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Abstract
Background: Microbes must sense environmental stresses, transduce these signals and mount
protective responses to survive in hostile environments. In this study we have tested the hypothesis
that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is
independent of phylogeny. To test this hypothesis we have compared the conservation of stress
signalling molecules in diverse fungal species with their stress resistance. These fungi, which include
ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline
environments to plant or mammalian hosts.

Results: The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol),
oxidative (H2O2 and menadione) and cell wall stresses (Calcofluor White and Congo Red). There
was no strict correlation between fungal phylogeny and stress resistance. Rather, the human
pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity
of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were
relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell
wall stress signalling pathways amongst the eighteen fungal species was examined. Putative
orthologues of functionally defined signalling components in Saccharomyces cerevisiae were
identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these
orthologues recorded. This revealed that in general, central components of the osmotic, oxidative
and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying
upstream and transcriptional regulators lying downstream of these modules have diverged
significantly. There was no obvious correlation between the degree of conservation of stress
signalling pathways and the resistance of a particular fungus to the corresponding stress.

Conclusion: Our data are consistent with the hypothesis that fungal stress signalling components
have undergone rapid recent evolution to tune the stress responses in a niche-specific fashion.
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Background
Microbes require robust stress responses to survive chang-
ing environments, and in particular, pathogenic microbes
must mount effective responses to counter the defences of
their host. The cellular and molecular responses to stress
involve both acute and adaptive phases. Acute responses
generally attempt to minimise the damage caused by
harmful effects of a stress, such as the immediate physico-
mechanical forces imposed by an osmotic stress [1]. In
contrast, adaptive responses generally promote the resto-
ration of cellular homeostasis with a view to allowing the
growth of the microbe under the new conditions [1-3].
Cells that fail to adapt adequately to a relatively severe
stress may die [4,5].

To mount appropriate acute and adaptive responses, cells
must sense the change in their environment and activate
the cognate signal transduction pathways that induce
these responses [4]. In this study we focused on hyperos-
motic, oxidative and cell wall stress signalling pathways
because these have been shown to contribute to fungal
virulence and their sensitivity to antifungal drugs [6-11].
However, these stress signalling pathways have been char-
acterized to the greatest extent in the relatively benign
model yeast, Saccharomyces cerevisiae.

In S. cerevisiae, the HOG (High Osmolarity Glycerol)
MAPK (Mitogen Activated Protein Kinase) pathway is
required for responses to osmotic stress [4,12]. The Stress
Activated MAP Kinase (SAPK) Hog1 is central to this path-
way. Hog1 activity is regulated by the MAP kinase kinase,
Pbs2 [13]. In turn Pbs2 activity is controlled by two inde-
pendent osmosensing branches involving Sho1 and Sln1,
respectively [14,15]. Sho1 is a putative osmosensor that
regulates the Pbs2-Hog1 MAP kinase module directly
[16], whereas Sln1 controls a phosphorelay system that
down-regulates the MAP kinase module in the absence of
hyperosmotic stress [4,17]. In response to hyperosmotic
stress Pbs2 becomes activated, leading to the phosphor-
ylation and nuclear accumulation of Hog1, and the subse-
quent activation of osmo-protective mechanisms such as
the accumulation of the osmolyte, glycerol. A well-charac-
terized model of the osmotic stress pathway in S. cerevisiae
was recently described by Krantz and coworkers (2006)
[18].

Oxidative stress signalling in S. cerevisiae has been
reviewed by Moye-Rowley (2003) [19], and Ikner and
Shiozaki (2005) [20]. The transcription factor Yap1p
plays a key role in the activation of oxidative stress genes
[21,22]. Yap1 activity is regulated by the upstream regula-
tors Gpx3, Ybp1 and Tsa1. The heat shock transcription
factor Hsf1p contributes to the activation of protective
functions during the oxidative stress response [23,24]. In
addition, HOG signalling is thought to regulate Yap1 syn-

thesis. Also, the cAMP-protein kinase A signalling path-
way down-regulates the activity of the partially redundant
transcription factors, Msn2 and Msn4, which contribute
to the core stress response that helps to protect S. cerevisiae
against oxidative stress.

Genetic or chemical insults to the S. cerevisiae cell wall
lead to the activation of the cell wall stress (or cell integ-
rity) pathway, which mediates compensatory changes in
cell wall architecture [25]. Cell wall stresses are detected
by specific sensors in the plasma membrane, such as
Wsc1, Wsc2, Wsc3, Mid2 and Mtl1 [26,27]. These sensors,
together with phosphatidylinositol-4,5-biphosphate
(PI4,5P2), stimulate nucleotide exchange on the GTP-
binding protein Rho1 [28]. PI4,5P2 activates the guanos-
ine nucleotide exchange factors (GEFs) Rom1/2 [29] at
the plasma membrane [30]. Then, Rho1 activates the pro-
tein kinase C (Pck1) MAP kinase cascade. This cascade
involves sequential activation of the MAPKKK Bck1, the
MAPKK's Mkk1 and Mkk2, and the MAPK Mpk1/Slt2 [31-
34].

Arguably these stress signalling pathways have been best
characterised in S. cerevisiae. However, it is becoming clear
that there are differences in stress signalling and stress sen-
sitivities amongst fungal species, for example amongst S.
cerevisiae, Schizosaccharomyces pombe and Candida albicans
[35-38]. This presumably reflects their evolution in dis-
similar environments where they have been exposed to
different types and intensity of stress [39]. Approximately
1.5 million fungal species are thought to exist, and their
great diversity reflects the heterogeneity of the niches they
occupy [40]. For example, free-living ascomycetes are fre-
quently found in the soil, tree products, plant roots and
on fruit, and are often transported between substrates via
insect vectors [41]. Numerous ascomycetes and basidio-
mycetes are important plant pathogens. Now that genome
sequences are becoming available for an increasing
number of diverse fungal species, it is becoming increas-
ingly possible to perform broad bioinformatic compari-
sons of stress regulators across fungal species and thereby
to examine the evolution of fungal stress signalling path-
ways. The first step in such a comparison is the identifica-
tion of putative orthologues of stress signalling molecules
in these fungal genomes. This approach has been used
effectively to assign provisional functional annotations to
protein coding genes identified by genome sequencing
[42-44], to measure the effects of functional genomic var-
iables on protein evolution rates [45-47], and applied to
other areas of evolutionary genomics [48], thereby
increasing our understanding of eukaryotic evolution
[49,50].

The available data suggest that fungal stress signalling
pathways are evolving rapidly and in a niche-specific fash-
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ion to protect different species against the contrasting
environmental stresses they encounter in their diverse
niches. This hypothesis implies that fungal stress resist-
ance is evolving in a manner that is independent of fungal
phylogeny. To test this hypothesis we have explored the
degree of conservation of fungal stress regulators relative
to their relatively well-characterised orthologues in S. cer-
evisiae, focusing on the osmotic, oxidative and cell wall
stress pathways. We selected eighteen fungal species for
this analysis, all of which have had their genomes
sequenced and annotated. These species have evolved in
divergent niches, and they show a wide variety of viru-
lence phenotypes. The data have highlighted the strong
conservation of particular fungal G-proteins and protein
kinases involved in stress signalling, and the rapid evolu-
tion of upstream sensors and downstream transcription
factors on these pathways. In addition we have performed
the first direct comparison of the sensitivities of these
fungi to osmotic, oxidative and cell wall stresses, thereby
confirming the diversity of stress phenotypes amongst the
species examined. Our data confirm the lack of correla-
tion between stress sensitivity and the degree of conserva-
tion of stress regulators. Our data are consistent with the
rapid polyphyletic evolution of fungal stress responses.

Results
Phylogenetic relationships
A preliminary objective was to reconfirm the phylogenetic
relationships of the fungi under analysis (Methods).
Encephalitozoon cuniculi was selected as outgroup for the
reconstruction of the phylogenetic tree (Figure 1). As
expected, the fifteen ascomycetes examined were sepa-
rated into three well-resolved groups: the Saccharomy-
cotina (7 genera, 99% bootstrap support), the
Pezizomycotina (7 genera, 100% bootstrap support) and
the Archiascomycetes (1 genus: S. pombe). The ascomyc-
etes formed a well-supported clade, which was the sister
group of the basidiomycetes. Lastly, the microsporidial
species E. cuniculi is very different from the other two taxa,
based on its genetic distance. This was entirely consistent
with the recent work of Fitzpatrick and co-workers (2006)
[51] who described similar phylogenies when they created
a supertree based on 4,805 gene families from 42 com-
plete fungal genomes. Therefore, our phylogenetic tree for
the 18 fungal species of interest is robust and consistent
with accepted views.

Phenotypic analyses
Our first main objective was to compare the sensitivities
of the various fungal species to osmotic, oxidative and cell
wall stresses. Fourteen of the eighteen fungal species were
subjected to these tests. Cryptococcus neoformans, Coccidio-
ides immitis, Chaetomium globosum and E. cuniculi are clas-
sified as category 3 pathogens by the Advisory Committee
on Dangerous Pathogens (ACDP) and hence were

excluded from this part of analysis. The sensitivities of
yeast-like species were examined during their exponential
growth phase (OD600 = 0.8 – 1.0: data not shown). The
stress sensitivities of the filamentous fungi were examined
using established approaches. Hence we examined the
impact of various stresses conditions upon the germina-
tion of non-vegetative A. gossypii and M. grisea spores,
Aspergillus conidia, and F. graminearum and N. crassa mac-
roconidia [52,53]. The data are presented in Figure 2 and
Tables 1, 2, 3, 4, 5 and 6 (also see additional file 1).

Osmotic stress sensitivity
The sensitivity of each fungal species to osmotic stress was
examined using a range of NaCl and sorbitol concentra-
tions, which impose ionic and non-ionic osmotic stresses,
respectively [54]. S. pombe and A. gossypii exhibited the
greatest sensitivity to NaCl, their growth being completely
inhibited by 1 M NaCl. In contrast, C. albicans, C. glabrata
and D. hansenii were the most resistant to NaCl (Figure 2,
Table 1). While C. albicans and D. hansenii are members of
the CTG clade (i.e. the clade of organisms in which the
CTG codon is decoded as serine instead of leucine), C. gla-
brata is not (Figure 1). The growth of these species was
only slightly inhibited by 1.5 M NaCl, and no growth was
observed at concentrations above 2 M NaCl. The rest of

Neighbour-joining phylogeny constructed using a concate-nated alignment of 8 genes for each of the 18 fungal speciesFigure 1
Neighbour-joining phylogeny constructed using a 
concatenated alignment of 8 genes for each of the 18 
fungal species. Bootstrap scores for all the nodes are dis-
played. Encephalitozoon cuniculi was selected as an outgroup. 
The basidiomycetes and ascomycetes form distinct clades. 
Dotted lines indicate yeast-like fungi, thick straight lines indi-
cate filamentous fungi, whereas dashed lines indicate dimor-
phic fungi [information adapted [144]]: red, human 
pathogens; green, plant pathogens; blue, benign fungi. Scale 
bar corresponds to 0.05 amino acid changes/site.
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ascomycetes showed relatively low resistance to NaCl. Of
the filamentous fungi, F. graminearum and A. nidulans
showed the highest resistance to NaCl. The human patho-
gen, A. fumigatus was more sensitive to NaCl, and the
plant pathogen, U. maydis was most sensitive to this stress.

Similar observations were made when sorbitol was used
to impose osmotic stress (Table 2, see also additional file

1). Once again S. pombe and A. gossypii were the most sen-
sitive to sorbitol, and C. albicans and C. glabrata were
amongst the most resistant species. Interestingly, com-
pared with other species, the halotolerant yeast D. hanse-
nii was relatively sensitive to sorbitol but resistant to NaCl
(Tables 1 and 2). Also the human pathogen, A. fumigatus
was more sensitive to NaCl than sorbitol, by comparison
with the other species. Indeed all of the human pathogens
tested were resistant to sorbitol. With the exception of A.
gossypii, M. grisae and N. crassa, the ascomycetes tested
were relatively resistant to sorbitol (Table 2). The basidio-
mycetes species tested (U. maydis) was sensitive to both
osmotic stresses.

Oxidative stress sensitivity
The sensitivities of the fungi to oxidative stresses were
tested by plating on media containing hydrogen peroxide
(H2O2) and menadione (Tables 3 and 4; see also addi-
tional file 1). F. graminearum and M. grisae were particu-
larly sensitive to H2O2 whereas the human pathogen C.
glabrata was exceptionally resistant to this oxidative stress.
M. grisea was also sensitive to menadione as well as H2O2,
suggesting that this plant pathogen is sensitive to oxida-
tive stresses in general. In contrast F. graminearum, C. albi-
cans and K. lactis were relatively resistant to menadione. It
is interesting to note that, in general, the human patho-
gens were relatively resistant to the oxidative stresses
tested, whereas the plant pathogens tested were relatively
sensitive.

Cell wall stress sensitivity
Finally, we tested the sensitivity of the cell wall stresses
using Calcofluor White and Congo Red. These inhibitors
disturb cell wall biosynthesis in S. cerevisiae and C. albi-

Comparison of fungal NaCl sensitivitiesFigure 2
Comparison of fungal NaCl sensitivities. Growth of 
fungi on media containing various NaCl concentrations, the 
control plates lacking NaCl. Serial dilutions were plated as 
described in Materials and Methods.

Table 1: Relative sensitivity of fungal species to NaCl

*Relative growth (%) NaCl [M]
Species Control 1.0 1.5 2.0 2.5 3.0

S. cerevisiae 100 75 0 0 0 0
C. glabrata 100 100 70 15 0 0
C. albicans 100 100 95 50 0 0
D. hansenii 100 100 71 43 0 0
A. gossypii 100 0 0 0 0 0
K. lactis 100 100 0 0 0 0
Y. lipolytica 100 72 22 0 0 0
F. graminearum 100 76 71 41 18 0
M. grisea 100 50 0 0 0 0
N. crassa 100 48 22 4 0 0
A. fumigatus 100 54 29 0 0 0
A. nidulans 100 65 52 39 22 0
S. pombe 100 0 0 0 0 0
U. maydis 100 47 0 0 0 0

* NaCl stress sensitivities were quantified by calculating the 
percentage growth under each condition relative to the 
corresponding non-stress control for that species. Examples of the 
NaCl plates are shown in Fig. 2.

Table 2: Relative sensitivity of fungal species to sorbitol

*Relative growth (%) Sorbitol [M]
Species Control 1.0 2.0 3.0

S. cerevisiae 100 87 83 0
C. glabrata 100 100 96 0
C. albicans 100 100 100 0
D. hansenii 100 79 50 0
A. gossypii 100 50 0 0
K. lactis 100 96 75 0
Y. lipolytica 100 94 69 0
F. graminearum 100 75 63 0
M. grisea 100 75 19 0
N. crassa 100 65 22 0
A. fumigatus 100 100 71 0
A. nidulans 100 79 63 13
S. pombe 100 78 33 0
U. maydis 100 46 0 0

* Sorbitol stress sensitivities were quantified by calculating the 
percentage growth under each condition relative to the 
corresponding non-stress control for that species. Examples of the 
sorbitol plates are shown in Additional File 1.
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cans, activating compensatory changes in cell wall archi-
tecture via the cell wall stress signalling (or cell integrity)
pathway. The majority of fungi investigated were resistant
to both Calcofluor White and Congo Red (Tables 5 and
6). S. pombe and C. glabrata stood out as the most resistant
species to these cell wall stresses, whereas D. hansenii and
Y. lipolytica were the most sensitive to these stresses. In
contrast, K. lactis and C. albicans were sensitive to Cal-
cofluor White, but relatively resistant to Congo Red. The
basidiomycete U. maydis was sensitive to both inhibitors.
Regarding the other plant pathogens, F. graminearum was
relatively resistant to Calcofluor White, but sensitive to
Congo Red. The reverse was true for M. grisae. In general
the human pathogens were relatively resistant to both

stresses, the exception being the sensitivity of C. albicans
to Calcofluor White. The non-pathogenic Pezizomycotina
were resistant to Calcofluor White and Congo Red.

Conservation of stress signalling modules
Having tested the sensitivity of the fungal species to
osmotic, oxidative and cell wall stresses, we examined the
degree of conservation of regulatory proteins on the corre-
sponding stress signalling pathways. C. neoformans, C.
immitis, C. globosum and E. cuniculi were included in these
analyses. We assumed for the purposes of this study that
the functions of orthologues are conserved across the fun-
gal species examined. This allowed us to map putative reg-
ulators to the corresponding stress signalling pathways

Table 3: Relative sensitivity of fungal species to H2O2

*Relative growth (%) H2O2 [mM]
Species Control 0.2 0.5 1.0 1.5 2.0 2.5 3.0 5.0 10 15 20 25 30

S. cerevisiae 100 83 83 83 75 67 58 25 0 0 0 0 0 0
C. glabrata 100 100 100 100 100 100 100 100 100 100 60 40 40 20
C. albicans 100 100 100 90 90 80 80 80 70 0 0 0 0 0
D. hansenii 100 82 82 82 76 53 35 24 6 0 0 0 0 0
A. gossypii 100 67 50 33 33 33 33 33 33 17 17 17 0 0
K. lactis 100 100 100 95 95 70 50 25 0 0 0 0 0 0
Y. lipolytica 100 83 74 83 83 70 70 70 48 0 0 0 0 0
F. graminearum 100 56 38 0 0 0 0 0 0 0 0 0 0 0
M. grisea 100 81 75 25 0 0 0 0 0 0 0 0 0 0
N. crassa 100 96 71 71 54 38 29 0 0 0 0 0 0 0
A. fumigatus 100 100 100 100 83 83 83 83 38 0 0 0 0 0
A. nidulans 100 83 83 83 67 67 67 50 17 0 0 0 0 0
S. pombe 100 100 100 100 94 81 75 50 0 0 0 0 0 0
U. maydis 100 65 65 65 60 60 55 35 0 0 0 0 0 0

* H2O2 stress sensitivities were quantified by calculating the percentage growth under each condition relative to the corresponding non-stress 
control for that species. Examples of the H2O2 plates are shown in Additional File 1.

Table 4: Relative sensitivity of fungal species to menadione

*Relative growth (%) Menadione [mM]
Species Control 0.01 0.02 0.03 0.04 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S. cerevisiae 100 83 83 83 83 83 83 75 33 17 17 17 17 17 17
C. glabrata 100 83 83 83 83 83 83 83 83 83 83 79 63 46 33
C. albicans 100 100 100 87 87 87 87 87 87 87 87 78 70 70 70
D. hansenii 100 93 93 79 57 29 0 0 0 0 0 0 0 0 0
A. gossypii 100 83 67 67 50 25 4 0 0 0 0 0 0 0 0
K. lactis 100 83 83 83 83 83 67 67 67 67 50 50 50 50 17
Y. lipolytica 100 83 83 67 67 67 58 54 46 17 0 0 0 0 0
F. graminearum 100 69 69 56 56 56 50 50 50 31 31 31 31 31 31
M. grisea 100 75 50 50 25 0 0 0 0 0 0 0 0 0 0
N. crassa 100 71 63 42 33 33 33 33 17 17 17 4 4 4 4
A. fumigatus 100 100 100 83 83 83 67 54 38 33 33 25 25 0 0
A. nidulans 100 100 100 100 100 94 88 88 75 75 75 75 50 50 50
S. pombe 100 100 100 100 87 80 60 47 0 0 0 0 0 0 0
U. maydis 100 100 81 75 56 25 25 0 0 0 0 0 0 0 0

* Menadione stress sensitivities were quantified by calculating the percentage growth under each condition relative to the corresponding non-stress 
control for that species. Examples of the menadione plates are shown in Additional File 1.
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that have been characterized in S. cerevisiae. However, this
assumption does not always hold, and the possibility that
these regulators might execute alternative functions in a
particular species should be borne in mind.

First, putative orthologues were identified for each S. cer-
evisiae protein in the other seventeen fungal species by
screening for reciprocal best hits, as described in Materials
and Methods. Lists of fungal orthologues are presented as
additional file 2. Proteins involved in osmotic, oxidative
and cell wall stress signalling were then selected, based on
recent models of these pathways in S. cerevisiae. We used
the model of the osmotic stress signalling pathway
reported by Krantz and co-workers (2006) [18], the cell
wall stress pathway described by Levin (2005) [25], and a

model of the oxidative stress signalling pathway based on
the reviews of Moye-Rowley (2003) [19] and Ikner and
Shiozaki (2005) [20]. We then examined the conservation
of each signalling pathway in each fungus by collating the
percent identities for the relevant regulators, relative to
their S. cerevisiae orthologues, as reported by BLASTP (Fig-
ures 3, 4 and 5). The orthologues are listed in the addi-
tional file 2.

Mean percent identities were then calculated for each reg-
ulator. This allowed the comparison of osmotic, oxidative
and cell wall stress signalling components across the
eighteen fungal species under investigation (Figures 3, 4
and 5). The Hog1 SAPK and the G-protein Cdc42 stand
out as being the most highly conserved signalling mole-

Table 5: Relative sensitivity of fungal species to Calcofluor White

*Relative growth (%) CFW [μg/ml]
Species Control 20 30 50 75 100 150 200 250 300

S. cerevisiae 100 71 58 50 50 50 50 50 42 42
C. glabrata 100 100 83 83 83 83 83 83 83 83
C. albicans 100 83 50 17 17 0 17 17 17 17
D. hansenii 100 0 0 0 0 0 0 0 0 0
A. gossypii 100 83 67 67 67 67 67 67 67 67
K. lactis 100 0 0 0 0 0 0 0 0 0
Y. lipolytica 100 0 0 0 0 0 0 0 0 0
F. graminearum 100 87 80 80 80 80 80 80 80 73
M. grisea 100 100 75 75 75 50 50 50 50 50
N. crassa 100 75 75 75 75 71 71 71 71 71
A. fumigatus 100 100 83 83 83 83 50 50 50 50
A. nidulans 100 83 83 83 83 83 83 54 54 38
S. pombe 100 94 94 94 94 81 81 81 81 81
U. maydis 100 46 46 38 38 23 8 8 8 8

* CFW stress sensitivities were quantified by calculating the percentage growth under each condition relative to the corresponding non-stress 
control for that species. Examples of the Calcofluor White plates are shown in Additional File 1.

Table 6: Relative sensitivity of fungal species to Congo Red

*Relative growth (%) CR [μg/ml]
Species Control 20 50 100 150 200 250 300 400 500

S. cerevisiae 100 95 85 75 55 40 40 25 20 20
C. glabrata 100 83 83 83 83 83 83 83 83 67
C. albicans 100 83 67 67 67 67 67 67 63 17
D. hansenii 100 31 0 0 0 0 0 0 0 0
A. gossypii 100 67 50 50 50 50 50 50 50 50
K. lactis 100 100 100 95 95 95 80 80 80 80
Y. lipolytica 100 25 0 0 0 0 0 0 0 0
F. graminearum 100 94 69 56 44 44 44 44 44 44
M. grisea 100 94 75 75 75 75 75 75 75 50
N. crassa 100 75 75 71 71 71 71 71 71 71
A. fumigatus 100 100 100 100 100 100 83 50 33 33
A. nidulans 100 79 71 71 71 71 71 71 71 71
S. pombe 100 100 100 100 100 100 100 100 100 100
U. maydis 100 25 0 0 0 0 0 0 0 0

* CR stress sensitivities were quantified by calculating the percentage growth under each condition relative to the corresponding non-stress control 
for that species. Examples of the Congo Red plates are shown in Additional File 1.
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cules in the osmotic stress pathway (Figure 3). Other cen-
tral components of the MAP kinase module (Ste11, Pbs2)
and phosphorelay module (Ypd1, Ssk1, Ssk2) are reason-
ably well conserved across the diverse species analysed.
However, the sensors and transcriptional regulators that
lie upstream and downstream of these models are gener-
ally poorly conserved.

With regard to oxidative stress signalling (Figure 4), mem-
bers of the glutaredoxin and thioredoxin systems are well
conserved (Tsa1 and Gpx3). Also, Ras (Ras1/2) and pro-
tein kinase A (Tpk1/2/3) are well conserved. (The strong
conservation of Hog1 has already been mentioned.) Once
again, downstream transcription factors involved in oxi-
dative stress signalling are poorly conserved. This is the

case for Yap1 orthologues, even though they are known to
play key roles in the oxidative stress response in S. cerevi-
siae, S. pombe, C. albicans and C. glabrata [7,21,22,55]. This
also holds for Msn2/4 orthologues. However in this case,
while Msn2/4 orthologues contribute to oxidative stress
responses in S. cerevisiae and C. glabrata, they do not do so
in C. albicans [36,55,56].

Signalling components on the cell wall stress pathway
also show great diversity with respect to their degree of
evolutionary conservation (Figure 5). Once again some
core components are strongly conserved most notably a
G-protein (Rho1), protein kinase C (Pkc1), and a MAP
kinase (Slt2). Also, the sensors of cell wall stresses (Wsc1/
2/3, Mtl1, Mid2) are less well conserved than these central

Degree of conservation of fungal osmotic stress regulatorsFigure 3
Degree of conservation of fungal osmotic stress regulators. (A) Orthologues of S. cerevisiae osmotic stress regulators 
in the fungi analysed. The organisms are ordered according to their position in the phylogeny, and the regulators ordered 
according to their mean %ID across all of the fungal species examined. Closed indicates no orthologue identified. (B) Mean 
conservation (%ID) of osmotic stress regulators across the fungal species examined based on the model of the osmotic stress 
pathway in S. cerevisiae described by Krantz and co-workers (2006) [18].
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signalling components. Also, the transcription factors that
are downstream targets of these signalling modules are
less well conserved (Swi4/6, Rlm1). However, subunits of
the glucan synthase are highly conserved (Fks1/2). These
lie downstream of Rho1 signalling, and are essential for
cell wall biosynthesis [25,57,58].

Individual diagrams have been created to illustrate the
degree of conservation of each regulator in each fungus
relative to S. cerevisiae (see additional file 3). Generally,
the above observations hold across the individual fungal
species we examined. In general core signalling molecules
are more highly conserved than upstream and down-
stream components.

Discussion
In this study we have compared directly the stress sensitiv-
ities of a diverse group of fungal species for the first time
(Figure 1). These species were selected on the basis that
their genomes had been sequenced and annotated (Table
7). This allowed us to examine the evolutionary conserva-
tion of stress signalling components amongst ascomycete,
basidiomycete and microsporidial species. Our study has
focused on osmotic, oxidative and cell wall stress signal-
ling. A number of significant observations have been
made.

The first main observation was that the fungal species
examined displayed wide variation in their resistance to

Degree of conservation of fungal oxidative stress regulatorsFigure 4
Degree of conservation of fungal oxidative stress regulators. (A) Orthologues of S. cerevisiae oxidative stress regula-
tors in the fungi analysed. As before, the fungi are ordered according to their position in the phylogeny, and the regulators 
ordered according to their mean %ID. Closed indicates no orthologue identified. (B) Mean conservation (%ID) of oxidative 
stress regulators across the fungal species examined based on the S. cerevisiae oxidative stress pathway adapted from reviews 
by Moye-Rowley (2003) [19] and Ikner and Shiozaki (2005) [20].
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osmotic, oxidative and cell wall stresses (Tables 1, 2, 3, 4,
5 and 6). For example, while some fungi showed acute
sensitivity to osmotic stress (S. pombe, A. gossypii), others
were relatively resistant (C. albicans, F. graminearum). Sim-
ilarly, some fungi were relatively sensitive to oxidative
stress (D. hansenii, M. grisea), whereas others were
extremely resistant to this type of environmental insult (C.
glabrata).

Interestingly, some species showed differential sensitivi-
ties to the alternative osmotic, oxidative and cell wall
stresses. For example, D. hansenii was resistant to NaCl,
but less resistant to sorbitol (Tables 1 and 2). NaCl
imposes a salt (ionic) stress in addition to an osmotic
stress, whereas sorbitol imposes a non-ionic stress
[54,59]. D. hansenii has been isolated from saline environ-

ments such as sea water [60] and concentrated brines [61].
This species is known to be more osmotolerant than S. cer-
evisiae [60], accumulating glycerol and to a lesser extent
arabitol as compatible solutes [62,63]. This difference is
due in part to more effective sodium extrusion by D.
hansenii [64].

A. nidulans, F. graminearum, C. albicans, K. lactis and S. cer-
evisiae showed differential responses to the oxidative
stresses tested (Tables 3 and 4). These fungi were more
resistant to menadione than H2O2. This was consistent
with the findings of Mutoh and co-authors (2005) [65]
who previously reported that S. pombe is more sensitive to
H2O2 than menadione. This would appear to suggest that
these fungi are better able to detoxify the superoxide gen-
erated by menadione, than the peroxide anions generated

Degree of conservation of fungal cell wall stress regulatorsFigure 5
Degree of conservation of fungal cell wall stress regulators. (A) Orthologues of S. cerevisiae cell wall stress regulators 
in the fungi analysed. As before, the fungi are ordered according to their position in the phylogeny, and the regulators ordered 
according to their mean %ID. Closed indicates no orthologue identified. (B) Mean conservation (%ID) of cell wall stress regula-
tors across the fungal species examined based on the S. cerevisiae cell wall stress pathway adapted from Levin (2005) [25].
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by H2O2. However in S. cerevisiae, peroxide is generated
from superoxide by superoxide dismutases, this peroxide
subsequently being detoxified by catalases [66,67]. There-
fore it might seem counterintuitive for some fungi to be
more resistant to menadione. However when transition
metals are present, H2O2 can also be converted to the
hydroxyl radical, which is more potent than the superox-
ide radical [67,68]. Therefore the relative sensitivity of
some fungi to H2O2 might reflect a reduced capacity to
detoxify hydroxyl radicals.

Differential sensitivities to the cell wall stress were also
observed (Tables 5 and 6). Calcofluor White and Congo
Red responses interact with different components in the
fungal cell wall. Calcofluor White binds to nascent chitin,
inhibiting the assembly of chitin chains in the wall [69-
72]. In contrast, Congo Red is generally thought to inhibit
β-1,3-glucan assembly in the cell wall [73-76]. S. cerevisiae
mutants with an increased chitin content in the cell wall
are more sensitive to Calcofluor White, whereas mutants
with reduced chitin are more resistant to Calcofluor White
[76-78]. It follows that the differential fungal sensitivities
to Calcofluor White and Congo Red might be explained,
at least in part, by the different chitin and β-glucan con-
tents of their cell walls. In S. cerevisiae, C. albicans and S.
pombe, β-1,3-glucan accounts for 50 – 55% of the cell wall
dry weight and is responsible for much of the mechanical
strength of the cell wall [58,79,80]. Chitin is a relatively
minor constituent of the yeast cell wall comprising 1 to

2% of the cell wall dry weight in S. cerevisiae, C. albicans
[58,81,82]. The S. pombe cell wall was reported to contain
no chitin [83-85], but more recently a small amount of
chitin was detected [0.3% of dry weight: [86]]. This low
chitin content probably accounts for the Calcofuor White
resistance of S. pombe (Table 5). However the filamentous
fungi were relatively resistant to Calcofuor White and
Congo Red, and yet chitin is a major component of their
cell walls [82,87]. The Neurospora cell wall contains 10–
20% chitin [87-89], whereas in A. nidulans chitin consti-
tutes up to 40% of the cell wall [90]. Therefore additional
mechanisms must account for the relative Calcofuor
White resistance of the filamentous fungi.

Our second main observation was that there was no clear
correlation between fungal phylogeny and stress resist-
ance (Figures 3, 4 and 5). In some cases closely related
fungi displayed similar stress sensitivities. For example,
the Aspergillus species examined (Eurotiomycetes) were
relatively resistant to the cell wall stresses (Calcofluor
White and Congo Red: Figure 5) and displayed similar
responses to osmotic stresses (NaCl and sorbitol: Figure
3). The Saccharomycetes, C. albicans and D. hansenii,
which also belong to the CTG clade (where the CTG
codon is translated as serine, rather than leucine), were
both highly resistant to NaCl (Figure 3). However in other
cases, closely related fungal species displayed contrasting
stress sensitivities. For example, C. glabrata was much
more resistant to osmotic, oxidative and cell wall stresses

Table 7: Strains and data sources

Organisms Strains Ecologic Niche References

A. gossypii ATCC10895 Cotton [145]
A. fumigatus Af293 Decaying organic & plant material [146]
A. nidulans FGSCA4 Tropical & subtropical regions [147]
C. albicans SC5314 Skin, mucosa [148]
C. glabrata CBS138 Mouth, gastrointestinal tracks [149]
C. globosum* CBS148.51 Soil, air and plant debris Unpublished
C. immitis* RS Soil (dessert like areas of southwest USA) Unpublished
C. neoformans* JEC21 Soil contaminated by pigeon droppings [150]
D. hansenii CBS767 All types of cheese, dairies, brines [149]
E. cuniculi* GB-M1 Urine, blood, kidney [151]
F. graminearum PH-1 Cotton, wheat, barley, bean, soybean Unpublished
K. lactis NRRLY-1140 Milk and milk products [149]
M. grisea Guy-11 Rice [152]
N. crassa OR74A Dead plant matter after fibres [153]
S. cerevisiae S288C Oak tress (oils), surface of fruits [154]
S. pombe 927C Grapes (wine fermentation) [155]
U. maydis 521 Soil plant material, maize (corn), grasses Unpublished
Y. lipolytica CLIB122 Oil fields, cheese, sausages [149]

* C. globosum, C. immitis, C. neoformans and E. cuniculi are classified as category 3 pathogens by ACDP (Advisory Committee on Dangerous 
Pathogens) and hence were used only for bioinformatics analysis in current study. NCBI GI numbers are provided for E. cuniculi.
Genome sequences sources; A. gossypii: http://agd.vital-it.ch/index.html; A. fumigatus and C. neoformans: http://www.tigr.org/tdb/fungal/index.shtml; A. 
nidulans, C. globosum, C. immitis, F. graminearum, M. grisea, N. crassa and U. maydis http://www.broad.mit.edu/annotation/fgi/; C. albicans http://
www.candidagenome.org/; C. glabrata, D. hansenii, K. lactis and Y. lipolytica http://cbi.labri.fr/Genolevures/; S. cerevisiae http://www.yeastgenome.org; S. 
pombe http://www.sanger.ac.uk/Projects/S_pombe/; E. cuniculi http://www.ncbi.nlm.nih.gov/Genomes/
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than S. cerevisiae (Figures 3, 4 and 5). F. graminearum was
more resistant to NaCl and menadione than M. grisae.
Also, C. albicans was more resistant to H2O2, menadione
and Congo Red than D. hansenii.

This was extended by more systematic analysis of individ-
ual stress response pathways. The mean percent identity
was calculated for all components of a given stress
response pathway in each species. These data were then
plotted against the differential impact of that same stress
upon S. cerevisiae and the comparator species (by calculat-
ing the difference between their mean growth inhibitions
for the stress in question). If pathway sequence divergence
is indicative of increasing differences in stress response,
then a negative correlation would be expected of this anal-
ysis (i.e. a lower mean pathway percentage identity would
correlate with greater differences in stress response). In
fact in every case, the regression R2 coefficients were less
than 0.09 (completely non-significant), and for all but
one stress, correlations were weakly positive (see also
additional file 4). Therefore, this analysis confirmed that
there is no correlation between the degree of conservation
stress regulators and the similarity of stress phenotypes.
We conclude that fungal stress phenotypes have evolved
rapidly and in a polyphyletic manner.

Presumably this rapid evolution of fungal stress pheno-
types has been driven by local and niche-specific environ-
mental pressures. If this was the case, one might expect to
observe a correlation between the stress phenotype of a
particular fungus and the nature of the environmental
niche that it occupies. Our data are consistent with this
view. For example as described above, D. hansenii, which
was has been isolated from saline environments, is resist-
ant to salt stress but less resistant to a non-ionic osmotic
stress (Figure 3). Also, the human pathogens we examined
(A. fumigatus, C. glabrata and C. albicans) were highly
resistant to oxidative stress, whereas the plant pathogens
(M. grisea, F. graminearum, A. gossypii and U. maydis) were
sensitive to this type of stress (Figure 4).

Phagocytic cells are a first line of defence against fungal
infections, generating superoxide, H2O2, and hydroxyl
radicals in an attempt to destroy the phagocytosed patho-
gen [91-93]. The major fungal pathogen C. albicans acti-
vates oxidative stress responses when exposed to human
blood, macrophages or neutrophils [11,94-97]. Indeed
the virulence of C. albicans is dependent upon its ability to
counteract oxidative stress [6,8,10,11]. Therefore it is
hardly surprising that C. albicans has evolved to become
relatively resistant to oxidative stress [98]. The same is true
for another opportunistic fungal pathogen. C. glabrata is
highly resistant to oxidative stress [55,92,99-101] even
though phylogenetically it is more closely related to S. cer-
evisiae than to C. albicans [102].

Our third main observation was that, despite the critical
importance of stress responses for the environmental
robustness of the fungi, the upstream sensors and down-
stream transcriptional regulators on three stress signalling
pathways show a low degree of sequence conservation
(Figures 3, 4 and 5). Core components of the stress path-
ways are relatively strongly conserved. In some cases these
core components play multiple cellular roles. For exam-
ple, core components of the cell wall stress (cell integrity)
pathway and in Ras-cAMP-protein kinase A signalling
play key roles in the regulation of growth and cell polarity
[30,103,104]. Therefore their strong sequence conserva-
tion is to be expected. In contrast, the upstream sensors
and downstream transcriptional regulators generally play
more specific roles in the detection of environmental
stress and the activation of stress-specific responses.
Clearly the evolutionary divergence of specific sensors or
transcriptional regulators could contribute to the differen-
tial stress phenotypes of these fungal species by modulat-
ing the sensitivity of each species to a particular type of
stress and tuning the strength of the molecular response to
that stress. Therefore, the low degree of conservation of
the upstream and downstream signalling components is
entirely consistent with the rapid polyphyletic evolution
of fungal stress resistance in response to niche-specific
selection pressures.

Our evolutionary comparison of stress signalling compo-
nents was based on the identification of the fungal ortho-
logues of S. cerevisiae. Orthologues were defined on a
genome-wide basis by identifying the best reciprocal hits.
In some cases it was not possible to identify orthologues
in all of the species examined. In many of these cases this
probably reflects the lack of a genuine orthologue. How-
ever in some cases genuine orthologues might have fallen
below the BLAST cut-off due to their low level of sequence
similarity. In other cases the presence of an orthologue
was not detected because of the existence of closely related
paralogous gene pairs in S. cerevisiae that arose through
the ancient genome duplication [105]. In these cases, the
BLAST search for S. cerevisiae 'paralogue A' identified a
particular fungal 'gene X', but the reciprocal BLAST search
for 'gene X' identified S. cerevisiae 'paralogue B', thereby
yielding no reciprocal best hit. Despite these health warn-
ings, most commonly used orthology resources are based
on reciprocal best hits. These include Clusters of Ortho-
logues Genes [C/KOGs: [106,107]], INPARANOID
[108,109] and the NCBI resource, HomoloGENE [110].
Also, it should be noted that, as our comparisons were
based on S. cerevisiae, fungal proteins that exist in other
species but not in S. cerevisiae will not have been identi-
fied in this study. Nevertheless, our study has provided a
comprehensive list of fungal orthologues to S. cerevisiae
proteins in seventeen divergent fungal species (see addi-
tional file 2). We have used this resource to study fungal
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stress signalling, but it is freely available for the analysis of
other aspects of fungal molecular and cell biology.

Conclusion
Our comparison of the stress resistance of diverse fungal
species has revealed a high degree of variation in their
resistance to osmotic, oxidative and cell wall stresses. Fun-
gal species that are closely related in phylogenetic terms
did not necessarily display similar levels of stress resist-
ance. Human pathogens tended to be more resistant to
stress, with the exception of Candida albicans which was
relatively sensitive to the cell wall stress, Calcofluor White.
Plant pathogens tended to be sensitive to oxidative stress.

We have examined the degree of conservation of osmotic,
oxidative and cell wall stress signal transduction pathways
in the eighteen diverse fungal species. Central compo-
nents of these signalling pathways are generally well con-
served, whereas upstream sensors and downstream
transcriptional regulators have diverged to a greater
extent. No correlation between the degree of conservation
of stress signalling pathways and the resistance of a partic-
ular fungus to the corresponding stress was observed. The
data reinforce the view that stress signalling components
have evolved rapidly to protect fungal species against the
environmental insults they experience in their specialized
niches.

Methods
Strains and growth media
The strains used in this study are summarized in Table 7.
C. albicans, Candida glabrata, Debaryomyces hansenii, Kluy-
veromyces lactis, S. cerevisiae, S. pombe, Ustilago maydis and
Yarrowia lipolytica were grown in YPD [111,112]. Ashbya
gossypii mycelia or spores were grown on AFM [Ashbya full
medium: [113,114]]. Aspergillus fumigatus mycelia or
conidia were grown on PDA [potato dextrose agar: [115]].
Aspergillus nidulans mycelia or conidia were grown on
MNVUU (minimal medium: [116,117]). Fusarium
graminearum mycelia or macroconidia were grown on
SNA [synthetic nutrient poor agar: [118,119]]. Mag-
naporthe grisea mycelia or spores were grown on CM [com-
plete medium: [120]]. Neurospora crassa mycelia were
grown on solid Vogel's medium using D-glucose instead
of sucrose as described by Vogel (1956) [121] and
Selitrennikoff and Sachs (1991) [122]. All strains were
maintained as frozen stocks and then cultured on the
appropriate media.

Using the above methods we were able to standardize the
growth conditions under which the stress phenotypes for
yeast and filamentous species were examined as far as was
practically possible. However, these growth conditions
were not optimal for some species, and this might have
affected their stress resistance.

Growth conditions
C. albicans, C. glabrata, D. hansenii, K. lactis, S. cerevisiae, S.
pombe, U. maydis and Y. lipolytica colonies were picked
from YPD plates, inoculated into 5 ml of YPD, and incu-
bated overnight at 30°C at 200 rpm [112].

Fragments of A. gossypii mycelia were placed on AFM agar
plates and incubated for 7 days at 30°C [adapted from
[123]]. Mycelial mats were then removed, resuspended in
800 μl H2O and 200 μl zymolyase-100T, and incubated at
37°C for 4 hours. 1 ml of 0.03% Triton X-100 were added
and the spores were collected by centrifugation at 5000
rpm for 5 min. The spores were washed twice with 0.03%
Triton X-100.

Disks of A. fumigatus mycelia (2.5 cm diameter) were
inoculated on PDA plate and incubated upside down at
37°C for 5 days [115]. The conidia harvested by gentle
scraping three times into 3 ml 0.1% Tween 20, and the
conidial suspension filtered through 4 layers of Miracloth
(Calbiochem, Merck Biosciences, Nottingham, UK) to
remove hyphae.

Disks of A. nidulans mycelia (2.5 cm diameter) were inoc-
ulated on MNVUU plates and incubated upside down at
28°C for 7 days [117]. Conidia were then harvested using
the same procedure as for A. fumigatus but water was used
instead of Tween solution to scrape the plate.

Small fragments of agar containing F. graminearum myce-
lia were placed on fresh SNA plates [119]. Plates were
sealed with Parafilm and incubated under blue/white
light for 8–10 days at 25°C. Macroconidia were harvested
using the same procedure as for A. nidulans.

Filter papers containing M. grisea mycelia were placed on
CM plates and incubated upside down at 25°C for 14
days [adapted from [120]]. Spores were harvested using
the same procedure as for A. nidulans.

N. crassa mycelia were grown in 250 ml conical flasks con-
taining 40 ml solid VgS medium [adapted from [124]].
Flasks were incubated in the dark at 28°C for 3 days, and
then in the light for 2 more days. Macroconidia were har-
vested into 50 ml dH2O, and the suspension transferred
to a 15 ml Falcon tube. This was repeated three times to
maximize the yield of macroconidia.

Stress sensitivity assays
Osmotic stress was applied using NaCl (0–3 M range) and
Dsorbitol (0–3 M range). Oxidative stress was imposed
using H2O2 (0–30 mM range) and menadione sodium
bisulfate (0–0.5 mM range). Cell wall stress was applied
using Calcofluor White (0–300 μg/ml range) and Congo
Red (0–500 μg/ml range).
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Overnight cultures of C. albicans, C. glabrata, D. hansenii,
K. lactis, S. cerevisiae, S. pombe, U. maydis and Y. lipolytica
grown in YPD at 30°C, were used to inoculate 10 ml of
YPD to a starting OD600 of 0.1. The cells were grown at
30°C at 200 rpm to an OD600 of 0.8 – 1.0. These expo-
nential cells were then serially diluted and 3 μl drops of
each dilution (100–10-5) were spotted onto YPD plates
containing the appropriate stress treatment. Growth was
assessed after 2 days incubation at 30°C.

In general, the stress assays for the filamentous fungi were
performed under the growth conditions described above.
Exceptions were the media used for A. fumigatus and N.
crassa conidial stress assays. A. fumigatus conidia were
grown on YG [yeast extract agar: [125]]. For N. crassa L-
sorbose was added to Vogel's growth medium to promote
colonial growth [126]. Fresh spore or conidial suspen-
sions were serially diluted and 3 μl drops of each dilution
(100–10-5) were spotted onto plates containing the appro-
priate stress treatment. Growth of the filamentous fungi
was examined after 2 days incubation, except for M. grisea,
which was examined after 5 days incubation. Experiments
were repeated at least three times.

Quantitative analysis of stress resistance
To semi-quantitatively compare the stress resistances of
the fungal species analysed under the conditions tested,
the percentage of growth of each species was calculated
relative to their non-stress control for each stress condi-
tion. For each species, the total number of spots observed
across the dilutions (100–10-5) for each stress condition
tested was counted and expressed as percentages of those
on the corresponding control plates (Tables 1, 2, 3, 4, 5
and 6). To obtain a global view of the response of each
fungal species to each osmotic (NaCl and sorbitol), oxida-
tive (H2O2 and MD) and cell wall (CFW and CR) stress the
mean relative growth (%) was calculated for each species
under analysis for each condition tested. To measure rela-
tive growth, the amount of growth in the presence of stress
was divided by the amount of growth observed for
unstressed cells of the same species and expressed as a per-
centage.

Phylogenetic analyses
Eight S. cerevisiae proteins were used as queries for our
phylogenetic analyses: actin [127], 3- phosphoglycerate
kinase [128], translation elongation factor EF-1 alpha
[129], the cyclin-dependent protein kinase, Cdc28 [130],
adenylate cyclase [131,132], and the transcription factors
Gcn4, Mig1 and Fap1 [133-135], which belong to differ-
ent gene families. These S. cerevisiae protein sequences
were retrieved from the Saccharomyces Genome Database
(SGD: http://www.yeastgenome.org). The sequences of
the orthologues of these proteins in the other fungal spe-
cies under analysis were retrieved by BLASTP [136] using

the SGD protein sequences as queries (see additional file
5). Manual searches were undertaken at the National
Center for Biotechnology Information using NCBI data-
bases, including the non-redundant protein sequence
database (nr database) currently containing approxi-
mately 900,000 sequences http://www.ncbi.nih.gov/
BLAST/. BLASTP search parameters were set to default.
Phylogenetic analyses were performed using MEGA3.1
[137] available at http://www.megasoftware.net/.
Sequences were aligned using ClustalW [138]. A concate-
nated phylogenetic tree was then produced by neighbour-
joining (NJ) clustering [139]. The phylogeny was drawn
using the p-distances method to correct for multiple
amino acid substitutions per site and rate heterogeneity
amongst sites. The substitution of amino sites per site was
0.05 (scale bar underneath tree). Clade stability was
assessed using 1000 bootstrap replicates. Phylogenetic
trees were presented using TreeView [140].

Identification of putative orthologues
The complete annotated fungal genome sequences were
retrieved from the databases in Table 7[144-155]. Putative
orthologues were identified for each S. cerevisiae protein
in each fungal species under analysis using the reciprocal
best hit (rbh) method [46,141]. We define 'putative
orthologues' as two proteins, one from each fungal
genome, that are each other's reciprocal best hit [142].
Perl scripts were used to reformat the amino acid sequence
data (formatdb), to perform reciprocal BLASTP searches,
and to generate output files that provide the accession
number for each orthologue, its percentage identity to the
corresponding S. cerevisiae protein and the match score.
Automated reciprocal BLASTP searches were performed
[143] using the default parameters except that scoring
parameter compositional adjustments were set to "no
adjustment" and the filter parameter was set automati-
cally to "low complexity regions". Putative orthologues
were not identified for all S. cerevisiae proteins in every
species above the default BLASTP cut-off, which was set to
10 by default. Only the reciprocal best hits identified in
this way were considered for further analysis. Where no
significant reciprocal hit was identified, the score was left
blank.
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Sensitivity of fungi to different stresses. Fungal stress sensitivity data: 
(A) sorbitol; (B) H2O2; (C) enadione sodium bisulfite; (D) Calcofluor 
White; (E) Congo Red.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-44-S1.pdf]

Additional file 2
List of fungal orthologues. Lists of reciprocal best hits: (A) complete list 
of all fungal orthologues; (B) osmotic stress signalling orthologues; (C) 
oxidative stress signalling orthologues; (D) cell wall cell stress signalling 
orthologues.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-44-S2.xls]

Additional file 3
Conservation of fungal osmotic, oxidative and cell wall stress path-
ways. Figures illustrating the degree of conservation of signalling mole-
cules on stress pathways in each of the fungal species examined: (A) 
osmotic stress signalling pathway; (B) oxidative stress signalling pathway; 
(C) cell wall cell stress signalling pathway.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-44-S3.pdf]

Additional file 4
No correlation exists between fungal stress phenotypes and the degree 
of conservation of fungal stress regulators. Plot showing no significant 
correlation between the degree of conservation of oxidative stress regula-
tors and the resistance of the fungal species to oxidative stress.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-44-S4.xls]

Additional file 5
Proteins used for phylogenetic analysis. Details of fungal orthologues 
used to construc the phylogenetic tree.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-44-S5.doc]
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