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Abstract

Background: Accounting for and quantifying the associative effect of each animal could improve
both welfare of animals and response to selection. Because of the limitation of REML, Gibbs
Sampling could be an alternative technique to estimate the variance component of the associative
effect. The objective of this study was to investigate the estimation accuracy of the variance
component of associative effect by using simulation via Gibbs Sampling. The simulated data
comprised five generations of pigs. The breeding animals of each generation were selected
randomly. In the simulation, variations were introduced for the methods of assigning pens (random,
mixed sib and full sib), the number of pigs per pen (5 or 10), the number of breeding animals per
generation (162 or 324) and the correlation between genetic direct effect and genetic associative
effect (-0.5, 0.1 or +0.5). Each set of simulation was run for 30 replications.

Results: Random assignment or mixed sib assignment resulted in bias of estimated variance
components in only 3 of 24 combinations. Furthermore, these 3 cases occurred with 162 breeding
animals. With full sib assignment, 9 out of 12 groups of estimates significantly deviated from the
true parameter value. The Root Mean Square Errors obtained with the full sib assignment were
higher than with the other two methods of pen assignment in most of the cases. The Root Mean
Square Errors obtained with datasets with 324 breeding animals were notably smaller than the
datasets from 162 breeding animals. Within each method of pen assignment, the relative bias of the
associative effect was significantly smaller with group size 10 than with group size 5.

Conclusion: Full sib assignment caused difficulties to estimate variance components in most of
the cases, due to a lack of identifiability. With random and mixed assignment, most data structures
yielded unbiased results but increasing the number of breeding animals or group size improves the
estimation. Thus to get identifiable and unbiased estimates of the genetic associative effect, it is
recommended to avoid close genetic relationship between animals within one pen and to use
sufficient numbers of breeding animals and sufficient group sizes.

Background competition for limited resources (food, water, space).
Social interactions are commonly observed among group  These interactions may become more important when
housed livestock and some of them have negative effects, ~ resources are more restricted leading to increase of
such as: aggressive behaviour for social rank and  injuries and decrease of productivity [1,2]. Artificial
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selection ignoring these interactions has been proven to
result in a suboptimal selection response [3,4]. Thus
quantifying and accounting for the interaction among
animals could improve both the welfare of animals and
the response to selection.

According to Griffing [3], the interaction among animals
is defined as a competitive effect. The genetic direct effect
refers to the effect of the genes of the individual itself
and is expressed in its own phenotype. Instead, the
genetic associative effect of an animal refers to genes that
influence the performance of its penmates. Attempts
have been made to estimate both the genetic direct effect
and the genetic associative effect using performance and
pedigree data (breeding value estimation). Estimation of
the magnitude of the associative effect has been
performed employing Restricted Maximum Likelihood
(REML) [5-7]. However, the REML estimator relies on an
asymptotic distribution, which means the inferences are
valid strictly for a sample of infinite size [8-10].
Therefore it is difficult to calculate reliable confidence
intervals around REML variance components parameters.

Implementation of Bayesian method may provide a
valuable alternative. Bayesian Markov Chain Monte
Carlo (MCMC) methods have been introduced to
quantitative genetics since the early 1990s [9]. Gibbs
Sampling has been frequently applied to animal breeding
and plant breeding [11]. However, until now few studies
have been undertaken to investigate the accuracy of the
estimation of the associative effect via Gibbs Sampling
[8]. Moreover, the impact of the data structure affected by
methods to assign pigs to pens, group size (pigs/pen) or
the population size simultaneously on the estimation of
variance components has not yet been studied.

The objective of this study was to investigate the accuracy
of the posterior means of variance components in
relation to the (genetic) relationships among penmates,
the number of pigs per pen and the variation of the
number of breeding animals.

Results

Simulation results

In this study, datasets were simulated for 36 combinations
of parameters. Each set of parameters was replicated 30
times. Simulations were programmed in R 2.5.1 [12] and
performed on the cluster computer 'VIC' at the K. U. Leuven.

Posterior distribution

Initial tests indicated that a total length of the Gibbs
chain of 550000 was sufficient. The burn-in period was
fixed at 50000, which means that the first 50000 samples
were discarded. To reduce the correlation between Gibbs
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Density plots of variance component of genetic
associative effect from 2 Gibbs sampling chains. Each
chain contains 1000 Gibbs samples after the burn-in period.

samples, a conservative thinning rate of 500 was used.
Therefore, 1000 Gibbs samples of each chain were saved.
Geweke and Gelman diagnostics were used to access the
convergence of Gibbs Samples. With respect to full sib
assignment, less than 33% of the replications gave a
diagnostic value around 1.2, whereas 95% of the
replications with the random and mixed sib assignment
had a diagnostic value around 1.02.

The density plots of Gibbs samples of the variance of the
genetic associative effect from two chains were shown in
figure 1. The overlap observed in the density plot
indicates convergence of the Gibbs sampling process.
The mean of the Gibbs Samples was used as the
estimated value for each replication. Thus, for each
combination of parameters, we obtained 30 estimates
for each variance component.

Confirmation of theoretical justification

Estimation with a model considering only genetic direct
effect (and e) yielded 67 = 1699.40, 62 = 3830.93.
Compared with the true parameter set: & j =1250, 0,4 =
140, 0'5 = 62.5 and 0'e2 = 3687, the estimations of both
o 5 and o ez were inflated. It confirms that ignoring the
genetic associative effect results in bias of estimations of

the other variance components.

Parameter estimates
The mean and the standard error of estimated values
(d, a, cov and e) from 30 replications were presented in

Page 2 of 9

(page number not for citation purposes)



BMC Genetics 2009, 10:9

table 1. With full sib assignment we observed only 1 out
of 12 groups where all estimates did not significantly
deviate from the true parameter values. The only
exception where full sib assignment yielded unbiased
results was with S3,4 (324 breeding animals per
generation), a correlation of 0.5 and group size of 5.
Moreover, most of the standard errors calculated from
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the combinations with full sib assignment were high
compared to the other two methods of assignment.

With S;,4, estimates obtained from random pen assign-
ment or mixed sib pen assignment with different group
sizes and correlations were not significantly different
from the true parameter values. When there were 162

Table I: The mean and standard error of posterior distribution of d, a and e

Correlation Number of Pen Pen size &5 G a 6—5 6—22
(d & a) breeding Assignment
animals per
Generation
-0.5 162° Random 5 1257 (36.66) -133 (6.69) 58 (2.43) 3721 (25.53)
(04q = -140)
10 1239 (29.59) -133 (5.19) 62 (1.46) 3699 (21.69)
Mixed sib 5 1250 (35.65) -128 (6.64) 56* (2.27) 3706 (25.99)
10 1261 (31.17) -139 (5.56) 62 (1.33) 3689 (25.74)
Full sib 5 850%* (50.72) -60%* (9.35) 43*%(2.37) 3944%%(30.92)
10 710%*%(58.63) -70%*%(9.65) 51°%%(1.96) 403 1*+%(41.47)
324° Random 5 1245 (19.78) -133 (3.08) 60 (1.68) 3715 (15.80)
10 1248 (16.14) -139 (3.76) 63 (1.05) 3698 (15.85)
Mixed sib 5 1235 (20.77) -143 (4.55) 63 (1.85) 3694 (16.80)
10 1228 (21.44) -141 (3.45) 63 (0.94) 3703 (18.28)
Full sib 5 1054** (62.21) -92%*(11.74) 46**(3.35) 3842%%(42.21)
10 933%* (88.04) -102%%(12.23) 57*%(2.17) 3896%%(54.36)
0.1 162° Random 5 1224 (24.39) 34 (4.54) 58%* (1.99) 3738* (19.61)
(04a = 27.95)
10 1256 (28.39) 27 (5.68) 6l (1.69) 3694 (20.39)
Mixed sib 5 1239 (27.44) 29 (4.15) 60 (2.17) 3713 (21.97)
10 1166* (31.58) 28 (4.10) 62 (1.68) 3763%%(20.99)
Full sib 5 996** (55.67) 69%* (4.94) 56** (2.88) 3833** (26.80)
10 917%* (49.94) 72%+* (5.43) 56** (1.25) 3889%* (29.92)
324° Random 5 1277 (23.43) 32 (4.02) 6l (1.90) 3688 (13.70)
10 1223 (19.12) 24 (3.51) 63 (1.17) 3712 (13.76)
Mixed sib 5 1268 (24.29) 30 (3.88) 58 (1.73) 3697 (18.06)
10 1253 (22.33) 32 (3.42) 62 (1.01) 3694 (17.85)
Full sib 5 1170 (55.26) 62°+* (7.67) 51%* (3.33) 3767%* (29.39)
10 940** (54.06) 65%** (8.20) 57** (1.68) 3891** (36.79)
0.5 162° Random 5 1266 (27.38) 146 (4.88) 63 (2.17) 3689 (18.15)
(0da = 140)
10 1256 (32.15) 144 (4.03) 64 (1.68) 3685 (21.26)
Mixed sib 5 1204 (33.05) 134 (4.42) 60 (2.33) 3732 (25.91)
10 1209 (25.53) 138 (4.64) 62 (1.23) 3728 (21.33)
Full sib 5 1256 (60.26) 133 (5.33) 72* (3.58) 3653 (30.03)
10 1137** (42.95) 141%* (4.71) 66%* (1.81) 3748** (25.16)
324° Random 5 1269 (17.75) 140 (3.46) 62 (1.68) 3693 (12.83)
10 1229 (20.36) 142 (2.94) 62 (1.18) 3718 (16.22)
Mixed sib 5 1224 (20.01) 139 (3.44) 63 (1.34) 3709 (11.61)
10 1247 (21.94) 136 (3.13) 63 (0.76) 3701 (19.26)
Full sib 5 1259 (34.83) 142 (3.15) 63 (2.25) 3668 (21.39)
10 1156* (37.24) 141 (3.84) 64 (0.91) 3730 (21.42)
*: p-value < 0.05, **: p-value < 0.01.
d: genetic direct effect; a: genetic associative effect; e: random residual.
a: 162 breeding animals represent 150 sows and 12 boars.
b: 324 breeding animals represent 300 sows and 24 boars.
Values used in the simulation: 05 = 1250, Gg = 62.5, %2 = 3687, 04, = -140, 27.95 or 140.
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breeding animals per generation, 3 estimates were
significantly different from the true parameter values at
the 5% significance level (p-value < 0.05). This occurred
with the following combinations: random pen assign-
ment, correlation 0.1 and group size 5; mixed sib
assignment, correlation 0.1 and group size 10; mixed
sib assignment, correlation -0.5 and group size 5.

Root Mean Square Error (RMSE)

The RMSE of the variance of associative effect obtained from
36 parameter sets were shown in figure 2(a) and 2(b). The
RMSE was smaller with S3,, compared to the cases with
S162, but not significantly different (p-value = 0.06). Within
the same number of breeding animals, the RMSE obtained
from group size 5 were significantly higher than the cases
from group size 10 (S;s2. p-value = 0.03; S3,4. p-value =
0.005). Within the same level of group size, the RMSE of
random sib assignment (p1) are not significantly different
from the mixed sib assignment (p2) (group size 5: p-value =
1; group size 10: p-value = 0.26).
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d@corr+l 5
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Figure 2

Plot of RMSE with (a) 324 breeding animals and (b)
162 breeding animals. Left nine columns represent group
size 5; right nine columns represent group size 10; corr:
correlation; pl: random assignment; p2: mixed sib
assignment; p3: full sib assignment; Y axis represents the root
mean square error of the estimated genetic associative
variance.
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With the method of full sib assignment (p3) and the
following combinations, datasets yielded higher RMSE
compared to assignment methods pl and p2: Sssq,
correlation -0.5; S3,4, correlation +0.1; S;4,, correlation
+0.1; Sy, correlation +0.5. The RMSE from the full sib
assignment depended on correlations, indicating that
there may be an association between full sib assignment
and "correlation" (between d & a) on the uncertainty of
estimates for the associative effect.

Percent relative bias

The results from MANOVA test of relative bias showed a
significant interaction between the number of breeding
animals, the method of pen assignment and the cor-
relation (Wilk's Lambda test: F value = 2.21, p-value =
0.0037). Interaction between pen assignment method
and group size (Wilk's Lambda test: F value = 9.04,
p-value < 0.0001) was also significant at the family wise
significance level of 0.1 (the significance level for the
individual test is 0.006).

With random assignment, the relative bias of the
associative effect was not significantly different between
three correlations and two numbers of breeding animals
(figure 3). For the mixed sib assignment with correlation
+0.5, the relative bias of the associative effect for Ss,4
was significantly smaller than the case for S;¢, (differ-
ence = 0.06, p-value = 0.005) (figure 3).

The plot for full sib assignment (figure 3) illustrated that
there was no significant difference between S4, and Ssz,4
when the correlation equalled -0.5 (p-value = 0.2531)
(figure 3). However, the difference became significant
when the true correlation equalled 0.1 or +0.5 (cor-
relation = +0.1, p-value = 0.0014; correlation = +0.5,
p-value < 0.0001). When the true correlation was +0.5,
the relative bias from Ss3,4 was significantly smaller, and
when the true correlation was +0.1, the relative bias from
S324 was significantly larger than from Si4,.

The relative bias of the variance of associative effect
obtained from group size 10 was smaller than from
group size 5 for each pen assignment method (figure 4).
The difference was confirmed by contrast tests (random
assignment: -0.047, p-value < 0.0001; mixed full sib
assignment: -0.064, p-value < 0.001; full sib assignment:
-0.133, p-value < 0.001). With group size 10 or 5, the
difference of relative bias between random assignment
and mixed full sib assignment was not significant. With
group size 10, relative bias of the associative effect
obtained from full sib assignment was 0.045 higher than
from random assignment (p-value < 0.0001) and 0.132
higher than from random assignment with group 5
(p-value < 0.0001).
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Plot of relative bias of genetic associative variance applying three assignment methods. Three assignment
methods: random assignment, mixed sib assignment, full sib assignment; a: genetic associative effect; S162: 162 breeding
animals per generation, S324: 324 breeding animals per generation; X axis represents the number of breeding animals; Y axis
represents the relative bias of the estimated genetic associative variance.
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Plot of relative bias of genetic associative variance
with two group sizes. G5: group size 5; G10: group size

G5 . X N . G10
pen assignment 2252 full 59 mixed 555 random

10; random: random assignment, mixed: mixed sib

assignment, full: full sib assignment; X axis represents the
number of animals per pen; Y axis represents the relative

bias of the estimated genetic associative variance.

Discussion

In this study, we simulated average daily gain of pigs for
36 data structures combining 4 parameters; the number
of breeding animals per generation, correlation between
d & a, methods of pen assignment and group size. The
simulated pedigree structure of 5 generations repre-
sented a realistic breeding scheme.

Our results showed that ignoring the genetic associative
effect led to overestimations of 5] and ¢?, which was
in agreement with Cappa and Cantet [13]. In our study,
0,4 was set to +140 in the simulation. As mentioned in

the method part, the biases of gj and gez consist of the
4 4

sum of two terms: Apq, + ZABIZ- o, and
= =)

4 4
ZZAP,Q; o2 . Thus these two terms and the sum
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Cappa and Cantet performed a simulation of genetic
associative effect among forest trees using Gibbs Sam-
pling [13]. In their study, simulation parameters were
63 =12.553, 6,4 =-3.126, 62 =1.259 and &, = 5.189.
When the genetic associative effect was excluded from
the model, 67 was 10.644 and 62 was 9.257, i.e,
was overestimated. The reason was that ¢,; used in
their study had a negative value. Thus the biases of c;j

and ¢} depended on the magnitude of

4 4
El‘AAQi + EI‘ABPi G, and
i= i=

the magnitude of the second term was larger than the
first term, the biases were positively inflated.

4 4 5
Z A rQ, |%a- When
i=1

j=1

With full sib assignment, 11 out of 12 combinations
showed biased estimations at the 1% significance level.
Random assignment or mixed sib assignment resulted in
bias of estimated variance components in only 3 of 24
combinations. Moreover, all these three biased results were
found with 162 breeding animals only. Thus random
composition and mixed sib composition of pen groups
resulted in unbiased estimates of variance components. The
more penmates are genetically related, the more difficult it is
to separate variance components. Estimation accuracy
benefits from larger numbers of breeding animals.

Cantet and Cappa have pointed out recently that models
with genetic direct effect and genetic associative effect
may face the problem of identifiability [14]. Identifia-
bility means that parameters are weakly identified
because the data provide little information [15]. Bayesian
non-identifiability is equivalent to lack of identifiability
in likelihood [15]. Cantet and Cappa have shown that the
variance components are identifiable only and only if the
smallest eigenvalue of the restricted maximum likelihood
(REML) information matrix is positive.

To investigate the identifiability of the cases which resulted
in biased estimations, we selected several pairs of pens from
the simulated data randomly with full sib assignment and
calculated the eigenvalues of information matrix using the
method introduced by Cantet and Cappa. The genetic
relationship coefficients between pigs in different pens
ranged from 0.02 to 0.07. The results indicated that two
eigenvalues of the information matrix were zero, i.e. the
information matrix is singular and parameters can not be
estimated separately. Thus we suspect that the biased
estimations of the parameters with full sib assignments are
due to the lack of the identifiability.

In Cantet and Cappa's study, the problem of identifia-
bility was related to the confounding between the
genetic associative effect and fixed pen effect. In our
study, we did not include a variance component for pens
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in the simulation model. It implied that not only the
fixed pen effect, but also the assignment methods play a
role in identifying variance components separately.
Cantet and Cappa have illustrated this in a theoretical
way. We confirmed this by the simulation. In addition,
Cantet and Cappa suggested an alternative model with
different intensities of competition for each animal by
exchanging animals between pens time by time.
Although it could improve the identifiability theoreti-
cally, it is difficult to implement this in reality.

Gelfand and Sahu mentioned that a consequence of a
non-identifiable model is the possibility of drifting
which could result in the difficulty of convergence. In
our study the Gelman diagnostics computed on Gibbs
chains with full sib assignment were slightly above 1 for
about one third of the replicates. This may indicate the
poor convergence in some replicates. Both the biased
estimates and a poor quality of convergence may be due
to the identifiability issue.

Our results obtained by Gibbs Sampling confirmed the
results of the study of Bijma and Muir's using ASREML
[16]. They also investigated the data structure used by Wolf
[17] and found that the variance of genetic associative
effect was not identifiable when group members had a
strong genetic relationship. They suggested using random
composition of pens. We also found that the variance
components obtained with the full sib assignment were
biased. In addition, not only random assignment but also
mixed sib assignment provided unbiased estimations of
variance components in most cases.

Within each method of pen assignment, the relative bias
of the variance of associative effect was significantly
smaller with group 10 than group size 5. It indicates that
estimations with larger group size produce smaller
relative bias than smaller group size.

With respect to the uncertainty of estimations, most
RMSE obtained with the method of full sib assignment
were considerably larger than cases with the other two
methods of pen assignments, which was inconsistent
with the results of Van Vleck [18]. Van Vleck simulated
data with similar pen assignment methods: full sib
assignment, random assignment and mixed full sib
assignment (half of the penmates are full sibs from
one litter and the other half from another litter). He
found that there was no problem to separate variance
components for all these three methods of pen assign-
ments and the standard deviation obtained from the full
sib assignment was the smallest among the three pen
assignments. In our results, it was hard to separate d & a
and the standard deviation of a was large in the most
cases. However, the estimation was unbiased with the
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combination: correlation +0.5, S3,4 and full sib assign-
ment. Furthermore, the RMSE obtained from that
combination was also similar to the other combinations
with full sib assignment. Van Vleck [18] only looked at
the influence of assignment methods without varying
any of the other parameters that we simulated. We also
found one combination of parameters that gave
unbiased results. But the other 11 combinations showed
problems obviously. It is concluded that in general full
sib assignment should be avoided to generate data from
which an associative effect is to be estimated.

Conclusion

It is concluded that ignoring the genetic associative effect
causes biased variance components which could lead to
unrealistic selection perspective. The estimation of the
genetic associative effect via Gibbs Sampling is depen-
dent on the data structure. Investigation of the required
minimum number of breeding animals per generation
and the number of penmates per pen is therefore
warranted before starting real experiments. Furthermore,
full sib assignment should be avoided as an experi-
mental design to determine associative effect.

Methods

Simulation model

Datasets were simulated for a pure bred population and a
single trait (average daily gain of pigs, g/day). The
phenotype of individuals was composed of heritable and
non-heritable effects. We assumed the associative effect to
be (partially) genetic and expressed in the performance of
the penmates. The simulation model included one fixed
effect (sex) and three random effects: genetic direct effect,
genetic associative effect and random error [16].

Y=Xb+Zyd+Za+e

Y represented the average daily gain of the pig; b indicated
the effect of sex on the average daily gain (+20 for males and
-20 for females); d represented the genetic direct effect; a
represented the genetic associative effect, affecting the
growth of penmates; e represented the independent random
residual of the individual pig X, Z; Z, were incidence
matrix of each effect corresponding to each individual.

It was assumed that the random effects follow a
multivariate normal distribution:

d

G 0 Acj Ac
a [~ N(O/ 2)/ 2 = 2 I G = d dza
e 0 IGg AGda AGa

o3, o} were the variances of genetic direct effect and

genetic associative effect respectively; o,, was the

http://www.biomedcentral.com/1471-2156/10/9

covariance between d & a; (722 was the variance of the

random residuals, accounting for the non-genetic effect.
It was assumed that the residuals of each pig are
independent. A represented the numerator relationship
matrix, which accounted for the pedigree information of
animals. ¥ was the variance-covariance matrix of random
effects d, a and e. G was the variance-covariance matrix of
genetic effects d and a.

For an individual pig i, the average daily gain was
simulated as

p

=1

d; denoted the genetic direct effect of the individual i; a;
denoted the genetic associative effect coming from the j
penmate of the i individual; p denoted the number of
penmates of the i individual; e; denoted the random
residual of the i individual.

Based on the Cholesky decomposition [19], G was
separated into a product of a matrix and its transpose.
For the animals from the base generation, d and a were
simulated using the partitioned matrix obtained from G
multiplied by standard random normal deviates. For the
following generations (progeny), d and a were the sum
of the average of the d and a of the parents and a random
Mendelian sampling term. e was simulated as the
deviation of random residuals multiplied by a standard
random normal deviate.

Simulation structure

Simulation included five generations of pigs, and
breeding animals for each generation were selected
randomly. Litter size followed a normal distribution
varying from 2 to 20 with mean equal to 9 and standard
deviation equal to 2.6. Sex effect was simulated assum-
ing a uniform distribution, i.e. the probability of male or
female was 50%. Since litter size was not fixed, the total
number of animals in each replication was not fixed.

In order to investigate the impact of the data structure on
the estimation of variance components, a number of
data sets were simulated. The influence of pen composi-
tion (assignment of pigs to pens), group size (pigs/pen),
number of breeding animals and the covariance (cov)
between d & a were examined. Three different scenarios
were used to assign pigs to pens. The first scenario was to
assign pigs randomly (p1). The second one was to assign
half of the pens with full sibs and the other half non full
sibs (p2) and the third one was to assign full sibs per pen
(p3) [6,20]. Within each pen assignment scenario, 162
and 324 breeding animals (S;6, and S3,4), two different
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group sizes (5 and 10) and three different correlations
between d & a (-0.5, +0.1, +0.5) were specified.

Statistical methods

Variance components were analysed using the Multiple
Trait Gibbs Sampler for Animal Models (MTGSAM) [11]
and applying the same statistical model as the one used
for simulation. In its original version, MTGSAM could
only handle models with direct and maternal genetic
effects. For this study we modified the program and
extended it to include the genetic associative effect.

Two Gibbs chains using different sets of starting values
were run to check the convergence. The Geweke and
Gelman diagnostic [21,22] were applied to determine
the convergence of two Markov chains. For further
analysis, results were summarized over 30 replicates
(mean and standard errors were calculated from the 30
groups of posterior means of variance components).
Both the Wilcoxon rank sum test and Student t-test were
used to test the deviation of the mean from the real
parameter values. Root Mean Square Error (RMSE) was
used to measure the uncertainty of the estimated values.
The RMSE of the estimator § was calculated as [23]:

RSME () = [E((0-0)" ) =

where ¢ is the estimated value of parameters obtained
in each replication; 6 is the true value used for
simulation and n is the number of replications.

The accuracy of the parameter estimates was quantified
by the percent relative bias. The percent relative bias was
calculated as %[24]. To study the effects of pen
assignment, group size, number of breeding animals and
the correlation between d & a simultaneously on the
percent relative bias of the four variance components
(d, cov, a and e), multivariate analysis of variance
(MANOVA) was used (GLM, SAS 9.1.3) [25].

Theoretical justification for including genetic associative
effect

Ignoring the genetic associative effect (if present in the
data) will often result in biases of variances of genetic
direct effect (¢7) and random residual (s2?) [13].
Looking into the genetic covariance between animals
may help to explain the bias. Suppose animal A has
penmates Py,...,P4, animal B has penmates Qy,...,Q4, and
A and B are from two different pens. Based on the
statistical model that we used the genetic covariance
between A and B was:

http://www.biomedcentral.com/1471-2156/10/9

cov(A, B)

:cov[dA-%—iaP‘,dB-#iaQ) ]

i=1 j

=1
4

4 4 4
:cov(dA,dB)+c0v[dA,2aQ, ]+cov{d3,2al,‘ J+ cov[Zapl,ZaQ’ ]

j=1

= Ao +[2AAQ +2A3P ]G“‘I+[iiAPQr ]6‘3
=

If we consider A and B to be half sibs, then
the genetic relationship between A and B is 0.25,
i.e. Axg = 0.25. To make sure that the covariance

between A and B is an unbiased estimation of gj,

iAAQ,- +iABP,- Cud T iiApin Jﬁuz should be
j=t i=1 i=1

i=1 j=1

zero. If 6,4 and & (f are not equal to zero, the coefficients

related to 6,5 and &2 should be zero. That means animal A
is unrelated to the penmates of B and animal B is unrelated
to the penmates of A. Moreover, there should be no genetic
relationships between penmates P;,..,P; and Qj,..., Q4.
However, it is unrealistic to assume that all animals are
genetically unrelated. Thus the terms related to o, and ol

will be non-zero and affect the estimation of 7. The
magnitude of bias depends on the magnitude of the terms

4 4
related to 6,5and ¢ 2. Only when 2 Ang, + z App, |Oaa
=1 i1

and ZZAPQ, cruz have the same magnitude and
i=1 j=1

opposite sign, the bias is zero.

To investigate the bias of & ez , consider animals A and B
have no genetic relationship, i.e. A4z = 0. If the genetic
associative effect is ignored, the variation caused by ¢4
and ¢? will flow into the variance of the residual
variance 2 leading to bias of 2. In order to reduce the

bias introduced by 6,4 and &2, one possibility is to have

4 4
zfAAQj +21‘ABPI_ and ZZAPQ
j= i=

i=1 j=1
which is unrealistic as mentioned before. Similarly, the
bias of estimation of ¢? depends on the magnitude of

Y Ang,

j=1

equal to zero,

0'5 . Tt could

M.:;

4 4
Z‘;AAQJ + EABPi 0,4 and
j= i=

Il
AN

be zero when the magnitudes of them are equal with
opposite sign.

To confirm this, we took the simulation data obtained
from the parameter combination of group size 5,
correlation 0.5, 324 breeding animals and mixed full
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sib assignment. The estimation with a model considering
only genetic direct effect and random residual was
compared to the true value of simulation parameters.
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