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selection.

Background: In genomic selection, a model for prediction of genome-wide breeding value (GBVY) is constructed
by estimating a large number of SNP effects that are included in a model. Two Bayesian methods based on MCMC
algorithm, Bayesian shrinkage regression (BSR) method and stochastic search variable selection (SSVS) method,
(which are called BayesA and BayesB, respectively, in some literatures), have been so far proposed for the
estimation of SNP effects. However, much computational burden is imposed on the MCMC-based Bayesian
methods. A method with both high computing efficiency and prediction accuracy is desired to be developed for

Results: EM algorithm applicable for BSR is described. Subsequently, we propose a new EM-based Bayesian
method, called wBSR (weighted BSR), which is a modification of BSR incorporating a weight for each SNP
according to the strength of its association to a trait. Simulation experiments show that the computational time is
much reduced with wBSR based on EM algorithm and the accuracy in predicting GBVY is improved by wBSR in
comparison with BSR based on MCMC algorithm. However, the accuracy of predicted GBV with wBSR is inferior to
that with SSVS based on MCMC algorithm which is currently considered to be a method of choice for genomic

Conclusions: EM-based wBSR method proposed in this study is much advantageous over MCMC-based Bayesian
methods in computational time and can predict GBV more accurately than MCMC-based BSR. Therefore, wBSR is
considered a practical method for genomic selection with a large number of SNP markers.

Background

Genome-wide polymorphisms are increasingly eluci-
dated in livestock and crops with the recent develop-
ment of the sequencing technologies. Accordingly, high-
throughput genotyping systems, such as high-density
SNP chips containing several tens of thousands of gen-
ome-wide SNP markers, have become available to effi-
ciently identify genotypes of individuals for a large
number of SNPs with low cost. As a new breeding tech-
nology utilizing the information of genome-wide dense
SNP markers, genomic selection was proposed by Meu-
wissen et al. (2001) [1]. In genomic selection, firstly a
well-fitted model for genomic breeding value (GBV) of a
trait is constructed by estimating SNP effects included
in the model as parameters using the individuals with
data of both genotypes of SNPs and phenotypes of a
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trait (training data set). Secondly, GBV is predicted for
individuals to be selected based on only genotype data
of SNPs (selection candidates) using the fitted model.
For the estimation of SNP effects, two Bayesian methods
called BayesA and BayesB were proposed as well as a
BLUP method and it was shown that BayesB could pre-
dict GBV most accurately of the methods using simula-
tion experiments [1].

BayesA method can be classified into a method of Baye-
sian shrinkage regression (BSR) [2] from a view point of
statistical methodology, which can handle a large number
of model effects requiring no variable selection. In BSR, a
model including of effects of all SNPs available are consid-
ered and the shrinkage estimation is applied for these SNP
effects assuming the appropriate prior distribution for the
effects such as a normal distribution with a mean 0. On
the other hand, BayesB method can be regarded as a mod-
ified version of stochastic search variable selection (SSVS)
[3]. In the original SSVS method, each SNP effect
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(regression coefficient) is assigned a mixture of two nor-
mal distributions both having means 0 but one with a
large variance and the other with a tiny variance. If the
posterior probability of the effect to belong to the distribu-
tion with a large variance is high, this effect is considered
as selected and included in the model. In the method of
BayesB, a mixture of a normal distribution with a mean 0
and a large variance and a distribution with point mass
only at zero which might be regarded as a normal distribu-
tion with both of a mean and a variance set at zero is
assumed for each SNP effect. Meuwissen et al. [1] used
block-updating for a SNP effect and a variance to prevent
the estimate from being stuck at zero. In this simultaneous
update, a variance is assigned a zero or sampled from a
prior inverted chi-square distribution following a prior
mixture probability, which is a prior probability of each
SNP to be included in the model, and then a SNP effect is
obtained from a conditional normal distribution given a
variance. Taking these things into consideration, we use
more general statistical terms BSR and SSVS for BayesA
and BayesB, respectively, hereafter in this paper for the
help of understanding of readers in broad research fields.
Although BayesB can be interpreted as a variant of original
SSVS as noted above, we use the term ‘SSVS’ for BayesB,
which could cause no confusion.

Usually, Markov chain Monte Carlo (MCMC) algo-
rithm has been applied to the model construction with
BSR and SSVS in genomic selection. However, MCMC-
based Bayesian methods are much time-consuming and
therefore might be prohibited for application as the
sample size and/or the number of SNPs become much
larger. Accordingly, a fast non-MCMC algorithm for
SSVS utilizing the analytical form of posterior means of
SNP effects was devised [4], where conditional posterior
expectation of each SNP effect could be analytically cal-
culated by assuming a mixture of a distribution with a
discrete probability mass of zero and a double exponen-
tial distribution for a prior distribution for SNP effects.
It was shown that this analytical SSVS method was
slightly inferior to MCMC-based SSVS but much super-
ior to BLUP in the accuracy of predicting GBV. It was
also shown that this analytical SSVS predicted GBV in a
very similar way as MCMC-based one with much
reduced computing time [4].

Xu (2003) [2] proposed BSR in the context of mapping
QTL effects on a whole genome to capture the polygenic
effects. This shrinkage mapping method was improved
and extended by some authors [5-7]. The efficiency of
QTL mapping using BSR was shown to be superior to that
using SSVS in [5]. Recently, Yi and Benerjee (2009) [8]
proposed an EM-based algorithm for the maximization of
the posterior distribution function in BSR.

In this study, we apply the EM algorithm described in
[8] for the model construction including estimation of
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SNP effects in BSR from a view point of genomic selec-
tion. Although generalized linear models were consid-
ered to deal with several types of phenotypes including
categorical traits and continuous polygenic traits in [8],
we confine ourselves to the case of continuous traits
here for simplicity. Moreover, we incorporate the weight
for each SNP according to the strength of its association
with a trait in the procedure of model construction with
BSR to improve the prediction accuracy. The weight of
SNP can be regarded as an approximate posterior prob-
ability of SNP to be included in a model and obtained
from a given prior probability of SNP inclusion with EM
algorithm. We call this model construction procedure as
wBSR, which means a modified BSR incorporating the
weights for SNPs.

Using the simulation experiments, we compare the
accuracies of EM-based wBSR with BSR and SSVS using
MCMC algorithm in the prediction of GBV for several
values of the prior probability, p, of SNP inclusion in
the model. It is shown that the accuracy of wBSR can
be improved in comparison with MCMC-based BSR
although the accuracy of wBSR is inferior to SSVS and
is influenced by the values of p and the hyperparameters
of the prior inverted chi-square distribution assumed for
the variances of SNP effects. Moreover, the computa-
tional cost of wBSR is much less than the MCMC-based
Bayesian methods. Therefore, wBSR is considered a
practical and useful method for genomic selection with
a large number of SNP markers.

Methods

In this section, we will describe the methods of BSR
(BayesA) and SSVS (BayesB) for genomic selection and
EM algorithm for BSR to obtain the estimates of para-
meters included in the model that maximize the poster-
ior distribution function. Subsequently, we will modify
BSR method (WBSR) by assigning the weight for each
SNP according to the strength of its association to a trait
for improvement of the prediction accuracy. The weight
of SNP can be obtained from a prior probability of each
SNP to be included in a model, which is also considered
in SSVS procedure, using EM algorithm as well as the
estimate of SNP effect. For the evaluation of the accura-
cies of the predicted GBVs, we apply wBSR with variable
prior probabilities of SNP inclusion for simulated data
sets as well as MCMC-based BSR and SSVS.

In the statistical model described below, we consider
not haplotype effect but the effect of each single SNP.
We assume that the number of SNPs genotyped is N
and a training data set including # individuals with the
records of phenotypes and SNP genotypes is available
for the estimation of parameters in the model. We also
assume that selection candidates consists of individuals
with only SNP genotypes, for each of which GBV is
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predicted based on the model with SNP effects esti-
mated with training data sets. We denote two alleles at
each SNP by 0 and 1 and three genotypes by ‘0_0’, ‘0_1’,
and ‘1 1.

Models for BSR and SSVS in genomic selection
In BSR (BayesA) method [1,2], the following linear
model is fitted to the phenotypes of a training data set:

N

y=Xb+2u1g,+e, (1)

I=1

where y = (y1, ¥2, ..., ¥,,)" is a vector of phenotypic
values of a trait for # individuals of a training data set,
u; = (up, Up, .., uy,) is a vector of genotypes of n indivi-
duals at the /th SNP with #; taking a value of -1, 0, or 1
corresponding to the genotypes ‘0_0’, ‘0_1’, or ‘1_1’,
respectively, g; is the effect of the Ith SNP, b = (by, b»,
..., by)" is a vector of fixed non-genetic effects with
dimension fincluding a general mean, X = (x;) (i = 1, 2,
wom;j=1,2, .., f) is a design matrix relating b to y and
e = (e}, ey ..., €,) is a vector of random deviates with e;
~N(0, 6,%). It is assumed that the prior distribution of
the SNP effect, g;, is a normal distribution with a mean
0 and a variance o,,°, which differs for every SNP.
Moreover, the prior distribution of Gglz is considered. In
this study, we assume that it is a scaled inverted chi-
squared distribution with a scale parameter S and a
degree-of-freedom v, ¥ (v, S), following [1,2]. The pos-
terior distributions of relevant parameters, b, g, O'g12 (=
1,2, .., N) and 6,2 can be obtained by Gibbs sampling
[1,2]. For the individuals of selection candidates, GBV
are predicted by Zl[ilulgl , where g; is the estimate of
g In this study, we consider not haplotype effect but
the single marker effect for g. The use of marker haplo-
types instead of the single marker genotypes would
cause slight modification of the model, but the proce-
dure for estimation of effects and prediction of GBV is
essentially the same.

In SSVS (BayesB) method, the model (1) is also
adopted but a prior probability, p, of each SNP to be
included in the model is considered. Usually, a small
value is given for p based on the assumption that many
of SNPs have actually no effects for a trait. The prior
distribution of g; is assumed to be a normal distribution
with a mean 0 and a variance 0'g12 in SSVS as in BSR,
whereas the prior distribution of O_g12 is expressed as a
mixture of two distributions corresponding to the inclu-
sion and the exclusion of the SNP as follows:

Gé = 0( probability 1-p),
ocg~x (v, S) (probability p)
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assuming that the prior is ¥ >(v, S) when the SNP is
included. When MCMC algorithm is applied for the
estimation of the parameters in SSVS, g; and 0'g12 are
jointly updated with Metropolis-Hastings chain [1]. The
(BS;SIQ/ predicted by SSVS is presented by Zf\:’l u;g; asin

EM algorithm for BSR

In Bayesian estimation, the inferences about the para-
meters are made based on the posterior distributions.
MCMC algorithms can be used for obtaining the poster-
ior information of the parameters in BSR method as
described above. However, the posterior mode of each
SNP effect which is a point estimate maximizing the
density function of the posterior distribution can be cal-
culated instead of a posterior expectation by some other
iteration algorithm including EM algorithm. In QTL
mapping using BSR method, Yi and Banerjee [8] utilized
an EM algorithm to search the posterior mode of the
marker effects included in the model. This EM algo-
rithm can be applied for genomic selection with BSR
method without any modification and we describe the
estimation procedure for the EM algorithm in this sec-
tion. Although, in [8], phenotypic data was transformed
to have a mean 0 and a standard deviation 0.5 following
Gelman et al. (2008) [9] and the derivations of the pos-
terior estimates of parameters were illustrated in the fra-
mework of generalized linear model, original phenotypic
data are subject to the EM algorithm here without any
transformation and we derive the posterior estimates of
parameters under the normality in what follows assum-
ing that the trait of concern is polygenic and normally
distributed.

The posterior distribution is given by combining a
likelihood of the data and the prior distributions of the
parameters. We denote parameters in BSR method as a
vector form 0,

2 2 2 2
0=(b,g1,82/-18N/Tg1:0 g2, Ogn.0¢ ).

The posterior distribution of 0 given the data of phe-
notypes, y, and genotypes of SNP data, U = (uy, u, ..,
uy), is denoted by g(0 | y, U) and written as

P (Yi—Zf:1 xih =N uigy)?
80y, U)=C(c)) ™" exp{-— / }

2
20,
N ) 2)
2y-1/2 _ 8] 2\~(v/2+1) _ N 2
[ Jeed ™ exp(-—=L)x (00> exp(-—7)}x p(blp(o?),
-1 ZGgl ZUgl

where C means a constant and it should be noted that
the likelihood of y given the model parameters and
genotypes is a normal distribution with a mean
Xb + 2;;]1 u,g, and a variance 0. and the prior of g is
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a normal distribution with a mean 0 and a variance o, 2,
the prior of which is the scaled inverted chi-squared dis-
tribution ¥ (v, S) as described above. The priors of b
and o,” are written by p(b) and p(c.?), respectively,
which are assumed uniform distributions over suitable
ranges of the values here.

Following [8], we regard the variances of SNP effects,
O'g12 (l=1,2, .., N), as missing data and replace 0'g12 by
the conditional posterior expectation of O'glz, denoted by
6;,, given other parameters as E-step in the EM algo-
rithm. Considering the expectation of scaled inverted
chi-square distribution, it is given as

2
o & tS
Ggl=

(1=12,..,N). (3)

v+1

As M-step, we obtain the values of parameters other
than Ggl2 (I =1, 2, .., N) maximizing the log-posterior

distribution with Gglz replaced by c}gl, which is
expressed from (3) as
log g(0]y, U)
Ef':l(}'i-Z{:Ixijh;-Ef:’luzigz)z gP+s

= - log(o) -

> v+3 .2
—;{(T)log(agm joent

2
20 2

The mode of each parameter which maximizes the
log-posterior can be given by solving an equation
derived by making the partial derivative of the log-pos-
terior with respect to the parameter equal to 0. Accord-
ingly the modes of /(! = 1, 2, .., N), b; j = 1, 2, ..., f)
and o, denoted as g;, b j and 672, satisfy the follow-
ing equations:

. 2?:11411@1'—2{:1xijbj—zk;alukiék)

8 5 (1=1,2,...,N), (4)
?:1 ull t0¢ /Ugl
- S (i~ S Xinbn - S ungn)
b= 0 2 (G=12....f) (5
i=1%jj
G2 o Zfl:l(yl"z{:lxijéj—zl[il uiign)? ©)
e " .

The EM algorithm for BSR is summarized as follows:

1. E-step: O_glz is estimated as & ;l shown in (3) that is
a conditional expectation given a current value of gj,
which is g, for/=1,2, .., N.

2. M-step: the values of g; (I = 1,2, ., N), b; (j = 1,2, ..., )
and o, maximizing the log posterior distribution of para-
meters, g;, b. and 63’ are given according to (4), (5)
and (6), where the value of each parameter are updated by
replacing the other parameters by their current values.
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E-step and M-step are repeated until the values of
parameters converge. We stop this iteration when the
change of values of parameters becomes small. For
example, when |é*—é| 2/ |é*|2 < 10°%, where 0" and
0 are the current and the previous value of the para-
meters, the EM algorithm is regarded to be converged.
We adopt this criterion for convergence of EM algo-
rithm in the study.

Modification of BSR

In SSVS, SNP effects can shrink more strongly than in
BSR due to the assumption that only a small number of
SNPs can be linked to QTL causing only a small portion
of SNPs to have significant effects and many other SNPs
to have negligible effects, which might result in the
improvement of prediction accuracy for SSVS using a
more parsimonious model. Although it was reported in
[5] that BSR could provide a more accurate result for
QTL mapping with less than a hundred markers than
SSVS developed by Yi et al. (2003) [10], SSVS that is
capable of deleting many SNPs with ignorable effects
might perform as well or better than BSR in the case of
a huge number of high-density SNPs involved in the
prediction of GBV. However, the EM algorithm
described above cannot be applied to SSVS because the
prior distribution of Gglz, a mixture distribution combin-
ing (v, S) and 0 with probability p and 1-p, respec-
tively, cannot be well treated with EM algorithm. To
devise a cost-effective and EM-based method providing
more accurate prediction for genomic selection with a
higher degree of shrinkage, we develop a new modified
BSR method incorporating a weight for each SNP
depending on the strength of its association with a trait.
In this method, we modify the model (1) by incorporat-
ing the variable y; indicating the inclusion of the /th
SNP in the model or exclusion of the /th SNP from the
model, where inclusion and exclusion of the SNP are
indicated by 7, = 1 and ¥, = 0, respectively. We assume
that the prior probabilities of 9, = 1 and ¥, = 0 are p and
1-p, respectively, as in SSVS. The modified model is
written as

N
Y=Xb+271uzgz te (7)
=

where X, b, u;, g; and e are as described in the model
(1). We assume that the priors of g; and 0_g12 are not
influenced by the inclusion (¥ = 1) or exclusion (y; = 0)
of SNP in the model (2) and are as adopted in BSR. The
method with the model (7), but utilizing these assump-
tion, is called wBSR, meaning a modified BSR incorpor-
ating SNP weight, in this study since the same EM
procedure as used in BSR for searching the posterior
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mode of parameters can be applied for this method and
it is equivalent to an EM-based BSR procedure proposed
by [8] when p = 1. We denote the variables indicating
the inclusion of SNP effects in the model in a vector
form as Y = (%1, %5 ... ¥n) which are treated as variables
to be estimated in wBSR.

In wBSR, the posterior distribution g(0, v | y, U) is
modified from (2) and written as g(0, y | vy, U)

2
=C pz’:h(l - p)z’:“?m(af)’"/2 exp{~ Zln:l(yrzjfﬂ xijbiizﬁl st }
20, (8)
H{(a, 2 exp(— )x( P exp(-—S )y plbp(od),
(o}
gl

where the priors p(b) and p(c,”) are assumed uniform
distributions. Applying the same argument as in EM
algorithm used for BSR, Gg]Z is replaced by its condi-
tional posterior expectation, 6;1, in E-step which is
given in (3). The variable o; indicating the inclusion of
SNP in the model is unobserved, thus, o; is also
replaced by its conditional posterior expectation &
which can be written, from (8) and under the assump-
tion that the priors of g; and Gglz are independent of oy,
as

& =E(r16,y4,y,1)
pexp{- E? 1(Yl_ullgl) /(202)}
peXp{ S (iuign)? /(208)}+(1-p) exp{-SIL, 77 2/(20d))

where v.; denotes y with the /th component ¥, deleted
and

ﬁ f
Yi=VYi— ijlxijbj - Zk#m“kigk-

In this expression, however, ¥ (j # /) is also unob-
served. Therefore, we modify the expression for & by
substituting §; with ¢ for j # [. Accordingly, the condi-
tional posterior expectation of ¥, &, is approximately
obtained in E-step for [/ = 1, 2, ..., N following the for-
mula:

pexpi- zrl(yl—u i81)%/(202)} ©)
T pexpl-XIL (Giwig) 2 /o) H(1-p)expi-SIL, 72 /(202)}

where y; =y, - 2] = Sl
In M-step, the values of b (=12 ..,/ and 6,> max-

imizing g(0| y, U), l;j , and 62, satlsfy the equations
that are slightly changed from (6) and (7) and given as

. xij(Vi—Zhezj xlhbh SN gl
b]- l 1Y ] =1 ( 1/21“.(]()

111]
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and

2?:1 (ri-%

{:1 xijb =3 yurig1)
: .

For g;, the value maximizing the posterior (8), §;,
depends on 9 and is given as g; = 0 for ¥ = 0 and

L uli(yi—zlexijﬁj—Ek;twkukiék) ’

%
Il
Il
=
»
Z,
=

n 2. .2,.2
=14 +0E [0 g

for 7, = 1. As ¥, is unobserved, we substitute & for ¥, in
the expressions of g;, b; and 2. For &, the expres-
sion corresponding to ¥; = 1 is adopted for the iteration.
In summary, §;, bj and c}ez calculated in M-step are
given as

o 2wy f 1xzb Zk;ezékuklgk)
4= = (10)

2 ull+ae /a

S % (vimZhoej xinbh i Emidn)

b= - (11)
i=1"ij
and

n

It should be noted that & given by (9) is an approxi-
mate posterior expectation of y; that might be different
from the posterior probability of SNP to be included in
the model. Therefore, & is referred to as the weight of
the SNP that is regarded as an indicator of the strength
of the association of the SNP with a trait. The SNP
assigned a large weight with & taking values near one is
considered to essentially contribute to GBV while the
contribution of the SNP assigned a small weight with &
taking values near the given prior value of p is regarded
as negligible. The degree of shrinkage can be affected by
the value of a prior probability p as well as the values of
hyperparameters, v and S, in &%(v, S), the prior distribu-

tion for O'g12. The predicted GBV of wBSR is expressed

N ~
as 2,:111181

Simulation experiments

We evaluated the accuracy for the prediction of GBV
using wBSR with variable p based on simulated data
sets. The population and genome were simulated
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following the way as in [11]. In brief, the populations
with an effective population size 100 were maintained
by random mating for 1000 generations to attain muta-
tion drift balance and linkage disequilibrium between
SNPs and QTLs. The genome was assumed to consist of
10 chromosomes with each length 100 cM. Two scenar-
ios were considered for the number of SNP markers
available in the simulations and data sets under two sce-
narios were denoted as Data I and Data II. In Data I,
101 marker loci were located every 1 ¢cM on each chro-
mosome with total of 1010 markers on a genome. In
Data II, 1010 equidistant marker loci were located on
each chromosome with a total of 10100 markers. We
assumed that equidistant 100 QTLs were located on
each chromosome such that a QTL was in the middle
of every marker bracket in Data I and the middle of
every 10th marker bracket in Data II. Therefore, there
were a total of 1000 QTLs located on a whole genome.
The mutation rates assumed per locus per meiosis were
2.5 x 107 and 2.5 x 10™® for marker locus and QTL,
respectively. At least one mutation occurred in the most
of all marker loci with such high mutation rate during
the simulated generations. In the marker loci experien-
cing more than one mutation, the mutation remaining
at the highest minor allele frequency (MAF) was
regarded as visible, whereas the others were ignored,
which caused the marker loci to have two alleles like
SNP markers. The polymorphic QTLs at which muta-
tion occurred only affected the trait, where the effects of
QTL alleles were sampled from a gamma distribution
with scale parameter 0.4 and shape parameter 1.66 and
were assigned with positive or negative values with
equal probabilities [1,11].

In generation 1001 and 1002, the population size was
increased to 1000. The population in the 1001th genera-
tion was treated as a training data, where the pheno-
types of a trait and SNP genotypes of the individuals
were simulated and analyzed with methods of genomic
selection to estimate the SNP effects in the model. The
phenotype of each individual in the 1001th generation
was given as a sum of QTL effects over the polymorphic
QTLs and environmental effects (or residuals) sampled
from a normal distribution with a mean 0 and a var-
iance 1 such that the heritability in the population was
expected to be 0.5. The population in the 1002th gen-
eration was used as selection candidates, where the indi-
viduals were only genotyped for 1010 and 10100 SNP
markers in Data I and Data II, respectively, without phe-
notypic records and GBV of each individual was pre-
dicted using a model with SNP effects estimated based
on the population in the 1001th generation. The true
breeding value (TBV) of the individual in the 1002th
generation was also simulated as a sum of QTL effects
corresponding to the QTL genotype and utilized for
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evaluation of the accuracy of predicted GBV but was
regarded as unknown and unavailable in the estimation
of SNP effects in the models. The accuracy was mea-
sured by the correlation between the predicted GBV
and TBV.

For the evaluation of the accuracies of the predicted
GBVs obtained by wBSR with p = 0.01, 0.05, 0.1, 0.2,
0.5 and 1.0, we simulated 100 and 20 data sets under
the scenario of Data I and Data II, respectively. The
accuracies of the GBVs predicted by BSR and SSVS
based on MCMC algorithm were also evaluated on the
same data sets in comparison with wBSR. In MCMC
iteration, we repeated 11000 cycles using a burn-in per-
iod of the first 1000 cycles. The values of parameters
were sampled every 10 cycles for obtaining the posterior
means. In SSVS, we investigated the accuracies of pre-
dicted GBVs for p = 0.01, 0.05, 0.1, 0.2 and 0.5 in Data I
but for p = 0.01, 0.05 and 0.1 in Data II due to large
computational time required for MCMC algorithm. SNP
markers with MAF less than 0.05, which were less than
10% of all SNPs, were not used for the estimation of
effects and the prediction of GBV. We set v = 4.012 and
S = 0.002 for MCMC-based BSR and wBSR with p = 1.0
that is equivalent to an EM-based BSR proposed by [8],
and v = 4.234 and S = 0.0429 for SSVS and wBSR with
other values of p. These values of v and S were deter-
mined following [1].

Results
The accuracies of the predicted GBVs obtained by sev-
eral methods for genomic selection were evaluated in
100 simulated data sets of Data I and in 20 data sets of
Data II, where we assumed that 1010 SNP markers and
10100 SNP markers were available on a whole genome
for Data I and Data II, respectively. The results of the
simulations were summarized in Table 1, where the
regression coefficients of the true GBV on the predicted
GBV were also listed for the purpose of reference as
well as the correlation coefficients. Although we evalu-
ated the accuracies of the prediction of GBV with the
correlation coefficients, the regression coefficient could
be used as an indicator of bias for the predicted GBV.
In Data I, SSVS based on MCMC-algorithm provided
the most accurate prediction for GBV with the accuracy
of 0.772 when p = 0.5 in the given settings of v and S
(Table 1). The accuracy of wBSR was affected by the
value of p and reduced as the value of p was decreased
from 0.5. The accuracies of wBSR was 0.760 at p = 0.5
and reduced to 0.699 at p = 0.01 in the same setting of
v and S. This was the case for SSVS, where the accuracy
of SSVS ranged from 0.772 at p = 0.5 to 0.718 at p =
0.01. The prediction accuracies with MCMC-based BSR
and EM-based BSR (wBSR with p = 1.0) were consider-
ably different in Data I. MCMC-based BSR provided
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Table 1 Accuracies of prediction of GEV in the methods
of genomic selection

Methods Data | Data Il
wBSR p =001 0.699 + 0.007 0843 + 0014
(0.950 + 0.005) (0961 + 0.009)
p =005 0.730 + 0.006 0857 + 0012
(0.947 + 0.005) (0.871 £ 0.010)
p =01 0.743 £+ 0.006 0.848 = 0014
(0.940 + 0.005) (0.882 = 0.016)
p =02 0.755 + 0.006 0.820 = 0.017
(0.924 + 0.005) (0.795 £ 0.022)
p =05 0.760 £+ 0.005 0.665 + 0.023
(0.868 + 0.007) (0.507 + 0.031)
p=10 0.697 + 0.007 0.840 = 0.015
(1.080 + 0.008) (0914 + 0.017)
BSR 0.748 + 0.006 0.838 + 0.015
(1.100 + 0.007) (0.885 + 0.019)
SSVS p =001 0.718 + 0.007 0.887 + 0011
(1.033 + 0.006) (1.002 + 0.009)
p =005 0.747 + 0.006 0.874 = 0.012
(1.036 £ 0.005) (0.942 £ 0.013)
p =01 0.762 + 0.005 0.846 = 0014
(1.027 £ 0.005) (0.865 £ 0.018)
p =02 0.772 + 0.005 nd.
(1.008 + 0.005)
p =05 0.773 £ 0.005 nd.

(0.944 + 0.005)

The means of correlation coefficients between the predicted GBV over 100
and 20 repetitions in Data | and Data Il, respectively, are listed with the
standard errors. The means of regression coefficients of true on predicted GEV
are given with the standard errors in the parenthesis.

WBSR: EM-based modified BSR method proposed in this paper.

BSR: MCMC-based Bayesian shrinkage regression method (BayesA).

SSVS: MCMC-based stochastic search variable selection method (BayesB).

For the parameters v and S, we set v = 4012 and S = 0.002 for BSR and wBSR
with p = 1.0 (EM-based BSR) and v = 4.234 and S = 0.0429 for SSVS and wBSR
with p < 1.0.

“n.d.” indicates that the analysis was not done.

significantly better predicted GBV with accuracy of
0.748 than EM-based BSR with accuracy of 0.697 con-
sidering the standard errors based on 100 repetitions as
shown in Table 1. It was shown that the accuracy was
significantly improved with wBSR at p = 0.5 in compari-
son with MCMC-based BSR in Data I although different
values of v and S were assumed. In Data II, SSVS with p
= 0.01 could predict GBV most accurately with the
accuracy of 0.887. The accuracy of wBSR was influenced
by the value of p also in Data II, which was 0.843 at p =
0.01 and attained to 0.857 at p = 0.05 but much reduced
to 0.665 at p = 0.5 (Table 1). The accuracy of SSVS was
reduced to 0.874 and 0.846 with p = 0.05 and p = 0.1,
respectively. MCMC-based and EM-based BSR provided
similar accuracies in Data II, which were 0.838 and
0.840, respectively.

In EM-algorithm used for wBSR, the posterior modes
of SNP effects maximizing the posterior distribution are
obtained whereas the posterior expectations of SNP
effects are given using MCMC estimation. Therefore,
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Figure 1 Plot of the prediction accuracy for GBV with MCMC-
based BSR against that with EM-based BSR in 100 repetitions
of Data |.

EM-BSR
0.85

0.75

| | | T
075 080 085 0890 095
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Figure 2 Plot of the prediction accuracy for GBV with MCMC-
based BSR against that with EM-based BSR in 20 repetitions of
Data Il

some inconsistency might be anticipated for the esti-
mates of SNP effects, which might make the difference
between accuracies of GBVs predicted by MCMC-based
BSR and its EM-based version, wBSR with p = 1.0. In
Data I, the difference between the accuracies with
MCMC-based and EM-based BSR was significant as
shown in Table 1. In Data II, however, the accuracies
with both types of BSR well agreed. We plotted the
accuracy obtained by MCMC-based BSR in the analysis
of each data set against that by EM-based BSR for Data
I and Data II in Figure 1 and Figure 2, respectively. As
seen in Figure 1, the inconsistency between the accura-
cies with MCMC-based BSR and that with EM-based
BSR appeared to be small in Data I although they were
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significantly deviated from each other. The good consis-
tency of the accuracies with both ESR methods was visi-
ble in Data II as shown in Figure 2. However, goodness
of the agreement between MCMC-based and EM-based
BSR seemed dependent on the property of analyzed
data.

Discussion

In this study, EM algorithm for the estimation of SNP
effects in BSR method for genomic selection was
described following the algorithm proposed in QTL map-
ping [8]. Moreover, BSR method was modified by incor-
porating the weight assigned to each SNP in the model
reflecting the strength of its association with a trait for
controlling the degree of shrinkage. For this method of
wBSR, the EM algorithm could be also applied. The com-
putational advantage of the wBSR method over MCMC-
based Bayesian methods was obvious and would become
remarkable as the number of SNP markers increased. In
the simulations, wBSR took less than 30 seconds for the
estimation of all SNP effects in each data set of Data I
(1010 SNPs) and less than 2 minutes in each data set of
Data II (10100 SNPs) on the average, whereas MCMC-
based SSVS took more than 30 minutes and more than
four hours in each data set of Data I and Data II, respec-
tively, when p = 0.05 on the average using a dual proces-
sor 2 GHz machine (Intel Xeon 2 GHz) without parallel
computing implementation. Although the computational
time required by MCMC-based BSR was less than that
by SSVS, it still took more than 25 minutes and more
than three hours on average in the analysis of a single
data set of Data I and Data II, respectively. The iteration
times in wBSR until attaining to convergence based on
the criterion adopted here ranged 30 to 120 depending
on the simulated data.

A fast non-MCMC algorithm for SSVS method, called
fBayesB, was proposed in [2]. In this method, the poster-
ior expectation of each SNP effect, g;, was analytically
evaluated instead of MCMC-based numerical calculation,
where the prior of g; was assumed to be a mixture of a
distribution with a discrete probability mass of zero and
a double exponential distribution. Although no compari-
son between this method of SSVS based on the analytical
integration and wBSR proposed here was made in this
study, the simulation experiments showed that wBSR was
also effective in computational time based on EM algo-
rithm, which is a simple algorithm without integral calcu-
lation, and performed better than MCMC-based BSR,
thus, wBSR could be regarded as a simpler method for
genomic selection with practical prediction accuracy and
computing efficiency as well as the SSVS method utiliz-
ing analytical integration (fBayesB).

As shown in Table 1, the accuracy of GBV predicted
was much influenced by the value p, a prior probability
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of SNP to be included in the model. The accuracy was
considered to also change along with the values of
hyperparameters, v and S, in ¥ (v, S), the prior distribu-
tion for O'glz. These prior parameters given a priori
determine the degree of shrinkage of estimation for SNP
effects and affect the accuracy of the prediction of GBV
as well as the property of data analyzed. We adopted
here the values of v = 4.234 and S = 0.0429 for SSVS
and wBSR with p < 1.0 and v = 4.012 and S = 0.002 for
MCMC-based BSR and EM-based BSR (wBSR with p =
1.0) since we considered the same scenario in simula-
tions as that used by [1] for the population size, muta-
tion rates of markers and QTL and the number of QTL,
in which these values of v and S were theoretically cal-
culated as suitable values for SSVS and BSR. However,
the suitability of these values of v and S might be
affected by the structure of analyzed data such as the
number of SNPs involved, especially for BSR including
all of SNPs in the model. Therefore, we performed addi-
tional analyses with MCMC-based and EM-based BSR
for Data I and Data II using the different values of v
and S. We adopted the same setting of v and S as used
in SSVS (that is, v = 4.234 and S = 0.0429), which
should cause less shrinkage for the estimate of SNP
effect, in the additional analysis with both types of BSR
in Data I. In Data II, the Jeffreys’ prior p(O'glz) o 1/0'g12
corresponding to v = 0.0, yielding strong shrinkage for
very small SNP effect but weak shrinkage for large
effects [8], was tested for the analysis with both types of
BSR. In the additional analysis of 100 simulated data
sets in Data I with the same setting of v and S as in
SSVS, the accuracy of EM-based BSR (wBSR with p =
1.0) much increased from 0.697 to 0.744 with standard
error (s.e.) of 0.006 while the increase in the accuracy of
MCMC-based BSR was slight, where the accuracy was
changed from 0.748 to 0.754 with s.e. of 0.006. In
another additional analysis of 20 repetitions of Data II
using the Jeffreys’ prior, the accuracies of both types of
BSR were decreased in comparison with the original
prior setting of v and S. We obtained the accuracy of
0.834 with s.e. 0.017 for MCMC-based BSR and the
accuracy of 0.809 with s.e. 0.016 for EM-based BSR with
the Jeffreys’ prior. Although there seems to be the possi-
bility of further improvement of the accuracy by choos-
ing the priors yielding more suitable degree of shrinkage
for the estimates of SNP effects, it is generally difficult
to construct such desirable prior for Gglz.

An actual strategy to determine the optimal values of
p, v and S would be to evaluate the accuracies obtained
by varying the values of these hyperparameters in small
steps over the suitable ranges, for example, 0 <p < 1, 0
<v < 5,0 <§ < 1. In genomic selection applied for the
actual data, cross validation might be a method of
choice for determining the suitable values of these
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hyperparameters. A number of replications in the esti-
mation of a large number of SNP effects are necessarily
required for finding the optimal values. When replicated
estimations are required, the advantage of EM-based
wBSR method over MCMC-based methods with respect
to the computational time would be much more
remarkable.

In [8], EM algorithm was applied for the shrinkage
regression model of QTL mapping in the framework of
generalized linear model, which included logistic model
and probit model as well as normal linear model
described in this study by choosing appropriate link
functions, following [9]. For the EM algorithm applied
to normal linear model described in [9], standardization
of outcome variable by rescaling it to have mean 0 and
standard deviation 0.5 was recommended. The influence
of data transformation on the accuracies in the predic-
tion of GBVs seems important as well as that of the
prior settings for g/ and o, °. These investigations would
be described elsewhere.

In large-scale genotyping data used for genomic selec-
tion including tens of thousands SNP genotypes for
thousands of individuals, a large number of SNP geno-
types may still be missing. EM-algorithm allows the
missing SNP genotypes to be inferred with posterior
expectations of the indicator variables of genotypes
given the information of the adjacent SNPs or pedigree
information. A step for the inference of missing geno-
types can also be included in our EM-based method of
genomic selection. Although the inference of missing
genotypes with EM-algorithm has been shown to be
effective for increase in power of QTL detection, how
prediction accuracy is affected by the inference of miss-
ing genotypes in genomic selection remains to be inves-
tigated. This topic should be addressed in the further
study.

We developed a program implementing EM algorithm
for estimating SNP effects, described here, in genomic
selection and applied the program for the simulation
study. The information of this program is provided
below (see Availability and requirements).

Conclusion

In this research, we described EM algorithm for a Baye-
sian method, BSR, that included effects of all SNPs in a
regression model as covariates in genomic selection and
was so far based on MCMC algorithm. Moreover, we
devised a modified version of BSR method called wBSR
by incorporating the weight assigned to each SNP
according to the strength of its association with a trait,
for which EM algorithm was also applicable. As results
of simulation experiments, it was shown that the accu-
racy in predicting GBV by wBSR was improved in com-
parison with MCMC-based BSR. Although the accuracy
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of wBSR was inferior to SSVS, wBSR was regarded as a
practical and cost-effective method taking great comput-
ing advantage over MCMC-based Bayesian methods
into account.

Availability and requirements

The source code of the program used in the simulation
study was written with Fortran 77 and a Windows ver-
sion of the executable program is available on the
request to the first author (hayatk@affrc.go.jp). The
sample input files and a brief manual of the program
can be also provided.
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