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Abstract
Background: Nuclear receptors are a superfamily of metazoan transcription factors that regulate
diverse developmental and physiological processes. Sequenced genomes from an increasing
number of bilaterians have provided a more complete picture of duplication and loss of nuclear
receptors in protostomes and deuterostomes but have left open the question of which nuclear
receptors were present in the cnidarian-bilaterian ancestor. In addition, nuclear receptor
expression and function are largely uncharacterized within cnidarians, preventing determination of
conserved and novel nuclear receptor functions in the context of animal evolution.

Results: Here we report the first complete set of nuclear receptors from a cnidarian, the starlet
sea anemone Nematostella vectensis. Genomic searches using conserved DNA- and ligand-binding
domains revealed seventeen nuclear receptors in N. vectensis. Phylogenetic analyses support N.
vectensis orthologs of bilaterian nuclear receptors in four nuclear receptor subfamilies within
nuclear receptor family 2 (COUP-TF, TLL, HNF4, TR2/4) and one putative ortholog of GCNF
(nuclear receptor family 6). Other N. vectensis genes grouped well with nuclear receptor family 2
but represented lineage-specific duplications somewhere within the cnidarian lineage and were not
clear orthologs of bilaterian genes. Three nuclear receptors were not well-supported within any
particular nuclear receptor family. The seventeen nuclear receptors exhibited distinct
developmental expression patterns, with expression of several nuclear receptors limited to a
subset of developmental stages.

Conclusion: N. vectensis contains a diverse complement of nuclear receptors including orthologs
of several bilaterian nuclear receptors. Novel nuclear receptors in N. vectensis may be ancient genes
lost from triploblastic lineages or may represent cnidarian-specific radiations. Nuclear receptors
exhibited distinct developmental expression patterns, which are consistent with diverse regulatory
roles for these genes. Understanding the evolutionary relationships and developmental expression
of the N. vectensis nuclear receptor complement provides insight into the evolution of the nuclear
receptor superfamily and a foundation for mechanistic characterization of cnidarian nuclear
receptor function.
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Background
Nuclear receptors (NRs) are one of the most abundant
classes of transcription factors in metazoans and coordi-
nate diverse processes ranging from developmental pat-
terning to physiological regulation. NRs appear to be
restricted to animals because extensive work has shown
nuclear receptors are present in all metazoan phyla (e.g.,
sponges [1,2], cnidarians [3,4], and bilaterians [5]) but
not in plants, fungi or choanoflagellates [6]. The signature
motifs of NRs are the DNA-binding domain (DBD),
which includes a Cys-Cys zinc coordinating region, and
the ligand-binding domain (LBD), a carboxy-terminal
domain that binds ligands and facilitates receptor dimeri-
zation and coactivator recruitment (Figure 1). High
sequence conservation within these domains, particularly
the DBD, has permitted identification of NRs from a
number of animals and phylogenetic analysis of the NR
superfamily [5].

Genes in the NR superfamily have been classified into six
major NR families, many of which are further divided into
subfamilies of orthologs and paralogs. All six families are
represented in both the protostome and deuterostome
lineages, supporting the hypothesis that NRs had under-
gone extensive radiation prior to the divergence of triplob-
lastic animals. An analysis by Bertrand et al. [5] of NRs
from nine bilaterian genomes did much to resolve the
evolutionary history of this superfamily. They inferred 25
NRs that likely existed in the Urbilaterian with at least one
gene from each of the six families. After this divergence,
many NRs underwent extensive duplication in the verte-
brates, particularly fishes, and one gene underwent exten-
sive duplication in nematodes [7]. With the increasing
availability of sequenced genomes and PCR-based surveys
of NR diversity, particularly from non-ecdysozoan proto-
stomes [8-10], it has become apparent that a number of
NRs have also been lost since the Urbilaterian ancestor,
particularly in insects and nematodes.

Because the NR superfamily had already diversified prior
the divergence of the protostomes and deuterostomes, it is
essential to characterize NRs in "basal" metazoans to
understand not only when the NR families evolved but
also the evolutionary relationships among these families.

NRs have been reported from a handful of cnidarians
from three of the four classes (Anthozoa [4], Cubozoa
[11], Hydrozoa [3]) and two sponges [1,2]. Sequence and
phylogenetic analyses of identified NRs have led these
authors to suggest that many or all of these genes belong
to NR family 2 with homologs of TLL (tailless, NR2E) in
corals [4], HNF4 (hepatocyte nuclear factor 4, NR2A) in
coral [4] and sponge [1], RXR (retinoic × receptor, NR2B)
in the box jelly [11], and COUP-TF (chicken ovalbumin
upstream promoter transcription factor, NR2F) in coral
and hydra ([3,4]).

Despite the importance of understanding how NR regula-
tion of development and physiology has evolved, little
has been reported regarding the expression and function
of NRs in non-bilaterian animals. Some cnidarian NRs
have been shown to share conserved features with their
vertebrate orthologs. For example, the RXR homolog in
the box jelly Tripedalia cystophora specifically binds 9-cis
retinoic acid with an affinity similar to that of vertebrate
RXRs, supporting a conserved function of RXR in these
evolutionary distant taxa [11]. The COUP-TF homolog
from hydra is expressed in neuronal cells, suggesting an
evolutionary origin in nerve cell specification [3]. Many of
the identified NRs in cnidarians are orphan receptors
(lacking known ligands). Cnidarian tissues contain
diverse lipids including prostaglandins, fatty acids, sterols
and steroids, and it is plausible that some of these com-
pounds act as ligands for nuclear receptors [12-18]. In
addition, the developmental expression of most cnidarian
NRs remains uncharacterized. Temporal patterns of
expression can provide significant insight into the poten-
tial role for NRs during development and metamorphosis
as well as the opportunity for co-expressed NRs to interact
with one another [19].

Here we present the first genomic analysis of nuclear
receptors in the starlet sea anemone, Nematostella vectensis,
and quantify expression of all identified NRs throughout
the life cycle. We identified seventeen nuclear receptors in
the genome of N. vectensis. Many of the NRs did not show
clear orthology to bilaterian NRs, and some N. vectensis
NRs appear to have resulted from lineage specific gene
duplications. Expression of most NRs varied significantly

Nuclear receptor gene structureFigure 1
Nuclear receptor gene structure. Nuclear receptors are composed of two well-conserved regions, the DNA binding 
domain (DBD) and the ligand binding domain (LBD).
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during development, with clusters of NRs exhibiting sim-
ilar expression patterns.

Results
Phylogenetic relationships of N. vectensis nuclear 
receptors
We identified 17 NRs from N. vectensis with a combina-
tion of bioinformatic searches of the assembled N. vecten-
sis genome [20]. We have designated these as NvNR1-17
(Accession Numbers Table 1, numbering is arbitrary and
does not indicate phylogenetic position within the NR
superfamily; for amino acid sequences see Additional file
1). All of these genes were amplified from cDNA prepara-
tions and confirmed as expressed transcripts.

When DBD plus LBD were used for phylogenetic analyses
of N. vectensis and bilaterian NRs, the topology of the tree
with the highest likelihood was consistent with mono-
phyletic relationships of the recognized NR families.
Nodes for NR families 1-4 were each supported by high
bootstrap scores (Figure 2, for a more detailed tree with
nodes expanded see Additional file 2). Although NR fam-
ilies 5 and 6 were each weakly supported (BS = 40 and 37,
respectively), a clade grouping these two families was
fairly well supported (BS = 79) as previously shown by
Thornton [21]. Phylogenetic analyses using just the DBD
or portion of the LBD resulted in more poorly supported
nodes throughout the tree and in some cases failed to
recover monophyletic NR families (see Additional files 3
and 4). In addition, a complementary analysis using
neighbor joining with the DBD and LBD also resulted in
weakly supported nodes for the NR families (see Addi-
tional file 5). Therefore, we inferred the phylogenetic rela-
tionships of the N. vectensis NRs from the likelihood
analysis based on the DBD plus LBD.

NvNR1, 2, and 3 cannot be unambiguously assigned to a
family and nest as equally related to NR families 1 and 4.
A majority of N. vectensis NRs (NvNR4-16) are strongly
supported as homologs of genes in NR family 2. These N.
vectensis NRs are associated with four subfamilies within
family 2. NvNR4 is an ortholog of HNF4 (subfamily 2A),
which has also been identified in vertebrates, insects, and
nematodes [22,23]. NvNR5-9 cluster with subfamily 2E
(TLL, FAX, PNR). NvNR5 and 6 are most closely related to
TLL with moderate bootstrap support. NvNR7-9 do not
have a clear orthologs with the bilaterian genes from this
subfamily and thus may represent a cnidarian-specific
radiation. NvNR10-14 group with subfamily 2F (COUP-
TFs), and among these, NvNR10 is most closely related to
the bilaterian COUP-TFs. NvNR15-16 are supported as
homologs of the testicular orphan receptors (TR2/TR4,
subfamily 2C/D). An RXR homolog (jRXR, subfamily 2B)
has been identified in the box jelly Tripedalia cystophora
[11], but an RXR homolog is not apparent in the N. vect-
ensis genome. NvNR17 groups with NR family 6 (GCNF,
germ cell nuclear factor) but with relatively weak support.
In the neighbor joining analysis, NvNR17 was positioned
as an outgroup to NR families 5 and 6 but with low boot-
strap support. A GCNF-like gene has not been previously
reported from a cnidarian.

Gene structure
N. vectensis NRs are composed of between 3 and 7 exons
and span 2059 to 11741 bp of genomic sequence (see
Additional file 6). Because we currently have complete
transcript sequence with 5- and 3- prime untranslated
region (UTR) for fewer than half of the NRs (6 of 17),
additional exons may be identified when complete tran-
scripts are confirmed. In some cases (e.g., NvNR10),
exons were composed completely of UTR sequence; thus

Table 1: Accession numbers of N. vectensis nuclear receptors from NCBI GenBank, JGI Nematostella Database, and ESTs (where 
available).

Gene Name GenBank Acc. JGI Gene Model Matching ESTs

NvNR1 XP_001634258 101676 NA
NvNR2 XP_001636937 99425 NA
NvNR3 XP_001632045 108851 JGI_CAAB2572.fwd
NvNR4 XP_001638550 89471 JGI_CAAD1662
NvNR5 XP_001630386 114090 JGI_CAGN9558.fwd
NvNR6 XP_001635112 183874 JGI_CAGN4016
NvNR7 XP_001630385 169225 JGI_CAGN3217.fwd
NvNR8 XP_001634999 99425 NA
NvNR9 XP_001624815 247458 JGI_CAGG3386.fwd
NvNR10 XP_001629708 189134 JGI_CAAB5823
NvNR11 XP_001634340 242271 JGI_CAGN16932
NvNR12 XP_001634378 165424 JGI_CAGH2972
NvNR13 XP_001636010 203423 NA
NvNR14 XP_001636637 202735 NA
NvNR15 XP_001631902 167880 JGI_CAGH3462.fwd
NvNR16 XP_001631058 244121 JGI_CAGN9351
NvNR17 XP_001624292 218255 JGI_CAGG4622.fwd
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it is likely that additional exons will be identified for some
of the NRs with uncharacterized UTR sequence.

Phylogenetic analyses indicated that several NRs in N.
vectensis are most closely related to one another suggesting
potential lineage-specific duplication. With the exception

of two genes (NvNR11 and NvNR12), the NRs in N. vect-
ensis are located on different scaffolds. Thus, the NR diver-
sity in N. vectensis does not appear to have resulted from
recent tandem duplications, but instead may represent
more ancient duplications within the cnidarian lineage.
Some closely related genes also shared conserved intron-

Phylogenetic relationships of N. vectensis NRs (NvNRs) depicted by a maximum-likelihood tree with percent bootstrap support of 1000 bootstraps for nodes of evolutionary significanceFigure 2
Phylogenetic relationships of N. vectensis NRs (NvNRs) depicted by a maximum-likelihood tree with percent 
bootstrap support of 1000 bootstraps for nodes of evolutionary significance. The alignment was constructed using 
the DBD and a portion of the LBD (additional details in text). Monophyletic relationships for bilaterian sequences in particular 
families or subfamilies were recovered in all cases but one (NR2E) and are depicted as horizontal triangle. A full tree with all 
taxa depicted as individual branches is presented in Additional File 2. The tree was rooted with NR family 2 because this family 
is monophyletic, represents a defined nuclear receptor family, and includes what is likely the original nuclear receptor, repre-
sented by an HNF4-like homolog from the sponge Amphimedon queenslandica [1]. Most N. vectensis NRs group within NR family 
2 and many (e.g., NvNR11- NvNR14) are supported as independent radiations of subfamilies within this family. N. vectensis also 
has a NR related to GCNF (NR family 6), but with low support. Three NRs did not group with any previously described family 
(NvNR1-3). These genes may represent ancestral genes that later diversified into one or more of the NR 1, 3, and 4 families.
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exon structure (see Additional file 7). For example,
NvNR8 and NvNR9 group together with 100% bootstrap
support and share two of three splice sites.

Developmental expression of nuclear receptors
One-way ANOVA indicated that 13 of the 17 NRs varied
significantly in their level of expression during develop-
ment (Figure 3). Even with relatively coarse developmen-
tal staging, we observed clear temporal patterns of gene
expression (Figure 4a). NvNR8, 11, 12 and 13 were prima-
rily expressed during embryonic and/or early larval stages
with little expression in the juvenile and adult stages.
NvNR1, 7, 14 and 15 were most highly expressed during
larval and juvenile stages. NvNR4, 5, 6, 9, 16, and 17
showed increased expression during larval and juvenile
stages and continued high expression in adults. Finally,
NvNR2, 3, and 10 were primarily expressed in adults, and
NvNR10 was only minimally expressed in earlier stages.
18S expression did not vary significantly across the stages
and is apparently a good housekeeping gene with respect
to N. vectensis development. We also tested GAPDH as a
potential control gene to standardize gene expression.
GAPDH expression was highly variable across these devel-
opmental stages and was not used for comparisons of NR
expression among stages.

Absolute levels of gene expression, normalized to plasmid
standards, indicated large differences in number of
expressed transcripts among genes (Figure 4b). Although
its expression was developmentally variable (Figure 3,
4a), NvNR4 was the most highly expressed NR over all
stages (Figure 4b). NvNR3, 9 and 17 also showed high lev-
els of overall expression.

In several cases, phylogenetically closely related genes
showed divergent temporal expression patterns during
development. For example, NR11 was expressed at very
low levels (Figure 4b), primarily during embryonic and
early larval stages (Figure 4a). In contrast, NR10 was
expressed at moderate levels, mostly in adults.

Principal components analysis (PCA) is a statistical tech-
nique for reducing the dimensionality of a dataset, in this
case facilitating identification of NRs with similar expres-
sion patterns. PCA was conducted for all 17 genes from all
developmental stages (Figure 5). The first principal com-
ponent (PC1) accounted for 39% of the overall variance
in gene expression and second principal component
(PC2) accounted for 36% of the variance. When the val-
ues for PC1 and PC2 are shown on a scatter plot (Figure
5B), three clusters emerged, NvNR11, 12 and 13 clustered
to the exclusion of other genes along PC1 and were each
highly expressed in early developmental stages (embryo,
early larva). A second cluster contained NvNR2, 3, and 10,
which are most strongly expressed in adults. The remain-

ing genes constituted a third cluster and were not strongly
distinguished from one another by this analysis.

Discussion
Cnidarians both occupy a key evolutionary position and
are ecologically important as predators, prey and struc-
ture-builders in marine and freshwater environments. As
"basal" metazoans, cnidarians form an outgroup to the
bilaterian animals and are intermediate in complexity
between sponges and bilaterians. In spite of the acknowl-
edged importance of understanding cnidarians from both
an ecological and an evolutionary perspective, cnidarian
physiology is poorly understood, particularly at the
molecular level. Thus, characterizing cnidarian NRs pro-
vides insight both into evolution of NR signaling and
bioregulatory processes in a major group of aquatic ani-
mals.

Homology and expression of NvNRs
Analysis of the phylogenetic relationships among NRs
from the starlet sea anemone, Nematostella vectensis, pro-
vides strong support for the diversification of NR family 2
prior to the divergence of the cnidarian and bilaterian lin-
eages. Phylogenetic analyses of N. vectensis and bilaterian
NRs revealed cnidarian orthologs of HNF4, COUP, TLL,
and TR2/4. Grasso et al. [4] identified 10 NRs in the coral
Acropora millepora, including several members of NR fam-
ily 2. Our results support their conclusion that family 2
was well diversified prior to the split between the cnidar-
ian and bilaterian lineages.

NvNR4 is an apparent homolog of hepatocyte nuclear fac-
tor 4 (HNF4, subfamily 2A), which has also been identi-
fied in vertebrates, insects, nematodes, and corals
[4,22,23]. In mammals, HNF4α binds endogenous fatty
acid ligands [24,25] and regulates hepatocyte differentia-
tion, energetic metabolism and xenobiotic detoxification.
HNF4 also regulates insect gut development [26,27].
HNF4 underwent extensive duplications in C. elegans [28]
such that inferring homologous functions for HNF4 from
the nematode is difficult. One C. elegans paralog, nhr-49,
is involved in energetic metabolism as a regulator of fat
storage [29]. In addition, an HNF4 homolog has been
cloned from sponges and may be similar to the ancestral
NR [1]. Sponge HNF4 is expressed throughout develop-
ment in ciliated column cells of the outer epithelium [1].
In N. vectensis, NvNR4 was expressed at all developmental
time points with higher mean expression from larval to
adult stages. We predict that NvNR4 will be expressed in
endodermal tissue, which would be consistent with con-
served roles in development of the digestive epithelium,
energetic metabolism, and/or detoxification.

NvNR5- NvNR9 cluster with subfamily 2E (TLL/TLX, FAX,
PNR); members of this subfamily have previously been
reported in corals [4,30]. In our phylogenetic analyses, we
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were unable to fully resolve the evolutionary relationships
of N. vectensis and bilaterian NRs within subfamily 2E
(Figure 2). In other animals, members of subfamily 2E are
involved in neural differentiation. Tailless homologs in
mammals (TLX) and insects (TLL) are particularly impor-

tant for eye and forebrain development [31-34] and
embryonic anterior-posterior patterning [35]. FAX-1 regu-
lates neural patterning in C. elegans [36,37], and PNR
plays a more specialized role by regulating retinal devel-
opment in vertebrates [38]. Several N. vectensis members

Developmental expression of Nematostella vectensis nuclear receptors (NR1-NR17) and putative housekeeping genes (18S and GAPDH)Figure 3
Developmental expression of Nematostella vectensis nuclear receptors (NR1-NR17) and putative housekeeping 
genes (18S and GAPDH). Expression measured using qPCR, as described in text. Expression in molecules per μl cDNA 
indicated on the y-axis. Bar indicate the mean ± standard error of 3-5 biological replicates. The first bars ("cleavage") repre-
sents a single sample, which was not included in statistical analysis. Expression patterns were analyzed with a one-way ANOVA 
followed by pairwise comparisons with Tukey's Honestly Significant Difference Test. Letters indicate groups that were differ-
ent at a level of p = 0.05. GAPDH showed variable expression over the sampled stages and was not used as a standard for 
comparing gene expression of NRs among developmental stages.
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of subfamily 2E (i.e., NvNR5, 7, 8) were highly expressed
during early developmental stages coinciding with neuro-
genesis and embryonic patterning [39]. The stage of max-
imal expression varied among members of this subfamily,
indicating potential diversification of function within the
cnidarian lineage.

NvNR10-NvNR14 group with subfamily 2F (COUP-TFs);
COUP-TFs have also been identified in corals, hydra, flat-
worms, sea urchin, and lancelets [3,4,40-42]. NvNR10
was most closely related to bilaterian COUP-TFs, while
NvNR11- NvNR14 are supported as an independent radi-
ation with this subfamily. COUP-TFs generally act as tran-
scriptional repressors and regulate development of
muscles, the heart and the nervous system, particularly
differentiation of the hindbrain and photoreceptors [43-
46]. In hydra, COUP-TF is expressed in nematoblasts
(nematocyte precursors) and in a subset of neuronal cells,
consistent with a conserved role of COUP-TF in regulating
neural differentiation [3]. COUP-TFs can also affect repro-
ductive processes through cross-talk with estrogen recep-
tors and ecdysteroid receptors in vertebrates and insects,
respectively [47-50]. COUP-TF homologs from N. vecten-
sis showed diverse expression patterns during develop-
ment. For example, NvNR12 and13 were primarily

expressed during embryonic and/or early larval stages
with little expression in the juvenile and adult stages. The
expression of these COUP-TF-like genes coincides with
neurogenesis and embryo patterning [39]. In contrast, we
observed relatively high expression of NvNR10 in adults
but lower expression during embryogenesis and larval
development.

We identified two members of the subfamily 2C/D (TR2/
4, NvNR15-16). TR2/4 homologs have been identified in
a range of animals including vertebrates, sea urchins,
ascidians, nematodes, insects, flatworms, and corals [51-
54]. Protostomes and most deuterostomes have a single
TR2/4 homolog. Interestingly, both N. vectensis and the
coral Acropora millepora [4] contain two TR2/4 homologs,
suggesting a cnidarian-specific duplication. In general,
TR2/4 homologs act as transcriptional repressors through
several mechanisms including competition with other
nuclear receptors for binding sites and co-factors [55,56].
TR2/4 homologs are broadly expressed in vertebrate tis-
sues [57] and throughout development in mammals [57],
ascidians [51], and flatworms [58]. We observed similar
ubiquitous expression in N. vectensis where both NvNR15
and 16 were expressed throughout all developmental
stages.

Heat maps indicating developmental expression of Nematostella vectensis nuclear receptorsFigure 4
Heat maps indicating developmental expression of Nematostella vectensis nuclear receptors. Cladogram indicates 
the topology from Figure 2 with other taxa removed. (A) For each gene, expression is shown on a linear scale as a percentage 
of the stage with the highest expression. (B) Expression is shown on a log scale as molecules per microliter, calculated in rela-
tion to standard curves constructed from serially diluted plasmids.
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NvNR17 forms a monophyletic grouping with NR family
6 (GCNFs, germ cell nuclear factors). Although bootstrap
support for this assignment is relatively weak, likelihood
analyses of the DBD plus LBD and each of these domains
individually group NvNR17 as a homolog to the GCNFs.
While neighbor joining analysis placed NvNR17 as an
outgroup to NR families 5 and 6, bootstrap support for
deep nodes of this tree were low relative to the maximum
likelihood analyses, potentially obscuring evolutionary
relationships. GCNF has been reported from a number of
bilaterian phyla. This is the first report of a putative cni-
darian homolog from this NR family. Expression of GCNF
homologs varies greatly among taxa. In D. melanogaster,
DmHR4 is expressed following pulses of 20-hydroxy-
ecdysone during discrete stages of embryogenesis, the sec-

ond larval instar and prepupal development [59,60]. In C.
elegans, CeNHR-91 is expressed in response to ATP-bind-
ing cassette protein E in embryos, larvae and several adult
tissues [61]. In vertebrates, GCNF is expressed primarily
expressed in gonadal tissues and during embryogenesis
[62,63]. In vertebrates, GCNF is involved in neuronal dif-
ferentiation, germ cell development, and axial patterning,
and gametogenesis [63-65]. In our study, NvNR17 expres-
sion increased throughout the sampled developmental
stages. Highest expression was in adult tissues, which may
reflect a role in gametogenesis.

NvNR1-3 did not group well with any previously defined
NR family. These genes are most closely related to NR
Family 1 and 4. With the available data, we cannot con-
clude whether these represent the descendents of ancient
NRs that later diversified into recognized NR families or if
these genes represent an independent radiation some-
where within the cnidarian lineage. Further sampling
within the Cnidaria will be necessary to help resolve the
evolutionary relationship of these NRs.

We did not identify a member of NR family 3 in N. vecten-
sis. NR family 3 is represented in protostomes and deuter-
ostomes [5,21,66,67], and has been more recently
identified in the placozoan Trichoplax adhaerens [[68],
Reitzel and Tarrant, unpublished data] but has not yet
been reported from any cnidarian. Thus, NR 3 homologs
have apparently been lost early in the cnidarian lineage.
NR family 3 contains the vertebrate-type steroid (i.e., non-
ecdysteroid) receptors. While NR3 family members were
not identified in N. vectensis, estrogens and other steroids
have been detected in cnidarian tissues [12,15,69], are
apparently released during spawning events [12,69], and
can experimentally affect coral growth and reproduction
[70]. The mechanism for steroid action in cnidarians is
currently unknown and may be mediated through nuclear
receptors that are not orthologs of the vertebrate steroid
receptors or through alternative mechanisms.

RXR loss in N. vectensis
N. vectensis appears to have lost the ortholog of RXR
because this gene is present in another cnidarian, the
cubozoan Tripedalia cystophora [11]. The RXR homolog
(jRXR) from T. cystophora bound 9-cis retinoic acid, and
heterodimerized with vertebrate thyroid hormone recep-
tor [11]. This evidence suggests that this cnidarian RXR
functions in a similar way as vertebrate RXRs. In contrast
to the box jelly, an RXR ortholog was not identified in a
PCR-based survey of NRs from the coral Acropora millepora
[4]. However, RXR immunoreactivity has been reported in
epithelial nerve tissue of the coral A. millepora and the sea
pansy Renilla koellikeri, but the genes were not identified
[71]. Indeed the authors of the immunological study indi-
cated that the epitope for the antibody has highest

Principal components analysis of nuclear receptor relative expression dataFigure 5
Principal components analysis of nuclear receptor 
relative expression data. Analysis was conducted on gene 
expression normalized to the maximum expression for each 
gene, as in Figure 4A. (A) Eigen vectors showing relative con-
tribution of each life stage to each principal component. 
Longer bars indicate stronger relative contribution. The first 
and second principal components explained 39% and 36% of 
the variance, respectively. (B) Scatter plot of first and second 
principal component scores for all seventeen nuclear recep-
tors. Colors indicate three distinct clusters of NRs showing 
similar expression patterns. Numbers 1-17 indicate N. vecten-
sis nuclear receptors 1-17, respectively.

� � � � � � � �

� � � � � 	 
 �
� � 
 � � � � � �
� � � 
 � � � � � �

� � � � � �
� � � 
 � � 
 �

� � � 
 
� � � � � �

� � �

� �

� � �

� � �

 � �

! "

#

! !

! #

!

! $

"

% &! '
(

) ! (
! * '

! ) *

+ , - . + , . . + - . . - . , . . , - .

A.

B.
Page 8 of 13
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:230 http://www.biomedcentral.com/1471-2148/9/230
sequence similarity to A. millepora nuclear receptor 8, but
phylogenetic analyses indicate that AmNR8 is most simi-
lar to TR2/4 [4]. The absence of an RXR ortholog in N.
vectensis and in corals is particularly interesting from a
functional perspective because vertebrate and insect RXRs
form heterodimers with many other nuclear receptors to
regulate gene expression [48,72-74]. In a parallel example,
C. elegans independently lost an RXR ortholog, but
another NR (nhr-49, HNF4-like) can dimerize with sev-
eral other NRs [75]. Thus, it has been suggested that nhr-
49 may have assumed an RXR-like function as a common
heterodimerization partner [76]. Similarly, N. vectensis
and other cnidarians may have one or more receptors that
"promiscuously" form heterodimers with other NRs in a
manner similar to bilaterian RXRs. Alternatively, it is pos-
sible that RXR has been lost and not replaced with a func-
tional equivalent.

Gene duplication and divergence
Within NR family 2, our data from N. vectensis support
independent radiations of several subfamilies. Phyloge-
netic analyses support two TR2/4 genes and multiple
COUP-TF-like NRs in N. vectensis. Similarly, we observed
5 N. vectensis NRs that group with bilaterian NRs in the
subfamily NR 2E. These genes are likely cnidarian-specific
radiations within these NR 2 subfamilies and may repre-
sent interesting cases for better understanding the diversi-
fication of NR function within an early diverging
metazoan.

After gene duplications, paralogs may be selected for
divergent functions that may be reflected by different
expression patterns [77,78]. Previous reports of N. vecten-
sis paralogs have suggested that duplicated genes have var-
ying degrees of distinct spatial and temporal gene
expression patterns (e.g., snail [79], Otx [80]). In some
cases, NvNRs supported as likely lineage specific duplica-
tions showed divergent temporal gene expression patterns
consistent with subfunctionalization. For example,
NvNR1 was highly expressed in the larval and juvenile
stages, and the closely related NvNR2 was most highly
expressed during cleavage and in adults. In situ hybridiza-
tion studies of N. vectensis will reveal spatial expression
patterns (e.g., anterior-posterior gradients, neural expres-
sion), providing further insight into the potential subfuc-
tionalization of duplicated NRs.

Conclusion
In this study, we have identified 17 nuclear receptors in
the sea anemone Nematostella vectensis. Phylogenetic anal-
yses indicate that a majority of these NRs are members of
NR family 2 and are consistent with previous studies indi-
cating that this family had diversified prior to the cnidar-
ian-bilaterian split. We also identified a putative homolog
to GCNF in NR family 6 as well as three NRs that do not
group with any previously identified NR family. Expres-

sion of N. vectensis NRs varied during development, con-
sistent with stage-specific functions related to
development, metamorphosis and adult physiology.
Future studies of NR function in N. vectensis will provide
a critical understanding of the evolution the nuclear
receptor superfamily in animals.

Methods
Animals
The starlet sea anemone, Nematostella vectensis, is a small
burrowing anemone found in estuaries along the Atlantic
Coast of the United States, as well as in populations in
England and along the Pacific Coast of the United States.
We collected adults from Great Sippewissett Marsh, MA
USA and cultured them under standard conditions (0.45
μm filtered seawater diluted to 13 ppt, room temperature,
fed twice weekly brine shrimp and once mussel ovary;
similar to previously described conditions [81,82]).
Under these conditions, N. vectensis undergoes a predicta-
ble reproductive cycle that includes weekly spawning.
Within 2-3 hours after spawning, embryos were gathered
from dishes, rinsed with diluted seawater, and placed in
sterile dishes. At specific stages (i.e., cleavage, early plan-
ula, late planula [pyramid shape], and juvenile, [81]) we
collected individuals with a pipette, lightly centrifuged,
decanted excess seawater, and snap froze with liquid
nitrogen for later analysis. Adults were left unfed for at
least one week prior to freezing to minimize contamina-
tion from food sources.

RNA extraction and cDNA synthesis
For cloning of nuclear receptors, total RNA was extracted
from N. vectensis of varying developmental stages, ranging
from embryos to adult. RNA was extracted by homogeni-
zation of whole individuals in STAT-60 (Tel-Test, Inc).
RNA for cloning was then pooled from developmental
stages. RNA purity and yield were quantified using a ND-
1000 spectrophotometer (Nanodrop). RNA quality was
visualized for representative samples on a denaturing aga-
rose gel. Polyadenylated-enriched RNA (polyA-RNA) was
prepared from total RNA using the MicroPoly(A)Purist Kit
(Ambion). Complementary DNA (cDNA) was synthe-
sized from polyA-RNA using the Iscript cDNA Synthesis
Kit (Bio-Rad) using 1 μg of polyA-RNA per 20 μl reaction.

For characterization of developmental expression pat-
terns, RNA was extracted using STAT-60 and the Aurum
Total RNA Mini Kit with on-column DNAse digestion, as
described previously [83]. Each extraction included multi-
ple individuals from a single spawning event or in the case
of adults, multiple individuals from the breeding stock.
From the total RNA, cDNA was synthesized with the
Iscript cDNA Synthesis Kit using 2 μg of RNA per 30 μl
reaction. cDNA was prepared from the following develop-
mental stages: cleavage (0.5 days post fertilization [dpf], n
= 1), embryos (1 dpf, n = 3), early larvae (3-4 dpf, n = 4),
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late larvae (7-11 dpf, not metamorphosed, n = 4), juvenile
(8-23 dpf, metamorphosed, n = 4), and adult (>100 dpf,
n = 4).

Database searching and cloning
N. vectensis nuclear receptors were identified through a
combination of BLASTp and domain searches through the
Joint Genome Institute N. vectensis assembly. Genes were
additionally queried against the EST database at JGI in
order to annotate more complete transcripts. To confirm
the predicted sequences we amplified, cloned, and
sequenced large portions of each predicted NR transcript
(primers designed with Primer3, primer sequences listed
in Table S1). The PCR mixture consisted of 11.8 μl of
molecular biology grade distilled water, 0.1 μl of Ampli-
Taq Gold (Applied Biosystems), 2 μl of the accompanying
10× Buffer, 3.75 mM MgCl2, 0.8 mM dNTPs, 0.5 μl of 10
μM gene-specific primers, and 0.5 μl of 1:5 diluted polyA
cDNA. PCR conditions were as follows: 95°C for 5 min;
40 cycles of 95°C for 15 s, 60°C for 30 s, and 72°C for 60
s, followed by a 10 min extension at 72°C. Products were
gel purified, ligated into pGEM-T Easy vector (Promega),
and sequenced to confirm the targeted amplicon.

Phylogenetic analysis
We used a likelihood based approach to determine evolu-
tionary relationships of the N. vectensis NRs with bilate-
rian NRs. NRs from Homo sapiens, Danio rerio, Xenopus
laevis, Drosophila melanogaster, and Caenorhabditis elegans
from Bertrand et al. [5] were used as representative bilate-
rians. We included sequences for these species from each
of the defined families and subfamilies in order to fully
represent the broad-scale diversity of NRs. We also
included NR sequences from Ciona intestinalis reported in
[51] and an estrogen receptor homolog from the mollusc
Aplysia californica [84]. Additional reports of NR diversity
from other animals [9,67,85,86] have shown that these
taxa fully represent the diversity of NRs to the sub-family
level, despite lineage-specific losses in some ecdysozoans
and gene-specific duplications in a variety of taxa. Full
length sequences for all taxa were aligned with Muscle 3.6
[87] and edited manually in the case of clear errors. Max-
imum likelihood analyses were run using RAxML (version
7.0.4, [88]) with a JTT+G matrix (model determined by
AIC criteria with ProtTest v1.4, [89]). Separate analyses
were conducted using the DBD only, a portion of the LDB,
and the DBD plus a portion of LBD. We also performed a
complementary neighbor joining analysis of the DBD and
LBD alignment (PHYLIP v3.6). Trees were visualized and
illustrated with FigTree v1.1.2 http://tree.bio.ed.ac.uk/
software/figtree/.

Gene structure
We assembled the most complete transcripts for each of
N. vectensis' NRs with a combination of cloned sequence,

ESTs, and, where necessary, gene prediction models from
the Joint Genome Institute (JGI). Intron-exon structure
was determined by aligning the assembled transcripts to
the most recent genome scaffolds in the JGI N. vectensis
database. Gene structure was illustrated with GenePalette
v1.21 [90].

Quantitative real-time RT-PCR (qPCR)
Oligonucleotide primers (see Additional file 8) were
designed to amplify each N. vectensis NR, as well as glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) and 18S
ribosomal RNA (18S). Primers were 20-21 nt, with a GC
content of 40-60%, either overlapped predicted exon-
exon boundaries by 3-4 bp or spanned a large intron, and
produced predicted amplicons of 55-146 bp with mini-
mal predicted secondary structure (m-fold, [91]). A stand-
ard curve was constructed from serially-diluted plasmids
containing the amplicon of interest. The standard curve
was used in qPCR reactions to quantify amplification effi-
ciency and to calculate the number of molecules per reac-
tion (as in [92]). qPCR was performed using iQ SYBR
Green Supermix (Bio-Rad), and reactions were run a
MyCycler Real-Time PCR detection system (Bio-Rad). For
each gene, standards were run in triplicate wells and
experimental samples were run in duplicate wells (techni-
cal replicates) on a single plate. The PCR mixture con-
sisted of 11.5 μl of molecular biology grade distilled
water, 12.5 μl of IQ SYBR Green Supermix, 0.5 μl of 10 μM
gene-specific primers, and 0.5 μl of cDNA. PCR condi-
tions were as follows: 95°C for 3 min; 40 cycles of 95°C
for 15 s and 64°C for 45 s. After 40 cycles, the PCR prod-
ucts from each reaction were subjected to melt curve anal-
ysis to ensure that only a single product was amplified.
Selected reactions for each gene were visualized on 15%
TBE gels (Bio-Rad) and consistently yielded single bands
of the predicted size. The number of molecules per μl for
each gene was calculated by comparing the threshold
cycle (Ct) from the sample with the standard curve.
Expression was compared among developmental stages
using one-way analysis of variance (ANOVA) with Tukey's
Honestly Significant Difference Test as a posthoc test
(SYSTAT 12). Relative gene expression patterns were com-
pared with principal component analysis (PCA, calculated
with SYSTAT 12). This statistical approach is similar to
that previously described by Tarrant and colleagues [83].
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