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Abstract

Background: The availability of newly sequenced vertebrate genomes, along with more efficient
and accurate alignment algorithms, have enabled the expansion of the field of comparative
genomics. Large-scale genome rearrangement events modify the order of genes and non-coding
conserved regions on chromosomes. While certain large genomic regions have remained intact
over much of vertebrate evolution, others appear to be hotspots for genomic breakpoints. The
cause of the non-uniformity of breakpoints that occurred during vertebrate evolution is poorly
understood.

Results: We describe a machine learning method to distinguish genomic regions where
breakpoints would be expected to have deleterious effects (called breakpoint-refractory regions)
from those where they are expected to be neutral (called breakpoint-susceptible regions). Our
predictor is trained using breakpoints that took place along the human lineage since amniote
divergence. Based on our predictions, refractory and susceptible regions have very distinctive
features. Refractory regions are significantly enriched for conserved non-coding elements as well
as for genes involved in development, whereas susceptible regions are enriched for housekeeping
genes, likely to have simpler transcriptional regulation.

Conclusion: We postulate that long-range transcriptional regulation strongly influences
chromosome break fixation. In many regions, the fitness cost of altering the spatial association
between long-range regulatory regions and their target genes may be so high that rearrangements
are not allowed. Consequently, only a limited, identifiable fraction of the genome is susceptible to
genome rearrangements.

Background (called breakpoints) and fragments are reorganized. Just
Genomes evolve through a series of local mutations as  like for point mutations, the likelihood that a particular
well as larger-scale genome rearrangements (such asinver-  rearrangement becomes fixed in the population depends

sions, translocations and duplications) where one or  (in part) on the fitness of the mutated individual [1]. In
more chromosomes break in one or more locations  comparative genomics, the comparison of gene orders in
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different species (i.e. of those rearrangements that have
become fixed in their respective population) sheds light
on genome evolution [2,3] and phylogenetics [4-6].

In 1984, Nadeau and Taylor published a paper where
breakpoints of genome rearrangements (chiefly inver-
sions and translocations) between human and mouse are
modeled as occurring randomly and uniformly in the
genome [7], hypothesis later supported by Sankoff and
Trinh [8]. This model relies on the implicit assumption
that most breaks of synteny (disruption of the order of
markers, genes or regulatory elements, along a chromo-
some caused by genome rearrangements) do not have sig-
nificant functional implications. However the availability
of more genomes to undertake comparative genomic
studies and new algorithms to identify breakpoints
increased both the resolution and the completeness of the
analysis. This led to a model where rearrangements breaks
do not occur uniformly but instead where some regions,
termed as 'evolutionary hotspots', are more prone to
breakage, resulting in a high level of breakpoint reuse
[2,3]. Although it is now generally accepted that evolu-
tionary breakpoints (i.e. rearrangement breakpoints that
became fixed in a particular population) are not uni-
formly distributed on the human genome, the reasons
why some regions tend to fix chromosomal rearrange-
ments more than others still remains unclear and to date,
no satisfactory explanation has yet been given at the
whole genome level. Long-range regulation has been
hypothesized to be one of the elements that favor conser-
vation of synteny in certain regions of the genome [9].
Studies focusing on specific vertebrate regions, such as the
Hox cluster [10] or the Shh locus [11], where a strong
selective pressure is obviously at work, illustrated the
notion that regulatory regions surrounding those loci
could induce evolutionary constraints that maintain the
integrity of the genome. Kikuta et al. [12] and Engstrom et
al. [13] established that some regions are under the influ-
ence of what they designated as genomic regulatory blocks
(GRBs), which control the expression of developmental
genes over a large genomic region, and showed that the
synteny around those GRBs is maintained. They suggested
that the underlying mechanism that maintains the chro-
mosomal structure is the regulatory action of one element
on many different genes. To date no genome wide analysis
has been undertaken to uncover the different susceptibil-
ity of the human genome to breakpoints. Such informa-
tion is crucial to clarify on the forces preventing
breakpoints from being fixed in evolution.

In this paper, we propose a new approach to estimate the
susceptibility of regions of the human genome to tolerate
breakpoints. Our method is trained to recognize these
regions based on the presence of coding, conserved non-
coding elements (assumed to be enriched for regulatory

http://www.biomedcentral.com/1471-2148/9/203

regions) and their putative interactions. We were able to
define two types of regions: those that are prone to accept
evolutionary breakpoints and those that are refractory to
breakpoints. The analysis of those regions uncovers fea-
tures that shed some light on the underlying mechanisms
of selection against rearrangements. This suggests that
long-range regulation is a major driving force in maintain-
ing genome integrity.

Results and discussion

Results

Synteny mapping

In this analysis, we study breakpoints that occurred along
the human lineage since the metatheria divergence (euth-
erians vs marsupials split). These breakpoints can be iden-
tified through the comparison of the human genome to
that of a marsupial (here, opossum [14]), and an out-
group, chicken [15]. Identifying breakpoints requires the
detection of unique, conserved markers, present in each of
the species studied. Based on whole genome 'liftover
chains' pairwise alignments [16] (human/opossum and
human/chicken) which are a hierarchical collection of
sequences of gapless aligned blocks, we mapped human
markers to opossum and chicken. Markers are of two
types; non-coding conserved regions which are consid-
ered enriched for regulatory elements and coding regions.
116 331 markers were identified, each present exactly
once in human, opossum, and chicken. We call these
amniote markers. We also identified 93 802 metatherian
markers, conserved between human and opossum, but
absent in chicken. Metatherian markers will not be used
to define breakpoints (because no outgroup is available to
determine their ancestral status), but will later be taken
into consideration in our prediction of break-prone
regions.

A breakpoint between human and opossum (resp.
chicken) is defined as a pair of amniote markers that are
adjacent in human but not opossum (resp. chicken).
Because establishing the orthology of human, opossum,
and chicken markers is error-prone, we deliberately
removed from further consideration 383 markers that are
flanked by breakpoints on both sides in either the
human/opossum or human/chicken comparisons.
Although some of these breakpoints may be real, we argue
that most of them are likely due to incorrect genome
assembly or orthology mapping. This reduced set of mark-
ers was then used to define a set of 845 reliable human/
opossum and 1546 human/chicken breakpoints. The
intersection of the human/opossum and human/chicken
breakpoints, which corresponds to 412 breakpoints that
took place along the human lineage since the divergence
of metatherians, is called the set of human breakpoints and
is the focus of our study in the rest of this paper.
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As expected, breakpoints within protein-coding genes are
rare, forming only 2.7% of human/opossum breakpoints
and 3.4% of human/chicken breakpoints. Many of these
intragenic breakpoints are likely to be the result of incor-
rect gene annotation. For example, annotated genes such
as MPP4 are made of multiple spliced variants gathered
together in one gene, but it could very well correspond to
two independent transcriptional units. Because of this,
the few human breakpoints occurring within annotated
genes were pushed to the left side of the gene. Annotated
genes now being free of breakpoints, all markers within
them (whether they are coding or not) were collapsed into
a single meta-marker called a coding marker. The number
of markers of each type is given in Table 1.

What factors determine the likelihood that a particular
rearrangement becomes fixed in a population? The main
factor is likely to be the difference of fitness between indi-
viduals with and without the rearrangement. While a
given rearrangement is rarely going to be beneficial to the
affected individual, it may very well be detrimental. Three
situations may be particularly deleterious: (i) when a
breakpoint occurs within a gene, (ii) when a breakpoint
occurs between a gene and a cis-regulatory element for
that gene, thus separating this gene from its regulator, and
(iii) when a rearrangement brings a regulatory element in
the vicinity of a gene leading to its mis-regulation. See also
[17] for population genetics consideration. To predict the
potential effect of a breakpoint at a given genomic posi-
tion, it is useful to look at the context within which the
breakpoint happened (the ancestral state), rather than the
result of that rearrangement (the derived state). Of course,
we do not have access to the exact ancestral state sur-
rounding each breakpoint.

However, because breakpoints are rare and, for the most
part, separated by fairly large genomic distances [2], the
genome of the closest extant species outside the lineage on
which the rearrangement occurred provides a good
approximation of that local ancestral state. In our case,
since we focus on breakpoints on the human lineage, the
ancestral state can be approximated using the opossum

Table I: Number of markers for each type and conservation
level.

Marker type metatheria amniote total
coding 4335 9951 14286
non-coding 46914 26217 73131

Coding markers are genes as annotated in EnsEMBL and non-coding
markers are non-coding conserved regions (taken from the UCSC 28-
way alignment). A human marker (coding or non-coding) conserved
only at between human and opossum is labeled as metatheria marker.
A human marker conserved both with opossum and chicken is
labelled amniote marker.
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local context. Moreover, we only consider syntenic blocks
consisting of at least of two markers, which excludes most
micro rearrangements. This approximation does not take
in account events that may have occurred in the same
region on the opossum branch after divergence, but since
the goal of this study does not require a high level of pre-
cision, this method is, in our point of view, sufficient.
Moreover, trying to computationally infer the real ances-
tral state could lead to errors that may add noise and not
improve the prediction.

Figure 1 shows that there is a strong enrichment for break-
points occurring between two coding markers and a
strong depletion of breakpoints flanked by one or two
non-coding markers, supporting the hypothesis that regu-
lator/target-gene relations severely constrain breakpoint
fixation. Following this observation, we aimed at under-
standing better what properties of a given genomic region
increases or decreases its likelihood of being involved in a
breakpoint that would become fixed in the population,
and to train a classifier to predict break-prone inter-
marker regions based on their context. Our data set thus
consisted of 383 positive examples (the human-lineage
breakpoints, considered in their ancestral (opossum) con-
text), and 35 586 negative examples (inter-marker regions
without breakpoints). It should be noted that inter-
marker regions over 1 Mb in opossum an human have
been removed from consideration because breakpoints
couldn't be located sufficiently precisely.

Features used for breakpoint prediction

Two types of features were used for breakpoint prediction
(see Figure 2); the local density of functional elements
and the association between non-coding putative regula-
tory regions and genes. The local density of each type of
functional elements (coding-metatherian, coding-ami-
note, noncoding-metatherian, noncoding-amniote) is
measured as a weighted count of such elements in a 2 Mb-
window centered on the region of interest. The weight of
an element decreases as a function of its distance from the
center of the window, as w(d) = 1/log(d),. Choosing a =0
gives the same weight to all elements within the window,
whereas a high a factor (= 3) gives a much higher weight
to elements close to the center.

The other type of features considered describes the rela-
tionship between non-coding conserved regions (consid-
ered in this study as enriched for cis-regulatory elements)
and their putative target coding regions. This relationship
is described as a function of a parameter £. With =1,
each non-coding marker is linked to the gene with the
closest transcription start site (up to a maximal distance of
1 Mb). For f#> 1, each non-coding marker is linked to its
closest gene and to all other genes located within at most
Ptimes the distance to the closest gene. Consequently, the
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Breakpoints and surrounding markers. Observed (blue) and expected (red) number of breakpoints depending on the
types of flanking ancestral markers. The expected number of breakpoints was calculated based on the total size of inter-marker
regions of each type. P-values were calculated with a chi-square test.

higher the £, the more genes are linked to a single non-
coding region. The 'association' feature of a given inter-
marker region is then defined by the number of such asso-
ciation that would be broken by a break in that region.
These features have been chosen to test the hypothesis
that long-range regulation may be a factor in maintaining
the integrity of the genome. Under that hypothesis, break-
points would be expected to occur where no (or few) reg-
ulator-target gene connections are broken.

Removing inter-marker distance bias

Unsurprisingly, the length of an inter-marker region is
strongly correlated with its likelihood to contain a break-
point (logistic regression analysis, p-value = 4.5e-6). This
confounding factor needs to be factored out before more
interesting predictive features can be teased out. To this
end, we fitted the breakpoint/no-breakpoint binary data
using a linear regression based on inter-marker fragment
length (Breakpoint(r) ~ a-Length(r) + b) and obtained
the residuals of the regression (Residual(r) = (Break-
point(r) - b)/a). Large inter-marker regions with no break-
point produce large negative residuals, while small inter-
marker regions with a breakpoint produce large positive
residuals. It is these residuals, which should be considered
as fragment labels normalized for fragment lengths, that
are used as target values for the predictors that follow.

Breakpoint predictors

We first tested the predictive value of each individual fea-
ture. Then, the best combination of features was selected
with a forward feature selection procedure. Each feature
was first tested independently to examine its ability to pre-
dict breakpoints, measured by the t-value of the linear
regression of the length-normalized breakpoint data
against that feature. A graph showing both the effect for
local density features and relationship between coding
and non-coding features (for different £ values) is pre-
sented in Figure 3. A large negative t-value represents a
negative correlation of the feature with the presence of
breakpoints, whereas a large positive t-value indicates that
the presence of this feature is favorable to breakpoints. We
observe that a high local density of coding elements (both
metatherian and amniote) is associated to an increased
likelihood of breakpoints, corroborating our previous
observation that breakpoints occur more often than
expected between coding markers. This is in accordance
with observations showing that the synteny of conserved
non-coding elements within gene deserts is usually well
conserved [18]. Interestingly the density of more ancient
genes (amniote) is more strongly associated to break-
points than that of more recent ones. Indeed, as we will
see bellow, most housekeeping genes are shared among
amniotes and they are also associated to such breaks. In
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Feature selections. Diagram representing the different types of features used by our predictor. For the local density of func-
tional elements, the categories are coding amniote, non-coding amniote, coding metatheria, non-coding methateria within a 2
Mb window. For each of these categories, the distance from the candidate breakpoint to the center of inter-marker region
considered is taken in account and various weighting factors termed « are applied. The effect of an « factor of 2 is presented
at the top of the figure. In that case markers close to the breakpoint have a high weight whereas distant markers only bring a
small contribution. The functional association between regulatory regions and genes is a different category of features. Each
non-coding element is associated with a set of genes depending on the value of the £ factor, which determines how far the
association between non-coding and coding regions will be considered (= 2 is illustrated). For a given inter-marker region,
the predictor will test if the region overlaps such associations. In total, 29 features are considered.
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Effect of single feature on the prediction. t-value obtained for the linear regression of length-normalized breakpoint data
for the different types of local density features (coding amniote, noncoding amniote, coding metatheria, noncoding metatheria),
for different values of &. On the same graph are represented the t-values of the regression against the presence of association
between conserved non-coding elements and genes, for different values of S.

addition, we note that the value of the locality parameter
a has little impact on the fit, suggesting that the best pre-
dictive features would be a more complex function of the
distance. On the other hand, non-coding markers (or
putative regulatory regions) are negative predictors for
breakpoints. Interestingly, although non-coding amniote
and metatherian densities are strong negative breakpoint
predictors when « is small, only the non-coding amniote
density remain predictive for large values of ¢, indicating
that breakpoints in the immediate proximity of such
ancient regulatory elements are quite rare, but that break-
points near more recent non-coding are less deleterious.
Features modeling the association between coding and
non-coding markers have a negative t-value, which means
that breakpoints are less likely to become fixed in the pop-
ulation if it breaks such association. Finally, the best t-
value obtained is for #= 1.5, indicating that the regulator/
target gene relation often is not limited to a non-coding
region and its (single) closest gene.

Predictor training and cross-validation
A multiple linear regression breakpoint predictor was
built using a forward feature selection procedure, whereby

we iteratively add to the predictor the feature that yields
the largest accuracy improvement, until no further addi-
tion is beneficial. To test the performance of each interme-
diate and final predictor, we performed a four-fold cross-
validation. Instead of measuring the accuracy of our pre-
dictors in terms of the fraction of inter-marker region cor-
rectly predicted to have a breakpoint, the sensitivity and
specificity of each predictor was assessed in terms of the
total fraction of the genome predicted to be breakpoint-
sensitive. Table 2 reports the result of the feature selection
procedure. Choosing the appropriate prediction score
threshold, the predictor identifies 35.5% of the genome as
breakpoint-prone, and these regions indeed contain more
than 75% of the actual breakpoints, more than twice the
expected accuracy of a random predictor. After assessment
of its performance, the predictor was trained on the whole
data set (using opossum as an approximation to the
ancestral context) and applied to the prediction of break-
points in the human context. Surprisingly, this predictor
outperforms the original one at predicting past human
breakpoints succeeding at capturing 75% of breakpoints
in break prone regions covering only 27% of inter-marker
regions (see Figure 4), indicating that either the opossum
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Figure 4

Specificity/sensitivity curve for breakpoint predciction. Specificity/sensitivity curves are presented for both predictions
(ancestral context or the human (derived) context).

Table 2: Effect of each selected feature on the prediction.

Feature Estimate Std. Error t value p-value specificity
CodingAmniote, & =0 0.0030645 0.0005186 5910 3.47e-09 0.473
AssociationBreaks, f= 2 -0.0150509 0.0022701 -6.630 3.42e-11 0.572
CodingMetatheria, o = 2 1.3915142 0.2395547 5.809 6.36e-09 0.611
NonCodingMetatheria, o = 3 -0.0338532 0.1649918 -0.205 0.83743 0.625
CodingMetatheria, = 0 -0.0079558 0.0014829 -5.365 8.15e-08 0.629
NonCodingMetatheria, o = 2 -0.0154798 0.0132948 -1.164 0.24429 0.630
CodingAmniote, o = 3 -4.6993169 0.9579974 -4.905 9.38e-07 0.634
AssociationBreaks, f= 3 0.0069784 0.0024624 2.834 0.00460 0.645
NonCodingMetatheria, o = 4 0.0302276 0.1104565 0.274 0.78435 0.645

Features are listed in the order in which they were selected by the forward feature selection procedure. The coefficient estimate, standard error, t-
value, and p-value reported are those obtained for the linear regression with all 9 features. The specificity reported is that of the predictor built
using the features starting from the |st row down to the current row. The specificity is calculated for a sensitivity of 0.75. For example a specificity
of 0.645 means that 75% of breakpoints are comprised within 35.5% of the total length of inter-marker regions used for the analysis.
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Prediction scores on chromosome 2. Normalized number of non-coding and coding elements are respectively repre-
sented with blue and green bars. Scores are represented by a red continuous line. The bottom right part of the figure show the
region corresponding to chromosome 2 Hox cluster. The bottom left part shows a region of chromosome 2 with a high den-
sity of breakpoints.
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genome is not a very good approximation to the ancestral
context, or that the derived state matters as much as the
ancestral state to predict breakpoint fixation.

Figure 5 shows the breakpoint susceptibility profile of
human chromosome 2, using a 500 kb sliding window.
This score is strongly positively correlated with the
number of coding regions and negatively correlated with
the number of non-coding conserved regions. However,
some regions, such as the Hox D cluster on chromosome
2, a gene rich region but known to contain several evolu-
tionary conserved non-coding regions, is also predicted
with a low score. For all predictions, see Additional file 1.

A limited fraction of the genome can tolerate breakpoints

The predictor was applied to the complete human
genome to identify regions that are more likely to tolerate
breakpoints (see Supplemental Material). We divided the
genome into two sets of regions: susceptible regions are
those predisposed to rearrangement (regions with score
above 0.0065, covering 30% of the non-genic euchro-
matic genome), and refractory regions, referring to those
that are resistant to rearrangements (regions with score
below -0.0028, covering 30% of the non-genic euchro-
matic genome). About 73% of human breakpoints are
comprised in susceptible regions (a 2.3-fold enrichment),
while only 7% are found within refractory regions (a 4.3-
fold depletion). Most of the breakpoints are then con-
tained in a limited fraction of the genome. This clearly
shows that breakpoint fixation is not happening ran-
domly and uniformly across the genome and that regions
that are more likely to be broken can be predicted. More-
over if we consider that breakpoints almost never occur
within genic regions or within conserved regions, we
obtain that more than 73% of the human breakpoints are
located in about 20% of the genomic regions considered.
This observation complements the theory of evolutionary
hotspot described by Pevzner et al. [3]. We then used this
classification to uncover additional properties of each
type of regions.

Table 3: Properties of refractory and susceptible regions.

http://www.biomedcentral.com/1471-2148/9/203

Susceptible and refractory regions have different characteristics
Susceptible and refractory regions differ in a number of
aspects.

1. Refractory regions are strongly enriched for non-
coding markers, and susceptible regions for coding
markers

The ratio of coding to non-coding markers is signifi-
cantly higher in susceptible regions than in refractory
regions (p-value < 2-16, Fisher test, see Table 3). This
result meets observations made by Murphy et al.,
showing that there is a significant increase of gene
density in breakpoint regions [19].

2. Refractory regions are enriched for Trans/Dev
genes

A Gene Ontology analysis (performed on the "biolog-
ical process" classification with the Babelomics plat-
form [20]) reveals that refractory regions are strongly
enriched for genes involved in development, such as
anatomical structure development (p-value 1 x 10-10),
multicellular organismal development (p-value 9 x
10-12) and regulation of biological process (p-value 2
x 10-%) (see Figure 6). This confirms the observation
made that developmental genes are enriched in syn-
tenic regions [13]. Interestingly, susceptible regions
are enriched for genes involved in immune response.
These genes must be extremely adaptive and genes
such as immunoglobulin are under intense gene diver-
sification processes such as gene conversion, somatic
hypermutation and class switch recombination [21]. It
is then not surprising to predict higher rearrangement
rates in regions involved in immunity which are under
strong positive selection pressure. However, this may
also be an artifact caused by the intense duplication
history of some of these genes, which makes them
more susceptible to misalignment.

3. Refractory regions are enriched for tissue specific
genes.

Refractory regions

Susceptible regions Refr./Susc. Ratio

Coding markers 1484 7423 0.20

Noncoding markers 41947 5576 7.5

Specific genes 374 1636 0.23

Ubiquitous genes 194 1485 0.13

Gene deserts 142 5 355
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Figure 6
GO categories enrichment and depletion in susceptible and refractory regions. Over-and under-represented GO
categories (biological process, level 3 only) for genes localized within susceptible and refractory regions. The adjusted p-values
were obtained with a two-sided Fisher test using the Fatigo function from the Babelomics platform.

We used the GNF Expression Atlas 2 [22] to classify the
human genes based on their expression in 79 human
tissues and cell types. The dataset contains expression
measurements for 14 614 distinct Ensembl genes.
Each gene was classified according to the number of
tissues in which it is expressed [23]. A gene is consid-
ered expressed if the detected expression level is above
a certain threshold. Using this classification method,
two gene sets were created. The set of 'specific' genes
consists of all genes expressed in at most 5 tissues and
contains 3 235 genes (see Methods). The set of 'ubig-
uitous' genes contains 2 520 genes expressed in more
than 70 tissues. The remaining genes expressed in 6 to
69 tissues where not used for this analysis. The ratio
between the number of specific genes and ubiquitous
genes is clearly imbalanced between refractory and
susceptible regions.

Refractory regions are clearly enriched for specific
genes compared to susceptible regions (two-sided

Fisher-test, p-value 3 x 109, see Table 3).

4. Most gene deserts lie in refractory regions.

30 40 50 60 70

‘0 W Susceptible

[ Refractory
Percentage

About 25% of human genome is composed of gene
deserts, which are defined as long inter-genic regions
[24]. In this work, we define a gene desert as a genomic
region of more than 1 Mb without protein coding
genes. The human genome contains 270 gene deserts,
of which 142 fall within refractory regions (based on
their average score) but only 5 within susceptible
regions (the 123 others are located in regions that are
neither predicted as refractory nor susceptible). This
result agrees with our previous observation that most
breakpoints avoid non-coding conserved regions and
is consistent with previous studies stating that most
gene deserts are not broken by evolutionary break-
points [18]. The predicted scores in gene deserts fol-
low a bimodal distribution, as shown Figure 7. From
this distribution, we can distinguish two types of gene
deserts: (i) those whose score is under the refractory
threshold, where evolutionary breakpoints are not
likely to happen and (ii) those over this threshold.
Interestingly, this dichotomy of gene deserts for sus-
ceptibility to breakpoints is somewhat similar to
observation made by Ovcharenko et al [18], who
noted that gene deserts can be separated into two
kinds: 'stable' and 'variable'. Stable and variable gene
deserts are described with different properties: genes

Page 10 of 16

(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:203

http://www.biomedcentral.com/1471-2148/9/203

w _
o ]
>
9)
c
(]
>
o
g
-
m p—
O — _— —_— —_—
[ [ [ I I 1
-0.020 -0.015 -0.010 -0.005 0.000 0.005
score
Figure 7

Distribution of the average prediction score of gene deserts. The red line corresponds to the threshold below which
a region is considered refractory. The distribution is clearly bimodal, as highlighted by the coloring scheme.

flanking stable gene deserts are enriched for transcrip-
tional and developmental functions and are resistant
to rearrangements. This meets our observations on
susceptible and refractory regions.

5. Susceptible regions are enriched for copy number
variants

Copy number variants (CNVs) are regions (1 Kb to 1
Mb) of the human genome whose copy number is pol-
ymorphic in the population. From the database of

genomic variants [25], we retrieved the base pair cov-
erage for copy number variations in susceptible and
refractory regions. As the database contains various
kinds of variation such as inversions, we selected only
variations labelled as copyNumber. CNVs are signifi-
cantly enriched in susceptible regions, compared to
refractory region. 25.1% of base pairs in susceptible
regions are covered by CNVs, whereas this is the case
for only 19.6% of those in refractory regions (see Table
4). Regions with high coverage of CNVs are indeed
regions of the genome where variations in size are

Table 4: Percentage of susceptible, neutral and refractory regions covered by rare, common fragile sites and CNVs.

% covered by rare fragile sites

% covered by common fragile sites

% covered by CNVs

Susceptible regions 8.8
Neutral regions 4.5
Refractory regions 5.5

24.7 25.1
22.3 22.3
20.7 19.6

The statistical significance of the enrichment between refractory and susceptible regions for rare and common fragile sites as well as CNVs regions
was assessed with a permutation test. The resulting p-values are < 104
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potentially less detrimental. It is not surprising then to
find an enrichment for CNVs in regions predicted as
susceptible to breakpoints. This CNVs analysis is
another independent confirmation of the validity of
our predictor.

6. Susceptible regions are enriched for rare fragile
sites

Fragile sites are regions of the genome which appear as
gaps or breaks on metaphase chromosome when
exposed to inhibitor of DNA synthesis. Those regions
are considered as 'unstable' part of the chromosome
[26]. Fragile sites are further categorized depending of
their frequency: rare fragile sites are present in a small
proportion of individuals whereas common fragile
sites are present in all individuals and are considered
part of the chromosome structure [26,27]. We used
119 fragile sites (88 defined as common and 31 as
rare) reported by Schwartz et al. [28].

Rare fragile sites are clearly enriched in susceptible
region compared to neutral and refractory region, see
Table 4. Those data meet observations already made
by Ruiz-Herrera et al. [27] who showed a weak corre-
lation between common fragile sites and evolutionary
breakpoints and a more significant correlation
between evolutionary breakpoints and rare fragile
sites. We should point out the difference of resolution
between the cytogenetic bands representing fragile
sites (which are on average 7 Mb long) with our esti-
mate of susceptible and refractory regions, which is
more refined.

Discussion

Breakpoints are bound to specific regions

In this study, we developed a predictor to define regions
of the human genome that are likely to tolerate rearrange-
ments. Using this predictor, we defined two classes of
regions. Susceptible regions correspond to 30% of the
intergenic genome and contain 73% of the breakpoints.
Refractory regions correspond to 30% of the intergenic
genome but contain only 7% of the breakpoints. Most
breakpoints are then contained in a small portion of the
genome. Considering that coding loci are also extremely
refractory to breakpoints, only 20% of the human regions
considered for the analysis are prone to rearrangements.
This model - that breakpoints are concentrated in a small,
identifiable fraction of the genome - complements the
'fragile breakage' model proposed by Pevzner and Tesler
[2], which was developed as an alternative model to the
random breakage theory introduced by Nadeau and Tay-
lor [7].

http://www.biomedcentral.com/1471-2148/9/203

Long-range regulation imposes functional constraints on the genomic
structure

Regulatory regions and genes can be functionally associ-
ated over long stretches of DNA. Some regulatory regions
have indeed been located as far away as 1 Mb away from
their target genes (Shh long-range enhancer, for example
[29]). Vavouri et al. also showed using duplicated con-
served non-coding elements and paralogous genes that
about half of non-coding elements are > 250 Kbp away
from their target gene [30]. This long-range interaction
associated with the complex relationship between regula-
tory regions and target genes (a gene can be targeted by
many regulators and a regulator can target many different
genes) establishes an important pressure to keep those
regulators and target genes together. So, intuitively, the
cost of breaking the physical relationship between long-
range regulatory regions and their target genes may be so
high that rearrangements are rarely fixed where such rela-
tionship is predominant (see also [31]). The analysis of
susceptible and refractory regions, sheds light on the
validity of this hypothesis.

Susceptible and refractory regions are functionally different
Refractory and susceptible regions have many distinguish-
ing features: (i) Refractory regions are significantly
enriched for putative regulatory regions and gene deserts;
(ii) the ratio of housekeeping genes to cell type/tissue spe-
cific genes is higher in susceptible regions than in refrac-
tory regions; (iii) refractory regions are clearly enriched for
genes involved in transcriptional regulation and develop-
mental processes (trans/dev genes). Those distinct fea-
tures show a functional dichotomy between susceptible
and refractory regions, between regions that are involved
in complex processes (e.g. transcriptional regulation of
developmental genes) and regions enriched for house-
keeping genes and depleted for non-coding conserved
regions. This dichotomy is in our point of view a strong
argument supporting the hypothesis that long-range regu-
lation imposes constraints on the genomics structure. This
confirms previous observations where synteny blocks
overlap regulatory domains [13]. For example, transcrip-
tion factor genes - enriched in refractory regions - are
under complex regulation and can be expressed at differ-
ent levels, at different times and in different tissues [32].
We also showed that copy number variants - an inde-
pendent dataset — are enriched in susceptible regions in
comparison to refractory region. If it does not bring any
information on the cause of the instability, it however can
be interpreted as the result of a reduced constraints on
genome structure which could be due to decreased regula-
tion complexity.
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Reduced regulation complexity: cause or consequence of breakpoint
susceptibility?

It has been shown that there is a significant overlap
between evolutionary breakpoints and fragile site loca-
tions and that, even if no mechanistic role could be dem-
onstrated, some fragile regions of the genome may be
more likely to experience reorganization [27]. One may
then wonder whether the relative regulatory simplicity
observed in susceptible regions may actually be a conse-
quence (rather than a cause) of the presence of fragile
regions nearby. But although fragile regions are correlated
with regions susceptible to breakpoints as shown by our
data, they only represent a small fraction of susceptible
regions, suggesting other mechanisms explaining those
different levels of plasticity on the genome. If fragile
regions may contribute to the fixation of breakpoints, it
seems that the main mechanism preventing breakpoints is
the crucial role that long-range regulation has on the fit-
ness of the individuals.

Limitation of the model and further developments

The predictor was trained using the opossum genome as
an approximation for the ancestral eutherian genome.
Surprisingly the predictor performs better when using the
current human genome (i.e. the derived genome), rather
than the approximated ancestral genome, for predicting
human breakpoints (see Figure 4). This outcome may be
explained by the discrepancy in the quality of assembly
and annotation between human and opossum. Nonethe-
less, we believe that using opossum as an approximation
of the ancestral state is justified as the alternative, using a
computationally predicted ancestral genome, may lead to
a worse approximation because of reconstruction errors.
Another observation to make from this discrepancy is that
the derived state may be as suitable as the ancestral state
to predict breakpoints. Indeed, the effect of a genome rear-
rangement is a combination of both the regulatory associ-
ations it disrupts (observable in the ancestral genome)
and the new associations it creates (observable in the
derived genome).

Conclusion

We show in this study that the reason why some regions
of the genome are not prone to rearrangement is that
some of the genes they contain are under the influence of
long-range regulators and the physical relationship
between these elements cannot be broken without being
detrimental to the fitness of the individual. Genes with
simpler regulation, such as housekeeping genes, may be
less affected by breakpoints in their surrounding. The con-
sequence is that regions where rearrangements can be
fixed and are not too detrimental correspond to regions
that are enriched for genes with less complex regulation.
In the light of these data, we confirm that the random
breakage model is not the most appropriate and that only

http://www.biomedcentral.com/1471-2148/9/203

a limited fraction of the genome is susceptible to evolu-
tionary rearrangements. The mapping of these regions,
produced by our predictor, will be of importance for
future genome evolution and function studies.

Methods

Marker identification

In order to undertake our analysis on the synteny of
human putative regulatory regions and coding regions, we
defined both datasets from publicly available data. As it is
widely accepted that non-coding regions under selective
pressure are enriched for regulatory regions, we selected
the set of non-coding conserved regions from the human
28-way [33] alignment identified by PhastCons [34] and
available on the UCSC genome browser [16]. Only
regions longer than 50 bp and with a score over 400 (third
quartile from the complete distribution of Phastcons ele-
ments) were considered. These regions were filtered out
for ESTs, coding regions (exons), blastp hits and repeats
using Ensembl annotations. Coding regions are defined
from the set of human coding exons from the Ensembl
version 49 [35]. When two exons overlap (which occurs in
the case of splice variants), only the longest exon is con-
sidered. In the case of two overlapping genes (e.g, intronic
gene), only the longest gene is taken into account.
Through this process, we selected 216 300 exons (coding
markers) and 112964 non-coding conserved regions
(non-coding markers) to undertake the analysis.

Ortholog mapping

Based on whole genome 'liftover chains' pairwise align-
ments (human/opossum and human/chicken) were
retrieved from the UCSC genome browser [16]. Liftover
chains are extracted from UCSC nets generated from
blastZ alignments. Nets are a hierarchical collection of
ordered aligned blocks and the mapping provided by this
alignments is then unlikely to be spurious. Human (NCBI
build 36.1) is used as the reference genome, and human
conserved regions (coding and non-coding) are mapped
using liftOver (forward mapping) to the chicken v2.1
draft assembly (WUSTL) and the opossum draft assembly
(The Broad Institute, january 2006) (liftOver parameters:
minMatch = 0.8 for opossum, minMatch = 0.7 for
chicken). In order to only consider best reciprocal hits, the
forward mapping results are mapped back to human
(reverse mapping) using liftover (minMatch = 0.75 for
opossum, minMatch = 0.65 for chicken). Markers lying on
unknown chromosomes of the human genome or map-
ping to unknown chromosomes on one of the target
genomes are discarded. Each marker (coding or non-cod-
ing) is then classified using its level of conservation. Mark-
ers conserved only between human and opossum are
classified as metatherian. Those conserved between
human and both chicken and opossum are classified as
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amniote markers (markers conserved only between
human and chicken but not opossum were ignored).

Synteny

A breakpoint between the human genome and the opos-
sum genome (resp. the chicken genome) is defined as a
pair of amniote markers (coding or non-coding) that are
adjacent in human (disregarding possibly intervening
metatherian markers) but not in opossum (resp. chicken).
The only exception is that if the two markers are more
than 1 Mb apart, the inter-marker region is disregarded, as
in that case the resolution would be too low. This removes
from consideration cases such as centromeres. As the exact
breakpoint position cannot be determined, its localiza-
tion is defined as the equidistant position between the
two markers.

In order to undertake analyses at the gene level, exons are
assembled into genes using the Ensembl annotation, and
synteny breakages are ported at the gene level (placing the
breakpoint on the left side of the gene. Marker classifica-
tion (amniote and metatheria) is also ported from exons
to genes. If at least 30% of the exons are labelled as amni-
ote, the amniote annotation is ported to the gene. If at
least 30% of the exons are labelled as metatheria (and less
than 30% are labelled as amniote), the annotation
metatheria is ported to the gene. Finally, those breaks
retrieved on human were mapped to the opossum
genome where the predictor training is undertaken.

In order to evaluate the significance of the enrichment of
observed breakpoints depending of the flanking markers,
we calculated the number of expected breakpoints based
on the total size of inter-marker regions of each type using
a chi-square test.

Breakpoint prediction

Inter-marker regions were divided into two classes; syn-
tenic regions and breakpoint regions. To train the predic-
tor, the following information was used: local density of
functional elements and association between putative reg-
ulatory regions and genes. A score summarizing the local
density of elements within 1 Mb of the center of each
inter-marker region was considered. The following ele-
ments were considered: the status of markers (coding or
non-coding), their classification (metatheria or amniote),
and their weighted distance. For a 2 Mb window W cen-
tered at genomic position p, feature scores were calculated

1

marker m of type X in W log(|pos(m)—p|)* I

for X € {CodMet, NoncodMet, CodAmn, NoncodAmn}

and e ranging from 0 to 5 (with increments of 1). Another
feature considered is the connectivity between non-cod-

as follows: Fx(p,a)=
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ing putative regulatory regions and genes. All non-coding
conserved regions are associated to the gene with the clos-
est transcription start site. In addition, a non-coding
region is associated to a gene if the distance between them
is at most S times more than the distance to the closest
gene, for franging from 1 to 3 with 0.5 increments. For a
given inter-marker region centered at position p, we then
calculate F,, (f), the number of associations that cross

position p (i.e. associations that would be destroyed by a
breakpoint).

A logistic regression was first applied on the data with
inter-maker distance as unique predictive feature. Residu-
als obtained from the regression were then used to train
multiple linear regression predictor. Using the residuals
allows the capture of information that is not related to this
inter-marker distance.

The 29 features are composed of four types of markers
(coding metatheria, non-coding metatheria, coding amni-
ote and non coding amniote) analyzed with 6 different &
values and 5 different S values representing putative asso-
ciations between a non-coding conserved region and a
gene. The 29 features were first tested separately as single
predictors and their effect on the prediction assessed with
the t-value associated with the linear predictor output.
Then, features were selected using a forward selection
method. Each addition of a new feature was selected using
the highest specificity value for a given sensitivity of 0.75.
Sensitivity and specificity were calculated using the
number of base pairs covered and not the number of
inter-marker distance. We then undertook a four-fold
cross validation on the oppossum genome and the predic-
tor was finally applied on the human genome where fur-
ther functional analysis is undertaken. It should be stated
that we tried to add interactions between features but this
didn't bring much improvement.

Additional datasets

Gene desert are defined as gene-free regions spanning
more than 1 Mb, based on the Ensembl gene annotation
version 49. Only genes labeled as "known" were used. All
regions with more the 1/3 of non-sequenced base pairs
were removed from the dataset.

GNF Expression Atlas 2 [22] allows classifying genes
depending on their expression in the 79 human organs
and tissues covered by the Atlas. We considered that a
gene is expressed in a given tissue if its MAS5 normalized
expression level is > 400. We ported the GNF microarray
probes to the Ensembl geneset using the Biomart tool [36]
on the Ensembl web site.
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