in this
likelihood, so we then added a simple correction for pop-
ulation growth to the results (adding the same correction
to the boundaries of the confidence intervals), using the
Labuda formula in Additional file 1, part A.

It is not possible to calculate estimates of mutation age
using all 48 markers available for the BRCA2 dataset:
computations become too lengthy, the region spanned is
large, and it is impossible to identify an ancestral haplo-
type. Therefore, we selected three subsets of markers and
compared the results across methods and across marker
subsets. The first subset contained 15 markers, consisting
of approximately every third marker from the set of 48,
and specifically including the two markers previously
shown to be associated [2]. This subset spans 10 Mb. Our
second subset contains 10 markers, spanning only about
5 Mb, and including one of the two previously associated
markers. Finally, we chose a set of 6 markers immediately
adjacent to the mutation; this set also included one of the

previously associated markers (see Additional file 3 for
details of which markers were used).
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