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Abstract
Background: The linkage phase, or haplotype, is an extra level of information that in addition to
genotype and pedigree can be useful for reconstructing the inheritance pattern of the alleles in a
pedigree, and computing for example Identity By Descent probabilities. If a haplotype is provided,
the precision of estimated IBD probabilities increases, as long as the haplotype is estimated without
errors. It is therefore important to only use haplotypes that are strongly supported by the available
data for IBD estimation, to avoid introducing new errors due to erroneous linkage phases.

Results: We propose a genetic algorithm based method for haplotype estimation in family data
that includes a stringency parameter. This allows the user to decide the error tolerance level when
inferring parental origin of the alleles. This is a novel feature compared to existing methods for
haplotype estimation. We show that using a high stringency produces haplotype data with few
errors, whereas a low stringency provides haplotype estimates in most situations, but with an
increased number of errors.

Conclusion: By including a stringency criterion in our haplotyping method, the user is able to
maintain the error rate at a suitable level for the particular study; one can select anything from
haplotyped data with very small proportion of errors and a higher proportion of non-inferred
haplotypes, to data with phase estimates for every marker, when haplotype errors are tolerable.
Giving this choice makes the method more flexible and useful in a wide range of applications as it
is able to fulfil different requirements regarding the tolerance for haplotype errors, or uncertain
marker-phases.

Background
The average number of recombinations between two
linked markers is a function of the distance between them
[1,2]. Therefore, recombination events are rare between
closely linked markers, and the alleles are transmitted as
large haplotype blocks from parents to offspring. When
tracing inheritance of alleles in multi-generation pedi-
grees, haplotype data is more informative that raw geno-

type data. This is utilized by e.g. Meuwissen and Goddard
(2000) [3] to infer the co-variance of base generation indi-
viduals (i.e. founder individuals without known parents
in the pedigree), at a given locus in their IBD based fine
mapping strategy.

As large-scale genotyping of Single Nucleotide Polymor-
phism (SNP) markers is now affordable, the density of

Published: 17 September 2009

BMC Genetics 2009, 10:57 doi:10.1186/1471-2156-10-57

Received: 13 March 2009
Accepted: 17 September 2009

This article is available from: http://www.biomedcentral.com/1471-2156/10/57

© 2009 Besnier and Carlborg; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2156/10/57
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19761594
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genetics 2009, 10:57 http://www.biomedcentral.com/1471-2156/10/57
marker maps used in genome studies for dissection of
complex traits will increase, whereas very dense maps are
already used in association studies and genomic selection.
The information content of each bi-allelic SNP marker is,
however, often low in studies of outbred populations.
Therefore, they are usually grouped by haplotype seg-
ments containing n SNP markers [4,5]. As shown by
Grapes et al (2005) [4] the value of n can be optimized to
maximize the accuracy of the IBD prediction as well as the
resolution of the fine mapping.

As commonly used genotyping techniques do not provide
haplotype information, several algorithms have been
developed to estimate haplotypes from genotype data
such as: Deterministic or rule based reconstruction based on
Minimum Recombinant Haplotype Configuration (MRHC)
[6,7], Stochastic reconstruction based on either Markov
chain descent graph [8], or other Monte Carlo approaches
[9-11], Descent tree likelihood [12], Maximum likelihood by
an EM algorithm [13,14] or MRHC combined with a
Genetic Algorithm (GA) [15]. Some algorithms recon-
struct haplotypes using both genotype and pedigree infor-
mation [6-8,14] whereas other methods use only the
genotype. In the present study, we focus on haplotype
reconstruction in family data where both genotype and
pedigree information are available.

The haplotypes inferred with any of the methods currently
available will unavoidably contain errors [16], and most
methods do not provide information about how certain
the haplotype estimates are. Sometimes the most likely
haplotype configuration is reported together with an esti-
mate of the haplotyping error rate obtained by means of
simulation [7]. The error risk related to each ordered
marker is however still unknown. Others [12] allow the
user to distinguish between ordered and uncertain geno-
types, even though the criterion used to differentiate
resolved from unresolved cases is not accessible to the
user. In Becker and Knapp's approach [14], a likelihood
weight can be used to evaluate the error risk of the com-
plete inferred haplotypes, but no assessment is available
for individual ordered loci.

Here, we describe a method to infer haplotypes that pro-
vides an estimate of every ordered locus, with the novelty
that the user can select the stringency criterion used to
decide the maximum error risk acceptable for each
marker.

To make haplotype information useful for linkage map-
ping in deep pedigrees, the haplotype errors rate needs to
be controlled or at least known. This as a single erroneous
haplotype in the first generations of a deep and complex
pedigree will propagate and lead to significant errors in
the estimated structure of IBDs. As most existing methods

for haplotype estimation neither allow the user to control
the error rate nor provide estimates of the error risk asso-
ciated with individual inferred markers, they are not
adapted for use in this application. Here, we describe a
new Genetic Algorithm-based haplotyping method that
includes a stringency criterion that allows the user to con-
trol the haplotype error rate by discarding ordered geno-
types associated with higher risk of error.

Methods
Genetic Algorithm
Genetic Algorithms (GAs) are iterative procedures imple-
mented in computer programs with the aim of solving
optimization problems. A set of possible solutions (called
individuals or haplotypes) is sampled from an original
population, and evaluated for their fitness. Solutions are
then chosen at a frequency proportional to their fitness
and modified (mutation, recombination) to form a new
population that will be used in the next iteration of the
algorithm. We have implemented a GA based algorithm
for haploptype reconstruction [15], where the GA was
used to identify the most likely set of ordered genotypes
among all possible ones in a given individual. Each
ordered genotype provides the parental origin of the alle-
les, with for example maternally inherited allele noted
first, and paternally inherited noted second. Global opti-
misation algorithm approaches are needed to reconstruct
ordered genotypes, as large numbers of individuals and
genotyped loci in a data set makes the exploration of all
possible haplotypes computationally intractable. The GA
thus replaces the exhaustive search over all possible con-
figurations and instead, uses iterative sampling and evalu-
ation of potential haplotypes until it converges towards
an optimum configuration.

Haplotype inference
Haplotypes are inferred using a four step recursive
approach, where step one and two were adapted from
Qian and Beckmann [6]. The algorithm successively i)
infers the parental origin of the alleles of the progeny
when they can be deduced with certainty from the paren-
tal genotype(s), ii) infers missing genotype(s) from the
genotype and haplotype of both parents and offspring of
the individual, iii) infers the haplotype of the parents
based on the ordered genotype of the offspring using a
genetic algorithm, and iv) infers the most likely haplotype
of the progeny based on parental haplotype information
using a genetic algorithm.

Step 1 - inference of unambiguous parental origins of off-
spring alleles using parental genotypes:

The parental origin of all offspring alleles in the pedigree
is reconstructed when it can be unambiguously inferred
from the parental genotype (e.g. when both two parents
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are homozygotes). An exhaustive list of possible cases can
be found in Quian and Beckmann (2002) [6].

Step 2 - inference of missing marker genotypes from the
nearest relative information:

Missing marker genotypes due to for instance sample loss
or technical problems in the genotyping procedure are
inferred. In practice, the missing data can often be
deduced using genotype and haplotype information of its
nearest relatives (i.e. parents and offspring). The algo-
rithm used to infer missing genotypes utilizes full-sib fam-
ily data: let the two alleles of an offspring be m1 and m2,
the two alleles of the sire ms1 and ms2, and the two alleles
of the dam md1 and md2. The parental origin of the off-
spring alleles is Pmo. If Pmo is known, m1 and m2 are the
paternally and maternally inherited alleles in the off-
spring genotype respectively. The following rules are used
to determine the missing genotype from the marker geno-
type of the parents:

-if m1 is missing and ms1 = ms2 and m2  ms1, then m1 =
ms1

-if m2 is missing and md1 = md2 and m1  md1, then m2 =
md1

Or from the ordered genotype:

-if ms1 is missing and Pmo is known and ms2  m1 then ms1
= m1

-if ms2 is missing and Pmo is known and ms1  m1 then ms2
= m1

-if md1 is missing and Pmo is known and md2  m2 then
md1 = m2

-if md2 is missing and Pmo is known and md1  m2 then
md2 = m2

These rules are applied to every individual in the pedigree
before proceeding to step 3.

Step 3 - inference of haplotypes of parents using offspring
haplotypes

A Genetic Algorithm is used to infer haplotypes of parents
using the ordered genotype of their offspring. For each
parent, a binary GA chromosome of given length l is cre-
ated, where l is the number of non-ordered genotypes in
the parent. Each variable in the GA-chromosome repre-
sents a potential set of ordered genotypes, and each of its
elements takes the value 0 or 1 representing paternal or
maternal origin of the two marker alleles in the un-

ordered genotype. The evaluation function for each sam-
pled GA-chromosome is the likelihood of the recombina-
tion events that are needed in the parental gametes to
generate the observed haplotypes of all offspring of the
individual: The Likelihood is computed as a function of
the recombination probability between the markers

where n is the number of offspring for a given parent and
m the number of intervals between the markers we try to
resolve. P(rij) is the probability to observe a recombina-
tion in the parental gamete of offspring i in marker inter-
val j.

In our implementation we use a Genetic Algorithm from
in the library PGAPack [17]. An overview of the procedure
for our GA is given in Figure 1.

To determine the haplotype of an individual, a set of hap-
lotype configurations is randomly sampled (Step 1, Figure
1). The relative fitness of each haplotype is evaluated as
the likelihood of the needed recombination events, given
the estimated linkage map in the population. In our
implementation, the likelihood of a sampled haplotype
depends on the likelihood of the recombination events
observed in the offspring of the individual, given that the
sampled haplotype is the true parental one (Step 2, Figure
1). The next step of the GA is to generate a new set of hap-
lotypes to be evaluated using the known fitness of previ-
ous evaluations (Step 3, Figure 1). Here, haplotypes are
sampled at frequencies proportional to their fitness.

To determine the risk of error associated with each
ordered genotype, we use the fact that the GA is a stochas-
tic global optimization algorithm with relatively poor
local convergence. Consequently, when multiple "best"
haplotypes with similar fitness exist, the GA will converge
to different optima in different runs. We thus iterate step
3 k times for each parent in a given generation (k is
defined by the user) and calculate the proportion of the k
iterations that converge to the globally best solution. If
this proportion is high it provides a strong indication that
there is a single dominating optimum in the parameter
space. When it is low, it indicates the existence of multiple
and almost equally likely optima, and that consequently
the ability to discriminate between true and false haplo-
types is low.

Step 4 - inference of ambiguous genotype order in the off-
spring
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After inferring the haplotype of the parents in a given gen-
eration (g) in step 3, we use the genetic algorithm to infer
the ordered genotypes of the individuals in generation
(g+1) that could not be inferred in step1. For each off-
spring, we use a binary GA of length l, where l is the
number of unordered genotypes in the offspring. For each

sampled haplotype configuration, the evaluation function
is the likelihood of the recombination events needed in
the parental gametes to generate the proposed GA haplo-
types of the offspring. The Likelihood is computed as a
function of the recombination probability between the
markers. To estimate the error risk of each inferred haplo-

Implementation of the genetic algorithmFigure 1
Implementation of the genetic algorithm. a) In a full sib family, the haplotype of individual I is to be estimated. Since no 
parent is available, the first heterozygous marker is phased arbitrarily allele "1" being of paternal origin and allele "2" being of 
maternal origin. The three offspring have been phased by a deterministic approach. b) Step1: Five GA individuals are randomly 
sampled (a, b, c, d, e). Each sample is a possible haplotype of the non-phased markers of individual I. c) Step2: Fitness of the GA 
individuals is computed as a likelihood function of the number of recombinations observed in the offspring chromosomes. d) 
Step3: The GA individuals with higher fitness (c, d, e) are selected and crossed in a simulated diploid reproduction mechanism 
that generates the sample of GA individuals for the next generation.
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type, step 4 is iterated k times in analogy with the proce-
dure described in step 3.

Computational strategy for deep pedigrees
As the algorithm is designed to infer haplotypes in multi-
generational complex pedigrees, it is important to infer
haplotypes one generation at a time and to apply the algo-
rithm to the generations in an appropriate order. This
way, it is possible to use the inferred information from
generation i to infer haplotypes in generation i+1. Our
algorithm performs the four steps described above succes-
sively for all individuals in a given generation before pro-
ceeding to the next generation (Figure 2).

The iterative process is illustrated in Figure 3 using a sim-
ple example of a three generation pedigree. Deterministic
steps 1 and 2 produce the haplotype data in Figure 3a. The
genetic algorithm is then iterated for each generation sep-
arately. When inferring the haplotypes of the F0 genera-
tion based on the F1, one sets the haplotype data

represented in Figure 3b. When inferring haplotypes of
the F1 generation based on the F0, one sets the results in
Figure 3c. Note that in this example, no additional infor-
mation is gained by inferring the F1 generation using the
F2 individuals. Finally, inferring the F2 generation using
the F1 data gives the results shown in Figure 3d.

Stringency criteria
Our method uses a deterministic procedure to infer
unambiguous marker phases and missing genotypes, and
a stochastic genetic algorithm (GA) to infer the most likely
chromosome haplotype for the remaining markers. The
stochastic part of the algorithm (that includes the genetic
algorithm) runs k times for each individual chromosome
(k determined by the user). For each chromosome in each
individual, one will obtain a set of k ordered genotypes
that have been determined in each of the k GA runs to be
the most likely one. We now introduce a stringency crite-
rion to be selected by the user. This criterion is the mini-
mum frequency required for a given ordered genotype
among the k iterations to be considered as known. Hence,
if for example the stringency criterion is 0.9, an ordered
genotype must be detected as the optimal solution in at
least 90% of the k haplotypes. If the frequency of the most
likely ordered genotype is smaller than 0.9, then the locus
will be considered as unresolved.

The output of the algorithm thus consists of the genotype
at each marker together with an indicator variable specify-
ing if the genotype is ordered or not. If a given genotype
at a marker meets the stringency criteria but is not present
in all of the k haplotype pairs, we can replace the indicator
variable with the frequency of the most likely ordered gen-
otype for the given marker.

Evaluation of the algorithm using simulations
The algorithm has been tested on a publicly available
dataset from the 12th QTLMAS Workshop [18]. This data-
set has a four-generation pedigree with SNP marker infor-
mation given at 0.1 cM intervals. The mating system was
kept constant over generations with one male mated to 10
females. The F0 generation consisted of 165 individuals
and the following ones 1500 individuals each. From this
dataset, we selected a subset of 50 consecutive markers on
the first chromosome. The inferred haplotypes and the
true simulated ones were directly compared, as the true
haplotype of each individual was provided in the original
data set.

The algorithm was also evaluated in an experimental data-
set from a nine-generation chicken advanced intercross
line (AIL). The AIL founder generation (F0) consists of 50
individuals, generations F1, F2, F4, F5, F6 and F7 approxi-
mately 100 individuals and generations F3 and F8 contains
approximately 300 and 400 individuals respectively. All

Computational strategy for deep pedigreeFigure 2
Computational strategy for deep pedigree. Successive 
steps used to estimate haplotypes in any n-generational com-
plex pedigree.
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individuals were genotyped with SNP markers at approxi-
mately 1 cM intervals in 13 chromosome regions. We
tested the haplotyping algorithm on the largest region: a
segment on chromosome 7 containing 88 markers. As the
true haplotypes are not known in this experimental data-
set, we used simulations to generate multiple datasets
based on the same pedigree. The genotypes in the first
generation were kept identical to the ones in the experi-

mental data, whereas the genotypes in the following gen-
erations were simulated by gene dropping, taking into
account the pedigree structure and marker distances of the
original data set. Therefore, the genotypes in the founder
generation of the simulated data were identical to the
ones in the experimental population, whereas the geno-
types of the following generations were sampled from the
potential gametes of the founder individuals. Recombina-

Description of the algorithm used for estimation of haplotypes in a three generations pedigreeFigure 3
Description of the algorithm used for estimation of haplotypes in a three generations pedigree. Haplotypes are 
indicated by boxes; grey box contain maternally inherited alleles when marker phase is known, whereas two white boxes con-
tain haplotype segments with unknown phase origin. -a haplotype estimated after the first deterministic (step 1). -b haplotype 
estimated in generation 1 from the offspring (step 3). -c haplotype estimated in generation 2 from their parents (step 4). -d 
haplotype estimated in generation 3 from their parents (step 4).

a b

c d
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tion was simulated at a rate proportional to the linkage
distance between the markers. The mating pattern was
kept identical to the original pedigree.

To test the algorithm, we emulate problems that are fre-
quent in experimental data sets, and we therefore
included missing genotypes in the simulated data. To
explore the effect of the stringency criterion on the per-
formance of our method, we haplotyped the simulated
AIL data using several different values of the stringency cri-
terion ranging from 0.5 to 1.

Comparison with other methods
The results from our GA based haplotyping method were
compared with those from two other approaches: a newly
developed deterministic algorithm [7] and a commonly
used likelihood based method (Merlin) [12]. We only
compared the performance for the markers where the
parental origin of the alleles cannot be inferred with cer-
tainty from the genotype of the relatives (parents/off-
spring). A marker genotype is correctly ordered when the
parental origin of the alleles were reconstructed as they are
in the simulated data set. We then compared for each
method the proportion of uncertain genotypes that were
correctly inferred, incorrectly inferred, and non-inferred.
A genotype order is considered non-inferred if the risk of
error associated with this genotype did not meet the strin-
gency criterion. The haplotype error rate is then calculated
as the number of incorrect ordered genotypes divided by
the number of uncertain genotype orders.

Results
AIL dataset
To estimate the accuracy of the haplotyping method, we
used the simulated AIL data described above. We report
results from our method with different values of the strin-
gency criterion in Figure 4. Increasing the stringency crite-
rion from 0.5 to 1 decreased the power to infer
haplotypes: the percentage of correctly ordered genotypes
decreased from 97.1% to 95.1% (Figure 4a), whereas the
accuracy increased from a haplotype error rate of 2.6% to
0.2% (Figure 4b). The proportion of uncertain haplotypes
however increased from 0.15 to 4.8% (Figure 4b).

A deterministic method [7] was also used to infer the hap-
lotypes in the AIL dataset. The results were comparable to
those of a GA based method with stringency of about
0.75, with 96.7% correctly inferred phases and 3.3% hap-
lotyping errors. (Table 1).

When using the likelihood based method Merlin [12], the
number of haplotype errors were low, at cost of a higher
number of unresolved cases, with 83% correct haplotypes,
1.8% errors and 14.2% of unresolved cases. (Table 1)

Dataset from 12th QTLMAS workshop
We also inferred haplotypes in the publicly available data-
set from the 12th QTLMAS workshop [18]. Using a strin-
gency criterion of 0.95, 87% of the markers were correctly
ordered, 0.05% were incorrectly ordered and 13%
remained unresolved. With a stringency of 0.5, the same

Accuracy of the haplotyping algorithm as function of the stringency criterionFigure 4
Accuracy of the haplotyping algorithm as function of the stringency criterion. a) Percentage of correct hetero-
zygous marker phases in the estimated haplotypes. b) Percentage of haplotype error (plain dark line) and percentage of non 
estimated marker phases (dashed line).
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method gave 90% correct haplotypes, 1% errors, and 9%
unresolved cases. In comparison, the deterministic
method [7] produced a higher rate of inferred phases with
97% of correct haplotypes, but also a higher error rate
with 3% of haplotyping error. MERLIN [12] produced
95% of correct haplotypes, 1.3% of error, and 3.7% of
unresolved cases (Table 1).

Discussion
We propose a genetic algorithm (GA) based method for
estimating multi-locus haplotypes in complex, multi-gen-
erational pedigrees, where the user simply can choose the
stringency with which haplotypes are inferred. In our
implementation, the user selects a stringency criterion as
well as the number of iterations (k) used to estimate the
stringency. The implemented stringency criterion is the
minimum frequency of detection of the same optimum
over k iterations for a marker to be considered as ordered.
We have explored the performance of the algorithm for
various levels of this stringency parameter and shown that
it is possible for a user to change the properties of the
inferred haplotypes to satisfy differences in the tolerance
to haplotyping error or non inferred haplotypes. The
choice of the parameter k depends on the structure and
size of the data. The algorithm will, by definition, com-
pute more reliable haplotypes with high values of k, but
since the GA is the most time consuming step of the algo-
rithm, using high values of k when analyzing large data-
sets considerably increases the computation time. Our
tests indicate that stable results can be obtained using the
arbitrary value of 100 for parameter k and that values as
small as 30 give useful results.

The results obtained from our algorithm were compared
to those obtained with two other methods: one determin-
istic based on MRHC [7], and Merlin: a likelihood based
method [12]. For a simulated AIL data set, our method

and the deterministic one provided similar results in
terms of the proportion of correctly inferred marker
phases. Merlin's results are as accurate as the ones
reported by other methods regarding the small proportion
of erroneous haplotypes they contain, but leaves a higher
proportion of unresolved phases. We believe that this
higher rate of unresolved cases is due to the fact that Mer-
lin divides the data into full sib families, whereas the two
other methods import and analyse the data as one single
pedigree. The subdivision of the data is then expected to
reduce the amount of information that can be utilized by
the algorithm, especially with deep pedigree like the AIL
where the distance between two related individuals can be
more than two generations. Merlin is however expected to
perform better in full sib based datasets.

We chose to compare the results of our method with those
of Merlin for its reliability, and ease to use on different
computer platforms. Moreover, its descent tree likelihood
based approach represent an alternative between the
purely deterministic and the genetic algorithm approach.

When comparing the results of the three different
approaches on the 2008 QTL MAS data [18], we observe a
lower proportion of inferred phases from our method,
which was expected as we used a very high stringency
parameter. Decreasing the stringency increased the
amount of inferred haplotypes, but the power and error
rate of our GA based method was still lower than the one
reported by the two other methods, which indicates that
for such data, our approach might be more conservative.

Conclusion
We propose a general method to reconstruct haplotypes
from pedigree and genotype data in complex pedigrees.
Our introduction of a stringency criterion allows the user
to control the rate of haplotype errors by discarding the

Table 1: haplotyping accuracy for the different compared methods

Haplotyping method and data correct haplotype (%) haplotype
errors (%)

unresolved
cases (%)

AIL pedigree
GA- 0.95 95.10 0.20 4.80
GA- 0.5 97.10 2.60 0.15
Hapsim 1 96.70 3.30 0.00
Merlin 2 83.00 1.80 14.20

QTL-MAS pedigree
GA- 0.95 87.00 0.05 13.00
GA- 0.5 90.00 1.00 9.00
Hapsim 1 97.00 3.00 0.00
Merlin 2 95.00 1.30 3.70

We compare three methods: our GA based method with high stringency (0.95), and low stringency (0.50), a deterministic method, and a likelihood 
based descent tree (Merlin), The results are given in percent of the non obvious heterozygous markers (non homozygous parents).
1Hernández-Sánchez and Knott (2009) [7]
2Abecasis et al (2002)[12]
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ordered genotypes associated with higher risk of error. The
method also provides an estimation of the error risk asso-
ciated to each ordered genotypes, and allows the user to
select how stringent one wants to be in reconstructing
genotype order. As in [12], some genotypes might still be
unresolved after the haplotyping procedure is completed
if the data does not allow for haplotype assignment.

When compared with two existing methods utilizing dif-
ferent haplotyping strategies our method performs simi-
larly well for inferring the parental origin of the alleles in
complex pedigrees.

The stringency criterion allows the user to better control
the error rate: a high stringency will produce haplotyped
data with very few haplotype errors but a higher number
of unordered genotypes. This configuration is suitable for
the analysis of deep pedigrees like the nine generations
AIL, and when the following steps of the analysis can han-
dle data that contain a mixture of known and unknown
marker phases. A low stringency will produce haplotyped
data that contains few or no unordered genotypes, but an
increased amount of haplotype errors. This configuration
is suitable when haplotype errors can be tolerated, and
when further analyses require all genotype order to be
assigned. We believe that it is important to provide such a
choice, as there will be different requirements imposed by
analyses performed using the haplotyped data regarding
the tolerance for haplotype errors or uncertain genotype
order.
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