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Abstract
Background: Cullins are proteins involved in ubiquitination through their participation in
multisubunit ubiquitin ligase complexes. In this study, I use comparative genomic data to establish
the pattern of emergence and diversification of cullins in eukaryotes.

Results: The available data indicate that there were three cullin genes before the unikont/bikont
split, which I have called Culα, Culβ and Culγ. Fungal species have quite strictly conserved these
three ancestral genes, with only occasional lineage-specific duplications. On the contrary, several
additional genes appeared in the animal or plant lineages. For example, the human genes Cul1, Cul2,
Cul5, Cul7 and Parc all derive from the ancestral Culα gene. These results, together with the available
functional data, suggest that three different types of ubiquitin ligase cullin-containing complexes
were already present in early eukaryotic evolution: 1) SCF-like complexes with Culα proteins; 2)
Culβ/BTB complexes; and, 3) Complexes containing Culγ and DDB1-like proteins. Complexes
containing elongins have arisen more recently and perhaps twice independently in animals and fungi.

Conclusion: Most of the known types of cullin-containing ubiquitin ligase complexes are ancient.
The available data suggest that, since the origin of eukaryotes, complex diversity has been mostly
generated by combining closely related subunits, while radical innovations, giving rise to novel types
of complexes, have been scarce. However, several protist groups not examined so far contain
highly divergent cullins, indicating that additional types of complexes may exist.

Background
Ubiquitination is a critical process in all eukaryotic organ-
isms. It is involved in several essential functions, from the
regulation of protein levels to roles in cellular signaling,
DNA repair, endocytosis or gene expression regulation [1-
4]. Ubiquitin ligases (E3s) are basic components of the
ubiquitination system. They are a numerous and highly
diverse group of enzymes able to transfer ubiquitin to the
target proteins [1]. It has been observed that many E3s are
single proteins. However, in other cases the ubiquitin
ligase function is performed by multiprotein complexes.
Particularly significant are cullin-RING ubiquitin ligases

(CRLs), a diverse group of E3 complexes characterized by
containing both a cullin family protein and a RING finger-
containing protein. The roles of the cullin protein in this
type of complex are quite well understood. Structural data
indicate that cullins act as backbones that facilitate ubiq-
uitination by correctly positioning both the RING finger-
containing protein, that recruits the ubiquitin-conjugat-
ing enzyme (E2), and another protein present in the CRL
complex, the substrate receptor, which confers substrate
specificity. The CRL complexes also often contain one or
more adaptor proteins, which at the same time bind the
cullin and recruit the substrate receptor [5,6].
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CRLs are the most abundant E3s. Their diversity is due to
the fact that many alternative complexes can be generated
in a combinatorial way: multiple related proteins may
substitute each other to form similar but functionally dis-
tinct complexes. The number of CRLs may be very large:
in all eukaryotic species analyzed in detail so far there are
several cullins, related RING finger-containing proteins,
several adaptors and, most especially, many alternative
substrate receptors (e. g. potentially, there may be several
hundreds in mammals) that participate in CRLs. Fortu-
nately, and in spite of this extensive variability, analyses in
multiple species has allowed to classify all complexes
known so far into a few main CRL classes: 1) the Cullin/
RING/Skp/F-box CRLs (historically known as SCF com-
plexes, and to which I will refer generically as F-box CRLs)
that contain proteins with F boxes as substrate receptors
and Skp1 or related proteins as adaptors; 2) the Cullin/
RING/BTB CRLs (BTB CRLs), characterized by lacking
additional adaptors and containing proteins with BTB
domains as substrate receptors, directly bound to the cul-
lins; 3) the Cullin/RING/DDB/DCAFs CRLs (DDB CRLs)
that contain proteins related to mammalian DDB1 as
adaptors and often proteins with WD40 domains as sub-
strate receptors; and, 4) Cullin/RING/Elongins/BC-box
CRLs (BC-box CRLs), which contain one or two elongin
proteins as adaptors and BC-box/SOCS-box containing
proteins as substrate receptors (see reviews [5-9]).

It is known that CRLs regulate multiple cellular and devel-
opmental pathways in animals, fungi and plants, and cer-
tainly that may hold true for all free living eukaryotes (see
e. g. refs. [5,6]). In addition of the intrinsic importance of
cullins as critical players in ubiquitination control, they
have recently received additional attention due to impli-
cation of mutations in cullin-encoding genes in several
human diseases [10-13]. It is thus surprising that large-
scale studies of the CRL complexes from a comparative
point of view have not been hitherto performed. For
example, no systematic efforts to determine the evolution
of cullin proteins in the eukaryotes as a whole have been
attempted. There were only some studies in which a few
sequences were examined from an evolutionary point of
view [14-18]. This has caused significant problems. A typ-
ical one is the assignation of the same names to genes in
different species just because the proteins that they encode
belong to complexes with similar units (for example, sim-
ilar adaptors and substrate receptors), without any data
actually supporting that those genes are orthologous. In
addition, in some cases genes were named identically
while being described independently in different species -
- typically the names included the term cullin plus a con-
secutive number -- without considering at all their rela-
tionships. Thus, the current literature contains a
significant degree of uncertainty about the similarities and
differences of cullins and CRL complexes in different spe-

cies, which may lead to inappropriate translations of the
functional results obtained in one species to the rest. As a
step to characterize the evolution of CRL complexes, I
describe here the first comprehensive analysis of the evo-
lution of cullin proteins. The results obtained in this study
confirm several well-established ideas in the field, but also
open some novel perspectives.

Methods
Generation of a database of cullin proteins
The protein sequences corresponding to the most con-
served region of twelve cullin proteins were used in
TblastN searches to find all members of this family
present at the nr, est, gss, htgs or wgs databases of the
National Center for Biotechnology Information (NCBI;
http://www.ncbi.nlm.nih.gov/). These sequences were
selected both to cover all the variation detected in previ-
ous analyses of cullin proteins and also to specifically
check for all members of potential new families, most
especially in protozoans. The selected genes derived from
Homo sapiens (Cul3 and Cul7 proteins), Drosophila mela-
nogaster (CG11261), Caenorhabditis elegans (Cul4), Sac-
charomyces cerevisiae (Cul8), Debaryomyces hansenii
(Accession number CR382135.2), Cyanidioschyzon merolae
(Acc. No. AP006495.1), Plasmodium falciparum (Acc. No.
XM_961187.1), Trypanosoma brucei (Acc. Nos.
XM_842334.1, XM_839532.1 and XM_838630.1) and
Leishmania major (Acc. No. XM_001684442.1). The con-
served region of the proteins used in these searches was
homologous to amino acids 420 - 776 in human Cullin1.
Once excluded partial sequences (< 300 amino acids),
duplicates or nearly identical sequences (≥ 99% identity)
and highly divergent sequences that could not be reliably
aligned along the whole length of the selected region, I
generated a database containing 490 sequences (available
as Additional File 1). The cullin domain-containing APC2
proteins will not be considered here, given that their sim-
ilarity with canonical cullins was too low. The rest of cul-
lins, including the highly divergent cullin domain-
containing CUL7 and PARC proteins of vertebrates, which
were indeed easily detected and aligned, were all included
in this study.

Phylogenetic and structural analyses
Protein sequences were aligned using ClustalX 2.07 [19]
and manually corrected using GeneDoc [20]. Multiple
dendrograms (see Results) were then built using data
extracted from that primary alignment. Three different
procedures to generate those dendrograms were used,
namely Neighbor joining (NJ), Maximum parsimony
(MP) and Maximum likelihood (ML). The NJ tree was
obtained using the routine in MEGA 4 [21] MP analyses
were performed using PAUP* beta 10 version [22] and ML
reconstructions were established using PhyML 2.4.4 [23].
For NJ, sites with gaps were treated with the pairwise dele-
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tion option (as recommended by [24]) and Kimura's cor-
rection implemented. Parameters for MP were as follows:
1) all sites included, gaps treated as unknown characters;
2) randomly generated trees used as seeds; 3) maximum
number of trees saved equal to 100; and, 4) heuristic
search using the subtree pruning-regrafting algorithm.
Finally, for ML analyses, the BioNJ tree was used to start
the iterative searches and the Blosum62 matrix was cho-
sen to model amino acidic substitutions. Gaps are also
treated by PhyML as unknown characters. Reliability of
the topologies was tested in all cases by bootstrap analy-
ses. 1000 bootstrap replicates were performed for the NJ
and MP analyses and 200 for the ML analyses, which are
much more computer intensive. Dendrograms were
drawn using the tree editor of MEGA 4. Domains in cullin
proteins were characterized using InterProScan [25].

Results
Characterization of the types of cullins present in animals, 
plants and fungi
The sequences of cullin proteins are very diverse, so gen-
eral trees containing all the sequences found in the
TblastN searches failed to unravel the relationships
among the sequences of distant species (as an example,
see the NJ tree for the 490 sequences in Additional File 2).
In addition, structural analyses failed to detect significant
features that might be used to establish relationships

among proteins. InterProScan analyses showed that all
cullins have a variable N-terminal end, which generally is
detected as containing the InterPro domain IPR016159
("Cullin repeat"), a central, highly conserved region that
contains the InterPro domain IPR016158 ("Cullin
homology domain") and a C terminus, also highly con-
served, that includes the Pfam PF10557 domain
("Cullin_Nedd8 domain"), required for cullin neddyla-
tion, an essential step in CRL activity regulation (reviewed
in refs. [6,8,9]). The two last domains were the ones
included in the sequences that I examined. The only
exceptions observed after sampling multiple representa-
tive sequences belonging to all the main groups of cullins
detected in this study, were on one hand some Plasmodium
proteins (e. g. Plasmodium falciparum Acc. No.
NC_004327.1), which apparently lack the Cullin_Nedd8
domain and, on the other hand, the complex Cul7 and
Parc proteins, which are encoded by genes derived from
gene fusions, as we already described before [26,27].

Given these difficulties, I decided to perform specific anal-
yses which could be used as a starting point for a more
general examination of the data. Figures 1, 2 and 3 shows
a compact view of the phylogenetic trees obtained for sets
corresponding to 187 animal sequences (Figure 1), 150
fungal sequences (Figure 2) and 128 sequences from
bikonts (plants: 57 sequences; green and red algae: 11

Phylogenetic trees corresponding to animal cullin sequencesFigure 1
Phylogenetic trees corresponding to animal cullin sequences. The figure corresponds to the NJ tree, but the MP and 
ML results were topologically so similar that they are also included here. Numbers in the branches refer to bootstrap support, 
in percentages (order: NJ/MP/ML). Numbers in brackets refer to the number of sequences within each group. Five genes (red) 
have been found in all animal groups. Two other (orange) are vertebrate-specific or Drosophila-specific. Details of the 
sequences can be found in Additional File 3.
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sequences; stramenopiles: 17 sequences; alveolates: 19
sequences; excavates: 24 sequences; Figure 3). The details
of the trees, including the accession numbers of the
sequences, can be found as Additional Files 3, 4 and 5.
Additional file 6 contains the sequences included in the
animal, fungal and bikont analyses as separate datasets.

Results in Figure 1 are very well supported and confirm
the accepted classification of animal cullins into six main
orthology groups, CUL1, CUL2, CUL3; CUL4, CUL5 and
CUL7/PARC which respectively include the human genes
Cul1, Cul2, Cul3, Cul4A and Cul4B (both in the CUL4
group), Cul5, Cul7 and Parc (the last two in the CUL7/
PARC group). For five of those groups (CUL1 - CUL5), I
found genes in the placozoan Trichoplax adhaerens and the
cnidarian Nematostella vectensis, indicating that they origi-
nated before the split of the different animal lineages. On
the contrary, genes in the CUL7/PARC group are restricted
to chordates and some species of the Drosophila genus

contain an additional gene that cannot be ascribed to any
of the main classes (forming the CUL-Dros group in Fig-
ure 1). We can assume this is a recent fly-specific duplicate
that diverged extensively from the rest of cullins in a short
period of time.

To interpret the evolutionary history of fungal cullins is
more difficult. Figure 2 shows the main groups detected
for which there is bootstrap support. It is very significant
that, except for some species-specific duplicates, all fungi
have three cullin genes. Thus, the simplest hypothesis to
explain the results shown in Figure 2 is that three genes
existed before the ascomycetes/basidiomycetes split.
These three genes would correspond respectively to the
CDC53, CUL3 and CUL8/RTT101 genes of Saccharomyces
cerevisiae or, also respectively, to the cul1, cul3 and cul4
genes of Schizosaccharomyces pombe. The problem with this
hypothesis is the absence of a strong support for the puta-
tive Cul3 and Cul4/Cul8 branches (see Figure 2). Espe-

Dendrogram showing the relationships among fungal cullinsFigure 2
Dendrogram showing the relationships among fungal cullins. Bootstrap support and number of species in the groups 
are indicated as in Figure 1. Details of the sequences are described in Additional File 4.
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cially troublesome is that the CUL8/RTT101 genes of
saccharomycotina species are very different from the cul4-
like genes of the rest of ascomycetes and basidiomycetes
(see also Figure 2). This can be explained in two different
ways. One option is that CUL8/RTT101 genes in saccharo-
mycotina are indeed cul4-like genes that have suffered an
acceleration of their evolutionary rates which makes diffi-
cult to determine their precise phylogenetic position. A
second, albeit less parsimonious option, is that saccharo-
mycotina species have lost their ancestral cul4-like gene
and in parallel an additional cullin gene arose by duplica-
tion, giving rise to the CUL8/RTT101 gene. In any case, no
matter which of those two possible explanations is true, it
should be possible to determine with precision the phyl-
ogenetic relationships of all the rest of fungal cullin genes,
once saccharomycotina species are eliminated. This is
shown in Figure 3, in which it is clear that the cullins in
the rest of fungi all belong to one of the three groups,
Cul1, Cul3 or Cul4. The conclusion is that three genes
existed when fungi emerged.

Figure 4 shows the result for the set of cullin sequences
obtained from bikont species. Interestingly, there are
three main groups, highly supported by bootstrap analy-
ses, which include sequences from viridiplantae (plants,
green algae) and stramenopiles. Multiple, very similar
paralogous genes, evidently associated to their well-
known genome duplications, appear in most plant species
(see details in Additional file 5). For example, one of the
three main groups contain three Arabidopsis thaliana genes

(known as Cul1, Cul2 and Cul2-like/Cul2b, this last one a
likely pseudogen), a second group includes two genes
(named Cul3a and Cul3b) and the third just a single gene,
Cul4. This agrees with previous results ([16-18]; addition-
ally, these authors described small cullin-like proteins
which did not align along the whole length of the region
that I considered in this study and therefore were dis-
carded). The fact that in plants, stramenopiles and fungi
the basic, ancestral number of cullin genes is three sug-
gests that these genes may, in origin, be the same. This
possibility will be explored in the next section.

In addition to the three main groups present in plants and
stramenopiles, several highly divergent sequences are
detected in other species, most of them belonging to the
alveolata and excavata. Alveolata species have from 1 (in
a particular Plasmodium species) to 6 genes (as in Tetrahy-
mena thermophila). When duplicates are present, they are
all very similar, implying recent duplication events in par-
ticular lineages (see details in Additional File 5). The
genes of excavata species, on the other hand, appear as
four - five very distinct groups (Figure 4). No obvious rela-
tionships of these highly divergent genes with the plant or
stramenopile cullin genes could be traced.

Reconciling the phylogenetic trees of animals, fungi and 
plants
The results shown in the previous section confirm or clar-
ify several relevant aspects of the origin and evolution of
cullins, but on the other hand open new significant ques-

Dendrogram showing the relationships among fungal cullins, after eliminating the saccharomycotina speciesFigure 3
Dendrogram showing the relationships among fungal cullins, after eliminating the saccharomycotina species. 
Three highly suppported groups are apparent, which appeared before the ascomycota/basidiomycota split.
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tions. Of particular interest is to correlate the known bio-
chemical roles of the different cullins (e. g. in which type
of CRL they participate) with their diversification. A
related point is to establish when the different types of
cullins emerged. Data presented in the previous section
are compatible with the presence of at least three cullin
genes before the unikont/bikont split, followed by line-
age-specific duplications. However, more complex alter-
natives, with some genes disappearing and others
emerging in multiple lineages can also be put forward to
explain those results. Therefore, I decided to further
explore the data in order to determine the most likely sce-
nario for the early evolution of cullins.

Given that I found, as described in the previous section,
that the cullins of both some fungal groups and some
bikont groups are highly divergent, I decided to exclude
those problematic sequences and focus the analyses on a
more limited dataset. Particularly, in Figures 2 and 3, I
showed that the sequences of the cullins of a type of asco-
mycetes, the pezizomycotina, form three compact groups
that would correspond to the fungal Cul1, Cul3 and Cul4
genes already discussed above. Therefore, I decided to use
these slowly-evolving sequences from pezizomycotina
species as representatives of fungal cullins in more com-
prehensive analyses. Figure 5 shows the results for the
analyses that include all available animal and plant

Dendrogram of cullin sequences obtained from bikont speciesFigure 4
Dendrogram of cullin sequences obtained from bikont species. Notice the three groups in plants and stramenopiles 
and the multiple highly divergent groups in alveolata (pink) and excavata (blue). Bootstrap support and number of species per 
branch are indicated as in the previous figures (again bootstrap order: NJ/MP/ML). Details can be found in Additional File 5.
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sequences plus those pezizomycotina-derived sequences
(details can be found in Additional File 7). The question
that the results shown in Figure 5 try to answer is whether,
as suggested by the previous analyses, just three genes
existed before the unikont/bikont split. As indicated in
that figure, the results obtained are totally compatible
with that possibility. The deepest dichotomy shown in
Figure 5 separates a group formed by several animal cullin
genes (Cul1, Cul2, Cul5, Cul-Dros, Cul7/Parc) a single fun-
gal cullin gene (Cul1, also known as Cdc53) and two

recently duplicated plant cullin genes (Cul1 and Cul2)
from two other groups which respectively include the cul-
lin genes so far named Cul3 and Cul4 in animals, plants
and fungi. As indicated in Figure 5, the three groups may
have emerged from the diversification of single ancestral
cullin genes, all of them originated very early in eukaryotic
evolution, before the separation of unikonts and bikonts.
I have named these ancestral genes, and the groups of
genes that derive from them, as Culα, Culβ and Culγ (Fig-
ure 5).

Phylogenetic relationships obtained for all animal and plant sequences plus sequences from pezizomycotina fungiFigure 5
Phylogenetic relationships obtained for all animal and plant sequences plus sequences from pezizomycotina 
fungi. The three groups, corresponding to the ancestral Culα, Culβ and Culγ genes, are highly supported by the alternative 
methods of phylogenetic reconstruction (NJ/MP/ML). Details in Additional File 6.
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Table 1 shows the functional data that also support the
early emergence of three cullin genes. As shown in that
table, genes included in the Culα group in Figure 4 encode
proteins that are very often part of F-box CRLs [28-34],
while Culβ genes in general encode cullins that interact
with BTB domain-containing proteins [35-40] and the
products of Culγ genes are included in DDB CRL com-
plexes [41-50]. There are however exceptions to this pat-
tern. The best established is that several animal Culα genes
(Cul2, Cul5) are known to interact with substrate receptors
different from F-box proteins (Table 1; [51-55]). In addi-
tion, there is also a work suggesting that S. cerevisiae Cul3
protein may interact with BC-box-containing elongins
instead of BTB proteins [56]. All these exceptions may be
easily interpreted as secondary lineage- and protein-spe-
cific diversifications. On one hand, the available data
indicate that the emergence of multiple Culα genes in ani-
mals (Figure 1) has been accompanied by a diversification
of the partners of the proteins they encode (Table 1). On
the other hand, if indeed the Cul3/BC-box interaction
exists, the results for S. cerevisiae Cul3 might be inter-
preted as a recent, drastic modification of its ancestral
function. However, this is unlikely. It would mean that
Saccharomyces does not have any cullin-BTB complex, but
this type of complex has been found in all other organ-
isms for which there is functional data. An alternative
would be that Cul3 proteins in S. cerevisiae may be form-
ing part of two different types of CRLs, one in which the
adaptor is a BTB protein and a second one in which the
adaptors are elongins. This second option predicts that a
Cul3-BTB complex should be found in Saccharomyces.
Table 1 also supports the idea that S. cerevisiae CUL8/

RTT101 is indeed, and in spite of the low sequence simi-
larity shown in Figure 2, a true ortholog of the Cul4 genes
in other fungi, given its interaction with a DDB-like pro-
tein [49].

Discussion
The results obtained are compatible with the presence of
three cullin genes (which I have named Culα, Culβ and
Culγ) in early eukaryotic evolution. This hypothesis is sup-
ported by the independent results in the different groups
on which I have focused this study (mainly animals, fungi
and plants; Figures 1, 2, 3 and 4), and especially by the
combined results when all the sequences in animals and
plants and a selected group of slowly evolving sequences
from fungi are analyzed together (Figure 5) and fit well
with the available functional data (Table 1). We can thus
conclude that, in spite of a substantial sequence diver-
gence that complicates the analyses, orthology relation-
ships can be established among cullins of distantly related
eukaryotes. In general, the associations found agree well
with previous results. For example, the close relationships
among Cul3 and Cul4 genes in animals, fungi and plants
were observed before [17,18]. However, my results also
provide some additional interesting information which
contributes to understand the relationships among all cul-
lins. For example, it can be deduced from the results
shown in Figures 1 and 5 that the animal genes Cul1, Cul2,
Cul5, Cul7, Parc and Cul-Dros all derive from the ancestral
Culα gene. These means that they are all equally related to
the Cul1/Cdc53 genes in yeasts and to the Cul1/Cul2 genes
in plants, a result that is very significant if we want to com-
pare functional results in different model species. These

Table 1: Types of cullin complexes characterized so far in different organisms.

Culα Culβ Culγ

ANIMALS Cul1 - Skp1 - F-box proteins [31,32]
Cul7 - Skp1 - F-box proteins [34]
Cul2 -Elongins B, C - BC box proteins 

[51,52]
Cul5 - Elongins B, C - BC/SOCS box 

proteins [53-55]

Cul3 - BTB [35] Cul4a, Cul4b - DDB1 - DCAFs 
[41,44-48,50]

FUNGI
(S. cerevisiae)

Cdc53 - Skp - F-box proteins [28,29] Cul3 - Elongin C - Elongin A (BC box) 
?? [56]

Cul8/Rtt101-Mms1 (DDB-like) 
[49]

FUNGI
(S. pombe)

Cul1 - Skp - F-box proteins [30] Cul3 - BTB (S. pombe) [36] Cul4 - Rik 1 (DDB-like) [42]

PLANTS Cul1 - Ask (Skp1-like) - F-box [33] Cul3a, Cul3b - BTB [37-40] Cul4 - DDB1 - DET1 [43,44]

Ancestral complexes Culα- Skp1 - F-box CRL Culβ- BTB CRL Culγ - DDB1 CRL

References are indicated in brackets. The respective cullins, adaptors (if present) and substrate receptors are indicated. The ancestral complexes 
were deduced by considering the phylogenetic range of each association. In bold, data that coincide with the ancestral situation. Most animal data 
were obtained from mammalian species, although some have been also characterized in invertebrates. Fungal data come from the model species 
Saccharomyces cerevisiae and Schizosaccharomyces pombe, as indicated. Plant data derive from Arabidopsis thaliana. The question marks refer to the 
fact that the interaction Cul3/elongins in S. cerevisiae remains unconfirmed.
Page 8 of 11
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results also demonstrate that it is inappropriate to use the
name Cul2 for plant genes which in fact are plant-specific
duplicates, totally unrelated to animal Cul2 genes. In fact,
previous analyses had failed to properly situate the plant
Cul1/Cul2 branch [17,18], which I have shown here to
clearly correspond to the Culα plant sequences (Figure 4).
A final, logical conclusion of the results presented here is
that to generate a revised cullin nomenclature based on
evolutionary relationships would be advisable. A logical
step would be to include in the name of the genes an indi-
cation to which group (α, β or γ) they belong.

Once established the most likely orthology relationships
among genes, it is possible to evaluate when each type of
CRL complex may have arisen. We may deduce in which
type of complexes the three different ancestral cullins were
involved, by considering what is currently known in
model species (Table 1). The most parsimonious conclu-
sion is that each type of cullin was already involved in a
different type of complex. Therefore, it can be hypothe-
sized that there were three types of cullin complexes in
early eukaryotes: F-box CRLs, BTB CRLs and DDB CRLs
(see data in Table 1). The rest of complexes must have
arisen more recently. Thus, both the animal Cul2/Elongin
and Cul5/Elongin complexes (Table 1) must be animal-
specific, considering the relatively recent emergence of
those two genes, already described. Finally, the descrip-
tion of a Cul3/Elongin complex in the yeast Saccharomyces
cerevisiae (Table 1) is incongruent. The fact that no other
Cul3 protein has ever been found to interact with elongins
and that the elongin-containing complexes in animals
only involve animal-specific cullins, as I just mentioned,
suggest that all complexes that include adaptors with BC
boxes (VHL, SOCS proteins, Elongin A, etc.; see details in
the references listed in Table 1) emerged relatively
recently. The presence of those complexes in both animals
and (if confirmed) in Saccharomyces must therefore be due
to parallel evolution: the same novel interaction between
cullins and BC box-containing proteins emerged twice
independently. This conclusion would be falsified only if
additional Cul3/Elongin A complexes in animals or
plants are found. On the other hand, so far no Cul3/BTB
CRL complex has been described in Saccharomyces. How-
ever, the finding of such complexes in plants, animals and
even other fungi strongly suggest that they must exist also
in budding yeast species. Perhaps, as I already suggested
above, this means that Cul3 in Saccharomyces participates
in two different complexes, one of them involving elon-
gins and a second one involving BTB-containing adaptors.

A final consideration is that the discovery of multiple,
highly divergent multiple cullin genes in some protozo-
ans, and especially species of the Alveolata and Excavata
groups (Figure 3) suggests that the spectrum of possible
CRL complexes in eukaryotes may be much wider than the

scientific community has so far established. At a more
local level, the substantial diversification of the Cul4
sequences in some fungi, especially the saccharomycotina
(Figure 2), may also be an indication of them having
acquired peculiar functional features. These possibilities
may be experimentally explored in the near future.
Finally, it is also interesting to point out that APC2 genes,
not considered here given its low degree of similarity, may
all derive from a fourth gene with a cullin domain that
also emerged before the unikont/bikont split [57-60].

Conclusion
The origin of most of the known types of CRLs is ancient.
The current diversity of CRL complexes in animals, plants
and fungi is mostly explained by the emergence of differ-
ent combinations of related proteins to give rise to multi-
ple similar complexes. So far, a single type of complex is
known that emerged since the unikont/bikont split, and
perhaps twice independently in animals and fungi. How-
ever, the characterization of CRL complexes in additional
protists (e. g. alveolata, excavata) may lead to the discov-
ery of additional novel types of complexes of recent ori-
gin.
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