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Abstract

Background: Molecular estimates of breeding value are expected to increase selection response due to
improvements in the accuracy of selection and a reduction in generation interval, particularly for traits that are difficult
or expensive to record or are measured late in life. Several statistical methods for incorporating molecular data into
breeding value estimation have been proposed, however, most studies have utilized simulated data in which the
generated linkage disequilibrium may not represent the targeted livestock population. A genomic relationship matrix
was developed for 698 Angus steers and 1,707 Angus sires using 41,028 single nucleotide polymorphisms and
breeding values were estimated using feed efficiency phenotypes (average daily feed intake, residual feed intake, and
average daily gain) recorded on the steers. The number of SNPs needed to accurately estimate a genomic relationship

matrix was evaluated in this population.

estimation of genomic relationship matrices in cattle.

for the generation of a genomic relationship matrix.

Results: Results were compared to estimates produced from pedigree-based mixed model analysis of 862 Angus
steers with 34,864 identified paternal relatives but no female ancestors. Estimates of additive genetic variance and
breeding value accuracies were similar for AFl and RFI using the numerator and genomic relationship matrices despite
fewer animals in the genomic analysis. Bootstrap analyses indicated that 2,500-10,000 markers are required for robust

Conclusions: This research shows that breeding values and their accuracies may be estimated for commercially
important sires for traits recorded in experimental populations without the need for pedigree data to establish identity
by descent between members of the commercial and experimental populations when at least 2,500 SNPs are available

Background

The advent of national genetic evaluation in beef cattle
was made possible by the formulation of best linear unbi-
ased prediction (BLUP) via the mixed model equations
[1] and most livestock species now use BLUP for the eval-
uation of additive genetic merit and selection of parents
to produce the next generation of progeny. However,
most traits for which estimated breeding values or
expected progeny differences (EPDs) are computed mea-
sure animal outputs rather than inputs. Because of the
increased cost of production system inputs, interest has

* Correspondence: mmr5x7@mail. missouri.edu
1 Division of Animal Sciences, University of Missouri, Columbia, MO 65211-

5300, USA
Full list of author information is available at the end of the article

recently been stimulated for the development of efficient
methods for producing phenotypes and EPDs for the effi-
ciency of feed utilization. Feed costs in calf feeding and
yearling finishing systems account for approximately 66%
and 77% of total costs, respectively [2] and while increas-
ing growth rate by 10% has been estimated to increase
profitability by 18%, increasing the efficiency of growth of
feedlot cattle by 10% is expected to increase profitability
by 43% [3]. Other studies have suggested that increasing
the feed efficiency of feedlot cattle has seven to eight
times the economic impact of similar increases in growth
[4]. Selection to improve feed efficiency in cattle has been
difficult to accomplish [5] and little progress has been
made. Furthermore, guidelines have not yet been created
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to define the optimal trait upon which to practice selec-
tion. While early research focused on growth rate [6],
unfavorable correlated responses in other traits, such as
mature size, result in economic penalties in other sectors
of the production system [4,5]. The popularity of residual
feed intake (RFI), or net feed intake, first proposed by
KOCH et al. [6] as a measure of feed efficiency, is increas-
ing. RFI is phenotypically independent of growth rate and
metabolic body weight and can, if desired, be forced to be
independent of other factors such as body composition.
However, phenotypic independence does not guarantee
genetic independence between RFI and the traits upon
which it has been conditioned [7] and undesirable corre-
lated responses can occur if producers fail to select on
appropriate indexes. RFI also requires the routine and
accurate collection of average daily feed intake (AFI) data
on large numbers of individuals. Because AFI can rela-
tively easily be assigned an economic value, unlike RFI
[8], it is the most logical input trait to include in a selec-
tion index [9] which also includes economically relevant
output traits, to produce the optimal selection tool [10].
The cost and logistical difficulty of collecting feed
intake data on large numbers of animals necessitates the
consideration of alternative approaches to the estimation
of EPDs for this trait and the application of genomic
information is very appealing. While marker assisted
selection could be employed, the approach explains only
a small portion of the genetic variation within a trait and
neglects the variation due to quantitative trait loci (QTL)
with small effects for which markers have not been iden-
tified [11,12]. Conversely, Genomic Selection (GS) is an
option which allows simultaneous selection on all of the
QTL that underlie a trait. GS constructs prediction mod-
els for EPDs using a training population that possesses
phenotypes or EPDs and is genotyped at high density
using tens, or hundreds, of thousands of markers. Key to
the approach is to calibrate the number of markers that
are scored to the extent of linkage disequilibrium (LD)
that is present in the genome of the species. By genotyp-
ing an appropriately large number of evenly spaced mark-
ers which span the entire genome, most QTL are
expected to be in LD with at least some of the markers
[13]. Provided the training population is appropriately
large, GS prediction models can greatly increase the
accuracy of EPDs for traits on which phenotypes are
especially difficult or expensive to collect. The improve-
ment in selection response due to the application of GS
has been estimated to be twice that of traditional selec-
tion schemes due to dramatic reductions in generation
interval [14] and increases in selection intensity [15,16].
The U.S. dairy industry has aggressively developed sys-
tems to utilize genomic information in animal selection,
and has provided a model for implementation of GS in
the beef industry. Several methods have been proposed
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for the design of GS programs within dairy breeding pro-
grams, primarily using simulated data [15,17-21],
although it has not been clear that the applied marker
densities have been calibrated to the LD present within
the simulated populations. Three methods proposed for
the estimation of molecular breeding values include the
estimation and summation of individual allele or haplo-
type effects across all marker loci [15,17,21,22], the
replacement of the pedigree-derived numerator relation-
ship matrix with a genomic relationship matrix (GRM) in
traditional mixed models [14,16,19-21,23-25] or a hybrid
approach involving the use of a GRM to estimate EPDs
which are then combined with traditional BLUP of EPDs
in a selection index [14,16,21]. The multiple trait deriva-
tive free restricted maximum likelihood (MTDFREML)
[26] software has been modified to facilitate the predic-
tion of breeding values using GRMs [27]. While GS is
now being tested within commercial dairy cattle popula-
tions [14,28,29], traditional progeny testing schemes used
to achieve high accuracies on the bulls released for wide-
spread use are being modified to reflect the gains in selec-
tion response that are possible when bulls, at birth, have
estimates of genetic merit with accuracies that are similar
to those achieved, on average, with 11 daughter equiva-
lents [14].

The objective of this study was to evaluate the use of
GRMs within mixed linear model analyses for variance
component estimation, the correction of observations for
fixed effects, and for the estimation of molecular breed-
ing values for commercially important sires for traits
recorded in experimental populations with incomplete
pedigree data using feed efficiency traits as an example.
The number of SNP markers needed for accurate genera-
tion of a GRM was also explored.

Methods

Population Structure

Individual animal feed intake records including average
daily feed intake (AFI), residual feed intake (RFI) and
average daily gain (ADG), all measured in units of kg/d,
were obtained on 862 parent identified Angus steers born
between 1998 and 2005 at the Circle A Angus Ranch (Ibe-
ria, Stockton and Huntsville, MO; n = 653) and research
farms participating in the MFA Inc. feeding trials
(Thompson and Greenley, MO; n = 209). All animals
were individually fed using commercial feedlot rations
either at the Circle A Ranch in Iberia (using Calan gate
feeding systems), or at the University of Missouri (using
GrowSafe feeding systems). While daily feed intake data
were available for all animals, live weights were taken
only at the beginning, midpoint and ending of the feeding
trial. Descriptive statistics for the collected phenotypes
are presented in Table 1. Blood samples (10 mL) were col-
lected on 698 of the steers at the Circle A Ranch on the
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Table 1: Descriptive Statistics: Descriptive statistics for three feed efficiency traits and estimates of variance components
and heritability from linear model analyses incorporating either numerator or genomic relationship matrices.

Traita N Mean Min Max Var h2
oA o;
AFI 862 11.0326 6.0599 15.2116 3.0323 0.1436 0.7786 0.16
RFI 862 0.0026 -3.3386 4.9952 0.7626 0.1147 0.4364 0.21
ADG 862 1.5363 0.0231 2.3443 0.1077 0.000002 0.552 0.00
AFI 698b 10.8943 6.0599 15.2116 3.1608 0.1404 0.8680 0.14
RFI 698b -0.0201 -3.3412 4.9952 0.8255 0.0849 0.5286 0.14
ADG 698p 1.5175 0.0231 2.2941 0.1105 0.0053 0.0528 0.09

aAverage daily feed intake, AFI; residual feed intake, RFI; and average daily gain, ADG; all measured in units of kg/d.
bDNA samples were available on only 698 of the 862 phenotyped steers. Variance components for these three analyses were estimated using

the GRM.

first weigh date before commencement of the feeding
trial. No blood samples were collected during the first
year of the feeding trial and of the 862 animals with feed
intake records only 698 had DNA available for analysis.
The samples were stored in vacuum tubes containing 15
mg of EDTA (Coviden, Mansfield, MA) on ice while
being transported. The tubes were centrifuged and the
white blood cells removed for DNA extraction. All animal
procedures were approved by the University of Missouri
Animal Care and Use Committee.

Cryopreserved units of semen were also obtained for
1,721 registered Angus sires born between 1956 and 2003
that were used in artificial insemination (AI) within the
U.S. Angus population. These animals formed paternal
lineages which included the sires of the steer calves and
their male ancestors. Genomic DNA was isolated from
both the white blood cell and semen samples by protei-
nase-K digestion followed by phenol:chloroform:isoamyl
alcohol extraction, and ethanol precipitation [30]. Addi-
tionally, complete pedigrees spanning up to 62 ancestral
generations were obtained for the AI sires from the
American Angus Association.

Dams of steers were from a population of unregistered
commercial purebred Angus cows with pedigree infor-
mation that was determined to be unreliable based on our
attempts to phase chromosomes and infer missing geno-
types using linkage information. Because the Circle A
Ranch utilized an animal identification system based
upon year of birth (two digits) and birth order within
each year and the pedigree file did not contain birth date,
several alternate pedigrees were possible for many of the
steers. Since not all of the putative maternal grandsires
had been genotyped with the BovineSNP50 assay, we
were unable to correctly identify the maternal pedigree
on many of the steers and the parents of each of the dams
were treated as unknown for all analyses. However, iden-

tifiers for dams were retained to preserve the identifica-
tion of progeny that were maternal half-sibs. The 862
(698 with DNA) steers had 118 (100) sires and half-sib
family sizes ranged from 1 to 81 progeny.

Data Acquisition
Residual feed intake was calculated as the difference

between observed and expected feed intake (1/3\1 ), which
was predicted from the regression of average daily feed
intake on a dry matter intake basis (AFI) on ADG and
metabolic midweight (MMW; mid-weight075) as follows:

RFI = AFI — FI
FI = by + b, ADG + byMW 7.

Intake and gain data were obtained on feeding groups
of 96 steers gathered over a five year period from 1999 to
2003. Cattle were an average of 326 days of age when
entering the trial and were fed for an average of 110 days.
This feeding period has been found to be sufficient to
accurately measure both gain and intake in British breeds
[31]. Weights were measured at the start of ration accli-
mation, on the first day of the test, mid-test and at the
end of the test. As these cattle were commercially owned,
the specific ration composition is not known, however all
animals within a feeding group were fed the same ration.
RFI was calculated individually for each feeding group
and the mean R2value for the regression models was 0.49.

SNP genotypes were acquired using the Illumina
BovineSNP50 assay [32-34] and genotypes were called
using the BeadStudio genotyping module 3.2.32 (ILLU-
MINA Inc., San Diego, CA). After screening for Mende-
lian inheritance to verify the accuracy of the sire
pedigrees, genotypes for nine of the sires were found to
be inconsistent with their paternal pedigree and two were
identical twins produced by embryo transfer and these
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animals were removed from the data set. The genotypes
were also filtered to require minor allele frequency
(MAF) to be >0.05, and call rate to be > 95% which
resulted in 41,028 SNP being retained for analysis on 698
steers and 1,707 Al sires. Average MAF for the 41,028
SNP was 0.28 and the average spacing between the 39,971
SNPs assigned to chromosomes (including 487 on BTAX)
in the Btau4.0 assembly was 65.73 + 68.45 kb. Finally, a
total of 0.58% of the genotypes in this dataset were miss-
ing and these were imputed using fastPHASE [35] with
the Btau4.0 positions and the -T10 and -K20 options.

Additive effects analysis

Pedigree information on 862 Angus steers including their
dams and 34,864 identified paternal ancestors was used
to generate a numerator relationship matrix (NRM) [1]
representing the covariance structure among breeding
values of all individuals. Variance components, breeding
values and residuals were estimated using the multiple
trait derivative free restricted maximum likelihood
(MTDFREML) program [[26], VAN VLECK pers.
comm.]. Model parameters were estimated iteratively and
convergence was assumed when the variance of the -
2*log-likelihood was < 1 x 10-12. The animal model [36]
used for variance component estimation and genetic pre-
dictions was:

y=Xb+Zu+e

where: y is a vector of phenotypes on the 862 steers, X is
an incidence matrix relating observations to feeding
pens, b is a vector of pen effects, Z is an incidence matrix
relating observations to animals, u is a vector of normally
distributed breeding values, and e is a vector of indepen-
dent normally distributed random residuals. The vari-

ance of u is Ac; where A is the NRM and o} is the
additive genetic variance; the variance of e is Io; where I

is the identity matrix and & is the residual variance; u
and e were assumed to be uncorrelated.

Preliminary analyses indicated that birth year (Y), birth
season (S) and feeding pen (PEN) were significant
sources of variation for almost all traits (AFL, Y p <
0.0001, S p < 0.0006, PEN p < 0.0001; and RFL, Y p <
0.0001, S p < 0.7318, PEN p < 0.0001). However, levels of
Y and S were nested within levels of PEN, and PEN was
the only fixed effect incorporated into the analysis mod-
els.

Genomic relationship matrix

The NRM between the 1,707 sires was generated using
the complete pedigree information for these animals [37].
Following imputation of missing genotypes, complete
genotypes for 698 Angus steers and 1,707 Angus sires
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were assembled into a 2,405 x 41,028 genotype matrix
(M) with animals in rows and SNPs in columns. The
matrix M contains the elements -1 for AA, 0 for ABand 1
for BB genotypes, respectively [21]. We calibrated the
GRM by finding the regression of the upper triangular
elements of MM’ on the corresponding elements of A for
the 1,707 Al sires and used the estimated slope (g;)and
intercept (g,) terms to calibrate the GRM for all 2,405 ani-
mals as: G = [MM' g,(11")]/g; [21]. With this approach
E[G] = A when the pedigree information is correct and
complete. The method is computationally straightfor-
ward and robust [VANRADEN, pers. comm.], and does
not require estimation of the SNP allele frequencies
within the base population [21]. Our estimates for these

parameters in Angus were éo =9,731.9 + 0.65 and §1 =

15,198.6 + 7.26. The average molecular inbreeding coeffi-
cient over all 2,405 animals was 0.079. Figure 1 shows a
plot of the genomic relationship coefficients against
NRM coefficients for all pairwise combinations among
the 1,707 AI sires. Variance components, pen effects,
breeding values and residuals were estimated under an
animal model using restricted maximum likelihood with
the GRM used in place of the NRM. The model was
assumed to have reached convergence when heritability
estimates had converged from above and below to three
significant figures. Plots of the estimated breeding values
are in Figure 2.

Construction of Marker Panel Subsets

MATLAB (The Mathworks, Natick, MA) was used to test
the number of markers necessary to precisely estimate
the GRM by the regression approach in cattle. Subsets (n
=100, 500, 1000, 2500, 5000, 10000, 15000, 20000, 25000,

G Matrix Pairwise Relationship

s n L L L L
02 04 08 08 1 12 14
A Matrix Pairwise Relationship

Figure 1 Plot of GRM vs. NRM matrix coefficients. Plot of genomic
relationship (G) against corresponding additive numerator relation-
ship (A) matrix coefficients for all pairwise combinations among 1,707

Angus Al sires.
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Figure 2 Estimated breeding value plots using a GRM. A) Histogram depicting distribution of EBVs. B) Plot of EBVs and their accuracies. C) Plot of
AFl versus ADG EBV.
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30000, 35000 and 40000) of markers were randomly sam-
pled with replacement from the full set of 41,028 markers
to ensure a random representation of the entire genome
within the marker subset. For each of i = 1,...,50 replicates
at each value of #, a GRM (G,;;) was estimated using the
regression approach described above and correlations
were estimated between the upper triangular elements of
G,; and G (the GRM estimated from all 41,028 SNP) for
all 2,405 animals and between G,; and A for all 1,707 Al
sires and averages were produced across replicates.

To simulate the reduced marker panels that are most
likely to be commercialized in the beef industry, a panel
of 384 SNPs most significant for AFI was selected for the
estimation of a GRM. SNPs were first individually
screened for their association with AFI using one-way
analyses of variance. Subsequently, a chromosome-by-
chromosome analysis was performed using a forward
selection algorithm in which the SNP with the highest F-
statistic for the chromosome was sequentially added to
the model until no further SNPs could be added that
exceeded a predetermined significance threshold. For this
process, the significance threshold was initialized at a
genome-wide p-value of 0.05 (F>23.7163) and was
relaxed to F>6.33 until a total of 384 SNP were retained
for this analysis.

Results and discussion

Summary statistics presented in Table 1 indicate that
there were no appreciable differences between pheno-
types for the total sample and for the genotyped subset of
animals. Estimates of variance components and of narrow
sense heritability using the numerator and genomic rela-
tionship matrices are also presented in Table 1. The addi-
tive genetic variance components for AFI and RFI were
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larger when estimated from the full sample using the
NRM than when estimated from the subsample using the
GRM. However the opposite was true for ADG and
rather than reflecting an effect due to sample size, this
likely reflects the lack of pedigree information on the
dams of these steers which causes them to be treated as
unrelated members of the base generation in the analyses
that incorporated the NRM. However, the use of the
GRM corrects for the identity by descent between these
dams, which are all derived from a single herd, and
should produce higher allele sharing in their sons than
would unrelated females.

Nevertheless, the heritability estimates for all three
traits were lower than literature estimates (ADG 0.28
[38]; RFI 0.08-0.44 [5,10]; AFI 0.39 [38]). The reasons
underlying the disparity in heritability estimates are
unclear, but for ADG and RFI may be due to imprecise
estimates of growth, since taking weights at least every 2
weeks during the feeding trial has been recommended
[31]. Regardless of the cause, the low heritabilities further
reduced the power of this study for the estimation of
genomic breeding values.

Breeding values estimated using either the NRM or
GRM were strongly correlated for AFI and RFI (0.9074
and 0.9073, respectively) and accuracies estimated as the
correlation between true and predicted breeding values
[1] were similar (Table 2). Despite the slightly lower heri-
tabilities for AFI and RFI when estimated using the GRM
(Table 1) and the fact that there were 164 (19.0%) fewer
steers in the GRM analysis, mean accuracies for steers
and their sires were similar (Table 2). Presumably, this
reflects the ability of the GRM to extract identity by
descent information among the steers that was due to the
relationships among their dams which were assumed

Table 2: Accuracies of EBVs estimated using either a NRM or GRM: Average accuracies of estimated breeding value for
three feed efficiency traits estimated using mixed linear animal models incorporating either additive numerator (NRM) or

genomic relationship matrices (GRM).

Population Analysis Number AFI RFI ADG

Steers GRM 698 0.43 0.43 0.36
NRM 862 0.40 0.46 -

Sires of Steers GRM 85 0.44 0.44 0.37
NRM 100 0.41 0.45 —

Al Sires Pedigree GRM 1,707 0.27 0.27 0.23
NRM 34,864 0.01 0.01 -

Total GRM 2,405 0.32 0.32 0.27
NRM 35,726 0.02 0.02 -
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unrelated in the NRM analyses. Accuracies for the GRM
analyses were lower than previously reported estimates
[15-17,21] reflecting the small sample size and the low
heritability estimates obtained in this study. Despite the
fact that the heritability estimates for feed efficiency traits
obtained in this study were lower than literature esti-
mates, we produced molecular estimates of breeding
value for 1,707 bulls which have been among the most
influential animals within the U.S. Angus breed. While
the accuracies for these estimates are quite low, it should
be possible to combine data from multiple sources to per-
form joint analyses which incorporate data from other
Angus-based research populations [38,39] to increase the
accuracies of estimated breeding values on current and
future Al sires to initiate selection to improve feed effi-
ciency within commercial beef production systems. Even
estimates with a low accuracy would allow progress in
selection towards efficient conversion of feed until more
data can be gathered to improve the genomic estimates of
breeding value.

While the calculation of genomic relationship coeffi-
cients is straightforward, it is not clear how many SNP are
required to produce robust estimates of relatedness. Fig-
ure 3 and Table 3 shows the correlation between upper
triangular elements of the GRM computed using all
41,028 SNPs and GRMs computed with subsets of SNPs
when averaged across 50 bootstrap replicates for all 2,405
animals within this population. The correlations between
upper triangular elements of the GRM computed using
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Figure 3 Bootstrap analysis. Bootstrap analysis correlations between
GRM estimated from subsets of SNPs (G,,) and the complete dataset of
41,028 SNPs. Average correlations between G,;and NRM (blue) and

GRM (red) coefficients with GRM computed from SNP subsets of size n
(X-axis) and the average taken across the i = 1,..,50 bootstrap samples.

subsets of SNPs and the NRM coefficients of 1,707 Al
sires with extensive pedigree records are also included.
GRM estimated with at least 10,000 markers were highly
correlated with the GRM estimated from the complete
SNP set (minimum correlation 0.9798) and the mean cor-
relation with the NRM exceeded 0.85. However, the cor-
relation between the NRM and GRM estimated from all
41,028 SNPs was lower than expected and this could be
due to several factors. While the sire-son relationships
among the 1,721 bulls were validated from their geno-
types and only nine inconsistencies were detected in the

Table 3: Bootstrap analysis: Correlations between the upper triangular elements of GRMs estimated from subsamples of
SNPs with the GRM estimated from 41,028 SNPs and with the NRM computed for 1,707 Al sires with extensive pedigree

records.
No. SNPs (n) Correlation between elements of Gni and A Correlation between elements of Gniand G
Min Meana Max Min Meana Max

100 0.2773 0.3987 0.4458 0.3545 0.3993 0.4372

500 0.5870 0.661 0.7041 0.6822 0.7050 0.7251

1,000 0.7861 0.7434 0.7861 0.7857 0.8148 0.8275

2,500 0.7871 0.8114 0.8386 0.9061 0.9147 0.9204

5,000 0.7971 0.8375 0.8554 0.9498 0.9573 0.9610
10,000 0.8398 0.8536 0.8641 0.9798 0.9811 0.9821
15,000 0.8508 0.8605 0.8706 0.9886 0.9893 0.9899
20,000 0.8561 0.8624 0.8711 0.9929 0.9934 0.9939
25,000 0.8576 0.8632 0.8707 0.9955 0.9960 0.9962
30,000 0.8577 0.8648 0.8694 0.9975 0.9977 0.9978
35,000 0.8616 0.8656 0.8687 0.9988 0.9989 0.9990
40,000 0.8647 0.8662 0.8679 0.9998 0.9998 0.9998

aAveraged over 50 bootstrap samples
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29 distinct pedigree generations represented in these
data, these may have been due to laboratory errors in
DNA extraction, errors in the packaging of semen by a
bull stud, or pedigree errors. We suspect that higher rates
of pedigree errors may occur in the identification of dams
and in the older animals within the pedigree since blood
typing of cattle for parentage verification began on a lim-
ited basis only in 1940. A second contributing factor
could also be the violation, by gametic selection, of the
assumption that the Mendelian sampling of parental
gametes is independent and has a mean of zero which is
required for the computation of the NRM. For example,
over the last 20 years, breeders of Angus cattle have
selected to improve post-natal growth rate while not
changing birth weight. They have accomplished this by
selecting the progeny from among matings of selected
parents that have intermediate birth weights but high
subsequent growth to go on to be the sires extensively
used in Al This form of selection is not modeled in the
computation of the NRM and may result in less similarity
at the level of the genome than expected based upon ped-
igree relationship.

While estimates of genomic relationship coefficients
based upon at least 10,000 SNPs appear to be extremely
robust, estimates appear to be very sensitive to SNP sam-
ple size when fewer than 2,500 SNP are used (Figure 3).
This has very significant consequences for both conser-
vation genetic and GS applications because there are cur-
rently no cost effective technologies available for
genotyping 2,500-10,000 SNP markers. Reagent costs for
available high density (=50 K SNPs) assays are in the
range $175-$250 per sample and from there, current
genotyping technologies allow the genotyping of 1,536
SNPs for ~$70 or 384 SNPs for ~$16 per sample. Conse-
quently, we bootstrap sampled 200 replicates of 384 and
1,536 randomly sampled SNPs from the 41,028 available
SNPs and found minimum, mean and maximum correla-
tions between the reduced sample and full GRMs of
0.6046, 0.6536 and 0.6868 and 0.8465, 0.8690 and 0.8821,
respectively. However, the 384 or 1,536 SNP panels likely
to be commercialized within the livestock industries will
not utilize randomly sampled SNP, but will be based on
those SNP subsets that are predicted to explain the great-
est amount of genetic variation within a trait or set of
traits. The effects of computing the GRM from such
selected SNP panels will depend on the distribution of LD
and MAF among the loci.

When we estimated the GRM using the 1,536 SNPs
with the highest MAF (average MAF = 0.4953), the corre-
lation between genomic relationship coefficients was
0.8394, less than the minimum correlation obtained from
50 replicates of random sampling, suggesting that the
sampled loci were more strongly linked than the majority
of randomly sampled sets of 1,536 SNPs. To test this
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hypothesis, the average spacing between markers on the
same chromosome was tested for the SNP panel with the
highest MAF and also for the 200 bootstrap samples. The
average spacing between markers in the high MAF panel
was 1.8 Mb, and 298 of these markers were less than 250-
kb apart on the same chromosome. Conversely, the aver-
age spacing of markers on the same chromosome across
the 200 bootstrap samples was 38.69 Mb and their aver-
age MAF was 0.29. Thus, the SNP with the highest MAF
within the Angus genome are tightly linked and provide
less information about the relatedness of animals than a
randomly sampled panel of SNPs. Just why this is the case
is not clear.

When we estimated the GRM using the 1,536 SNP with
the lowest MAF (average MAF = 0.0614) the correlation
between genomic relationship coefficients was 0.4802.
However, when we sampled the 384 SNPs with the high-
est and lowest MAF (average 0.4980 and 0.0527, respec-
tively), the correlations between genomic relationship
coefficients estimated using 384 and 41,028 SNPs were
0.6947 and 0.2226, respectively. The former exceeds the
largest correlation obtained in 50 replicate random sam-
ples of 384 SNP suggesting that by reducing the number
of SNP from 1,536 to 384, the pattern of LD among the
384 loci with the highest MAF is not significantly differ-
ent to that among randomly sampled loci. Finally, using a
forward selection process we identified a panel of 384
SNPs that were most strongly associated with AFI and
that had an average MAF of 0.2884. The correlation
between genomic relationship coefficients estimated
using this sample and the complete set of 41,028 SNPs
was 0.6198, slightly lower than the average for randomly
sampled SNPs.

These results suggest that the small panels of SNPs that
are soon likely to be commercialized within the beef and
dairy cattle industries will have some utility for the esti-
mation of genomic relationship coefficients and that this
will allow the estimation of molecular breeding values for
traits other than those targeted by the SNPs within the
panels. However, our results also indicate that the great-
est benefits of the technology will not be realized until
inexpensive assays can be produced which query 22,500
SNPs. When smaller panels of 60- 90 SNPs are used for
parentage identification a NRM could be constructed
based on the inferred pedigree [40]. We found a correla-
tion between elements of the NRM and GRM based on
41,028 SNPs to be 0.8663, equivalent to the estimation of
the GRM with 1,536 randomly sampled SNPs. Thus, the
greatest utility from the use of small SNP panels may be
the estimation of pedigree to correctly establish the par-
ents of calves since the rates of misidentified parents in
the U.S. beef and dairy industries are in the range 3-30%
[41].
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Conclusions

Using a genomic relationship matrix, breeding values and
their accuracies may be estimated for commercially
important sires for traits recorded in experimental popu-
lations without the need for pedigree data to establish
identity by descent between members of the commercial
and experimental populations. This matrix should ideally
consist of at least 2,500 SNP in cattle populations, prefer-
ably those that are unlinked and not in extremely high
linkage disequilibrium with one another. While sufficient
numbers of SNPs are not yet available for all species to
allow the precise estimation of genomic relationship coef-
ficients, there are no technical limits to rapid and inex-
pensive SNP development using the deep sequencing of
reduced representation libraries with next generation
sequencing platforms [32,33]. The most significant limi-
tation to be overcome before the approach will have
widespread impact within conservation genetics and live-
stock improvement communities is the development of
inexpensive assays which can simultaneously query from
2,500 to 10,000 SNPs. The number of SNPs available in
this population was more than sufficient to generate an
accurate GRM, thus the methods applied in this study
appear to be viable for the generation of genomic breed-
ing values for feed efficiency traits despite low estimated
trait heritabilities. Genomic breeding values for AFI,
ADG and RFI were generated for 1,707 Angus Al sires
using information on 698 steer progeny from commercial
dams with missing pedigree data. These EBVs and accu-
racies were similar to those obtained from analyses using
a NRM despite a 19% difference in the number of animals
with phenotypic data. Pooling available data sets on
Angus animals should increase the heritability and accu-
racy of genomic breeding values for feed efficiency traits.
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