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Abstract

Background: NLRPs (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin
domain containing Proteins) are members of NLR (Nod-like receptors) protein family. Recent
researches have shown that NLRP genes play important roles in both mammalian innate immune
system and reproductive system. Several of NLRP genes were shown to be specifically expressed in
the oocyte in mammals. The aim of the present work was to study how these genes evolved and
diverged after their duplication, as well as whether natural selection played a role during their
evolution.

Results: By using in silico methods, we have evaluated the evolution and functional divergence of
NLRP genes, in particular of mouse reproduction-related Nirp genes. We found that (1) major NLRP
genes have been duplicated before the divergence of mammals, with certain lineage-specific
duplications in primates (NLRP7 and /1) and in rodents (NIrpl, 4 and 9 duplicates); (2) tandem
duplication events gave rise to a mammalian reproduction-related NLRP cluster including NLRP2, 4,
5,7,8,9, 11, 13 and 14 genes; (3) the function of mammalian oocyte-specific NLRP genes (NLRP4,
5, 9 and /4) might have diverged during gene evolution; (4) recent segmental duplications
concerning Nirp4 copies and vomeronasal | receptor encoding genes (V/r) have been undertaken
in the mouse; and (5) duplicates of Nirp4 and 9 in the mouse might have been subjected to adaptive
evolution.

Conclusion: In conclusion, this study brings us novel information on the evolution of mammalian
reproduction-related NLRPs. On the one hand, NLRP genes duplicated and functionally diversified
in mammalian reproductive systems (such as NLRP4, 5, 9 and /4). On the other hand, during
evolution, different lineages adapted to develop their own NLRP genes, particularly in reproductive
function (such as the specific expansion of Nirp4 and Nirp9 in the mouse).

Background of, and defense against, microbial pathogens are the Toll-
The innate immune system is an ancestral and ubiquitous  like receptors (TLRs), which constitute the main sensors
system of defense against microbial infection and other  for detection of extracellular microbes [1]. Recent research
potential threats to the host. The first mammalian mole-  has shown that Nod-like receptors (NLRs) act as intracel-
cules shown to be involved in innate immune recognition  lular regulators of bacterial-induced inflammation [2-4].
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The NLR protein family is separated into several sub-
families based on the different N-terminal -effecter
domains [5]. The NLRP subfamily (known also as NALP
family) is a new identified NLR group characterized by a
PYRIN domain. Initially, research on the function of
NLRP proteins focused on their roles in apoptotic and
inflammatory signaling pathways via the formation of a
large signaling platform (named inflammasome) and the
activation of caspases in innate immunity [4,6,7]. Interest-
ingly, more and more researches have recently revealed
that some NLRP genes play roles in mammalian reproduc-
tion. For instance, the mouse NiIrp5 (known also as
MATER) was one of the first identified mammalian mater-
nal effect genes, i.e. it encodes mRNA required for success-
ful development of a fertilized oocyte [8]. In particular,
the targeted invalidation of mouse oocyte-specific Nirp5
leads to the sterility of females due to a blockage at the
two-cell stage in the development of embryos [8]. In vitro
knockdown experiments in mouse fertilized eggs also
revealed that a decrease of mouse germ-cell-specific
Nirp14 transcripts results in an arrest of development
between the one-cell and eight-cell stages of the embryos
[9,10]. In the mouse, exclusive duplications of NIrp4 and
Nirp9 have been detected with specific expression profiles
restricted to the oocyte [9], whereas the mouse Nlrp4a and
the cattle NLRP9 have also been reported to be expressed
in the testis [11,12]. In humans, the mutations of NLRP7
are found to cause recurrent hydatidiform moles, sponta-
neous abortions, stillbirths and intrauterine growth retar-
dation [13,14]. Additionally, the recent expression
analyses of NLRP genes in the human and the rhesus
macaque (Macaca mulatta) have shown that most if not all
NLRP genes are expressed in primate gametes and early
embryos, suggesting a role of NLRPs in primate pre-
implantation development [15,16].

Overall, it seems that the NLRP genes play roles not only
in innate immunity but also in the reproductive system of
mammals. Moreover, Nalp5 and Nalp14 invalidation data
in the mouse suggests that there is no functional compen-
sation of each of these oocyte-specific genes. In this con-
text, one question is to study how these reproduction-
related NLRP genes evolved and diverged in function after
their duplication, as well as whether natural selection
played a role during their evolution.

The availability of several completely sequenced verte-
brate genomes allows us to use a phylogenomic approach
to identify the NLRP orthologues from different mammals
and to evaluate the evolutionary features of NLRPs in dif-
ferent lineages. In this paper, we focus on the evolution
and functional divergence of reproduction-related NLRPs,
as well as lineage-specific expansion of Nirp4 and Nlrp9 in
rodents. The aim of the present work is to provide new
information in understanding how NLRP genes evolve in
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reproductive system and how different mammals adapted
to develop their own NLRP gene copies particularly in
reproductive biology.

Results

Phylogeny and syntenic comparison of NLRPs

A total of 83 mammalian NLRP amino acid sequences
with chicken NLRP3-like as outgroup were used for the
reconstruction of phylogenetic trees. A total of 122 posi-
tions are included in the final dataset.

In the consensus phylogenetic tree (Figure 1), each NLRP
protein, except for NLRP2, is shown to be monophyletic
by all four methods with high bootstrap values. NLRP2
encompasses the primate-specific NLRP7, suggesting the
origin of NLRP7 from a duplication of the NLRP2/7 ances-
tor in primates. NLRP11 is also primate-specific and
might be related to the reproduction-related NLRP4 and
9. NLRP4 proteins are only identified in primates and
rodents, indicating the potential birth of the ancestral
NLRP4 gene before the divergence between primates and
rodents. Otherwise, the other NLRP genes seem to have
duplicated before the divergence of mammals.

In rodents, three Nirp genes show lineage-specific duplica-
tions including Nilrp1, Nirp4 and Nirp9 (Figure 1). More
specifically, Nirp1 exclusively duplicated in the mouse,
Nirp9 duplicated independently in the rodents after the
separation of mouse and rat, whereas the duplication of
Nirp4 is likely to have occurred both before and after this
separation.

Unexpectedly, NLRP8 and NLRP13 seem to be universal
in mammals except for rodents. We speculate that these
two genes might have been lost during evolution of the
rodents. Unfortunately, our tBLASTn search (using the
human NLRP8 and 13 respectively as queries against the
mouse genome) failed to find any trace of pseudogene of
neither NLRP8 nor NLRP13 within the mouse conserved
syntenic region. We found that, on the human chromo-
some 19, these two genes are located side by side between
NLRP4 and NLRP5, whereas the mouse Nirp4 gene has
been expansively duplicated and the duplicates are
located around Nirp5 on the mouse chromosome 7. In
rodents, the biological significance of the probable loss of
NLRP8 and 13 on one hand, and the parallel expansion of
Nlrp4 on the other hand, remains unknown.

Remarkably, our phylogenetic analyses identified a well
supported (bootstrap values >90% by ME, NJ and ML
methods) reproduction-related clade including nine
NLRP proteins: NLRP2, 4, 5,7, 8,9, 11, 13 and 14 (Figure
1). All these NLRP genes have been shown to be expressed
in the human oocyte and pre-implantation embryos [16].
NLRP4, 5, 8, 9 and 14 are exclusively expressed in germ-
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Consensus phylogenetic tree of NLRPs reconstructed by the fusion of four separate methods (NJ, ME, MP and
ML). A total of 83 NLRP protein sequences from 6 mammalian species (cattle, dog, human, chimpanzee, mouse and rat) are
used with chicken as outgroup. A total of 122 amino acid sites are included in the analyses. The bootstrap values are labeled on
the main branches for the four different methods (followed the order of NJ, ME, MP and ML methods). The symbol * means
that the branch is not supported by the corresponding method.
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cells, especially in the oocyte of mammals [8-12,17,18].
The mutations of NLRP7 are associated with abnormal
embryo development in the human [13,14]. The expres-
sion of mouse Nlrp2 has been found to be highly enriched
in fully grown oocytes but diminished in the 2-cell
embryos upon embryo genome activation [19]. In both
the human [16] and the rhesus macaque [15], NLRP11
and 13 have been found specifically or preferentially
expressed in the oocyte, with a similar expression pattern
to other oocyte-specific NLRP genes, i.e., enriched in
maturing oocytes and then progressively diminished in
embryos, indicating an exclusive maternal origin of these
transcripts. Unfortunately, the biological study of these
two genes is not sufficient to address their putative roles
in reproduction.

Moreover, this reproduction-related clade is also sup-
ported by the syntenic analysis (Figure 2). In the human
genome, all the reproduction-related NLRP genes, except
for NLRP14, are tandemly located on the chromosome
19q13.42, suggesting that multiple tandem duplication
events might have given birth to these genes. The similar
arrangements of the reproduction-related NLRPs are also
found in cattle and dog genomes (Figure 2). In the mouse
genome, the reproduction-related Nirps (except for
Nirp14) are not located side by side, but interrupted by
some other types of genes, especially and mainly by cer-

NLRP genes 3 1

cattle — W, B ,
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tain VIr genes (discussed below) on chromosome 7A1l
and 7A3. Although NLRP14 is not located in the syntenic
region encompassing other reproduction-related NLRPs
in all the studied mammalian genomes (involving cattle,
dog, human, chimpanzee, mouse and rat), our phyloge-
netic result and the published expression profile show
that this gene is close to other reproduction-related
NLRPs. This suggests that early (before the divergence of
mammals) genomic rearrangements might have resulted
in the separation of NLRP14 from its relatives.

We identified the other NLRP members (NLRP1, 3, 6, 10
and 12) as non-reproduction-related NLRP genes, because
they are not in the reproduction-related clade in the phy-
logenetic trees and ubiquitously expressed. These genes
have been shown to participate in inflammatory and
immune responses by regulating the activation of other
signaling factors, such as NF-kB, caspase-1 and IL-1f [20-
24]. In contrast, little is known about the function of the
reproduction-related NLRP proteins in inflammation and
immunity, except that the human NLRP2, 4 and 7 may be
able to inhibit IL-1p and/or NF-«xB [25-28], and thus may
contribute to modulate the inflammatory response. It is
known that inflammation and bacterial infection can
cause infertility, ectopic pregnancy and abortion [29].
Thus, NLRP proteins might play roles both in innate
immunity and in reproductive biology.

|

Chr7 iii Chr19 i Chr 18 Un.004.137 | Chr15
NLRP genes '3 | ‘i 6 14\ 10
dog — < ‘
Chrg || Chr5 \; Chr1 Chr18 Chr21; |
NLRP genes 3 i o 57 9114 \\5 ! 6 14 {10
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Figure 2

Syntenic comparison of NLRP genes among the cattle, the dog, the human and the mouse. The NLRP genes are
marked in red, the orthologues are indicated by discontinuous lines. The order of NLRPs in each genome is listed as following:
The cattle: NLRP3 (chr 7); NLRPI (chr 19); NLRP9, 13, 8 and 5 (chr 18); NLRP6 (Un.004.137); NLRPI4 (chr 15). The dog:
NLRP3 (chr 8); NLRP! (chr 5); NLRP12, 2, 9, 13, 8 and 5 (chr I); NLRP6 (chr 18); NLRP/4 and /0 (chr 21). The human: NLRP3
(chr 1); NLRPI (chr 17); NLRP12, 2, 9, 13, 8 and 5 (chr 19); NLRP6é, NLRP/4 and /0 (chr I 1). The mouse: Nirp3, la, Iband Ic
(chr 11); Nirp12, 2, 4c, 4d, 4b, 9b, 4e, 5, 9¢, 4a, 9a, 14, 10 and 6 (chr 7).
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Functional divergence

In the reproduction-related NLRP cluster referred by the
phylogenetic analysis above, there are several oocyte-spe-
cific NLRP genes including NLRP4, 5, 8, 9 and 14. To
investigate whether functional divergence have occurred
following the duplications of these oocyte-specific NLRPs,
four oocyte-expressed NLRP genes (NLRP4, 5, 9 and 14)
were estimated for functional divergence by using the
DIVERGE program [30]. NLRP8, which was not found in
rodents, was therefore not included in this analysis in
order to compare the level of divergence across all candi-
date species.

After alignment and removal of the sites with gaps, a total
of 650 amino acid sites are included in the analysis. Pair-
wise comparisons of each of the four oocyte-expressed
NLRP gene clusters (Additional file 1) were carried out
and the rate of amino acid evolution at each sequence
position was estimated. As shown in Table 1, functional
divergence is significant between each comparison (8> 0
with p < 0.001) by both MFE and MLE methods, indicat-
ing that site-specific altered selective constraints should
contribute to the functional evolution of the oocyte-spe-
cific NLRP genes after their duplication.

Furthermore, the important amino acid residues, respon-
sible for functional divergence, were predicted by calculat-
ing the site-specific profile based on posterior analysis for
all pairs of clusters with functional divergence. In order to
extensively reduce false positive, cutoff values, i.e., the
minimal posterior probabilities for RFD (Residues with
predicted Functional Divergence) were established empir-
ically by progressively removing the highest scoring resi-
dues from the alignment until § dropped to zero. As
shown in Table 1, the least RFD (33 residues, covering
5.1% of a total of 650 aligned sites) are observed between
NLRP5 and NLRP14, and the most RFD (118 residues,
covering 18.2% of a total of 650 aligned sites) are
observed between NLRP4 and NLRPI4. In general, the
RFD are detected in all three functional domains
(NACHT, PYRIN and LRRs) of NLRP proteins, implying

http://www.biomedcentral.com/1471-2148/9/202

that shifted functional constrains might have acted on
each protein domain.

Segmental duplications concerning Nlrp4 and Vr genes
in the mouse genome

In the mouse, there are seven Nirp4 gene copies (named
from Nlrp4a to 4g) which are specifically expressed in
oocytes [9,11]. Our lab has also found the expression of
Nirp4a in the testis by RT-PCR [11]. Nirp4a-4e genes are
located on chromosome 7A, but Nirp4f and 4g are located
on chromosomes 13B3 and chromosome 9 respectively.
By the tBLASTn method, we identified six additional puta-
tive pseudogenes on chromosome 7A (named here
¥NIrp4h-4m, Figure 3a). Based on the phylogenetic tree
(Figure 3a), multiple duplications of mouse Nirp4 could
be depicted as follows. NIrp4b might be the earliest Nlrp4
copy in the mouse genome with an orthologue present in
the rat genome, suggesting an origin before the separation
of mouse and rat. The duplication of ancestral Nirp4b is
supposed to have given rise to Nlrp4d, and the subsequent
duplications might have resulted in Nirp4f/4g and Nirp4a/
4c. Subsequent chromosomal rearrangements might have
caused the independent locations of Nirp4f and Nlrp4g
with other Nilrp4 duplicates. All the putative Nlrp4h-4m
pseudogene sequences show high identities with each
other as well as with Nirp4e. In fact, in all the pseudo-
genes, a common frameshift of 1-bp deletion was detected
at the position corresponding to 358aa of Nirp4e and it
caused a subsequent prematural stop codon at the posi-
tion of 434aa, suggesting that the pseudogenization had
happened before duplications of these copies.

In the mouse genome, Nirp4 duplicates (except for Nirp4f
and 4g) are located between 6.00 Mb and 27.32 Mb on the
chromosome 7. Interestingly, all these Nirp4 duplicates
are found next to the vomeronasal 1 receptor encoding
genes (V1r), such as V1rd and Vire genes (Figure 3a). The
phylogeny and genomic location of these V1r genes reveal
that VIr genes might have a similar duplication model to
their neighbors, Nirp4 genes (Figure 3a). Thus, one may
hypothesize that NIrp4 may have not duplicated one by

Table I: Pairwise comparison of functional divergence of mouse oocyte-expressed Nirp genes

Gene cluster MFE 6 MLE 6 p value RFD No. Cutoff
Nirp4/9 0.65 £ 0.07 0.61 £0.05 < 0.0001 9l 0.78
Nirp4/14 0.96 £ 0.08 0.89 £ 0.06 < 0.0001 118 0.94
Nirp4/5 0.68 + 0.08 0.67 £ 0.06 < 0.0001 61 0.84
Nirp9/14 0.76 £ 0.08 0.65 £ 0.06 <0.0001 59 0.80
Nirp5/9 0.64 £ 0.09 0.58 £ 0.07 <0.0001 53 0.75
Nirp5/14 049 £0.10 0.45 £ 0.07 < 0.0001 33 0.70

6, coefficient of functional divergence; MFE, Model-Free Method; MLE, Maximum-Likelihood Estimation under two-state model; p value, significance
level calculated by the method of Fisher's transformation on z scale, and from chi square on LRT; RFD No., number of residues with predicted
functional divergence;-cutoff, the minimal posterior probability for amino acids causing functional divergence, established empirically by progressively
removing the highest scoring residues from the alignment until 8 dropped to zero.
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Figure 3

Segmental duplications of Nirp4 duplicates and VIr genes in the mouse genome. Figure 3a Comparison of gene rela-
tionships in the phylogenetic tree and their genomic position. Left: Phylogenetic tree of mouse Nirp4 duplicates (including pseu-
dogenes) and its closely related Nirp5 and Nirp9 genes. A total of 439 nucleotide sites are included in the final dataset. Right:
Phylogenetic tree of 25 mouse VIr proteins whose encoding genes are located in the same genomic region as Nirp4 genes. A
total of 271 amino acid sites are included in the final dataset. The statistical confidence of each branch was estimated by the
bootstrap method with 1000 replications, and only the values > 80% are labeled in the trees. Middle: Genomic organization of
related Nirp and VIr genes. Five putative regions (I V) might be concerned in segmental duplication. Figure 3b A possible sce-
nario of segmental duplication deduced from synteny combining phylogeny: Genomic region | (involving Nirp4b) and region Il
(involving Nirp4d) might have been resulted from an early duplication, and the subsequence duplication events have given birth
to region Il (involving Nirp4a) and region IV (involving Nirp4c). Region V might have been duplicated later, and in this genomic
region, other more recent segmental duplications (concerning pseudogenized Nirp4 copy and V/rd genes) have been under-
taken several times. We note that the order of duplication events in this potential scenario is mainly based on the topology of
Nirp4 phylogenetic tree. There might be other alternative itinerary to explain the present complex pattern of this genomic

region.

one, but were rather involved in segmental duplications
encompassing several different genes, such as Vir genes.

Vomeronasal organ, which is well developed in rodents in
comparison with human, detects pheromones and other
chemical signals implicated in innate reproductive and
social behaviours between the members of the same spe-

cies [31,32]. The V1r gene family is supposed to have
emerged during the divergence of placental mammals
(80110 MYA), but many subfamilies including V1rd and
V1re originated only in rodents after their separation from
the primates [33], which is consistent with the rodent-spe-
cific duplication of Nlrp4. Thus, the phylogenetic relation-
ship and genomic location (Figure 3a) of these V1r genes,
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that are located in the segmental duplication region,
could help us to better understand the segmental duplica-
tions. Overall, as shown in Figure 3b, a presumed itinerary
of segmental duplication was deduced by combining phy-
logeny with genomic location of both Nlrp4 duplicates
and V1r genes. Although we can not confirm the order of
duplication events by the present data, we can state that
segmental duplication events characterize the evolution
of this genomic region.

Positive selection on Nirp4 and Nirp9 paralogues in the
mouse

Several examples have shown that genes in duplication
blocks could be maintained by positive selection [34-37].
Here, we implemented PAML4 [38] to investigate the
model of selective force acting on mouse Nirp4 and Nlrp9
duplicates during their evolution.

By using Site Models, estimates of the parameter values
under M2a and M8 (Table 2) indicate that a fraction of
sites (about 56%) may be under positive selection in both
datasets (NIrp4_mouse and Nirp9_mouse). LRTs of all
comparisons (including M1a versus M2a, M7 versus M8
and M8a versus M8) are significant (p < 0.001) for both
datasets (Table 2), implying that selective forces varied
among amino acid sites and that the mouse Nilrp4 and 9

http://www.biomedcentral.com/1471-2148/9/202

genes might have been subjected to positive selection after
their expansion. Furthermore, the comparison of model
MEC (AICc = 15913.11 for Nirp4_mouse and AICc =
14196.22 for Nirp9_mouse) versus model M8a (AICc =
16003.68 for Nirp4_mouse and AICc = 14293.43 for
Nirp9_mouse) also supports positive selection in these
two gene clusters. The AICc scores of MEC are lower than
those of M8a, indicating that MEC better fits the data, i.e.
positive selection is significant.

Subsequently, we wanted to know if the target of positive
selection had changed during evolution in these two gene
clades. We compared the potential sites subjected to pos-
itive selection between the two datasets (Table 2). In
Nirp4_mouse dataset, 2 sites (133C and 677V) are identi-
fied as positively selected sites at p > 95% level by both
M2a and M8 models, and 2 more sites (153S and 657N)
are identified only by the M8 model. In Nirp9_mouse
dataset, 10 sites (106H, 123 E, 356F, 360L, 378R, 513E,
536V, 571V, 661L and 948A) are identified as potential
targets of positive selection by both M2a and M8 models,
and 1 more sites (278L) is identified only by the M8
model. We note that no common sites are shared by the
two datasets as positively selected sites at p > 95% level,
suggesting a dramatic shift in the target of positive selec-
tion between the Nirp4 and NIrp9 genes in the mouse.

Table 2: Parameter estimates and likelihood scores for site models in PAML

model | Estimates of parameters 2Al Positively selected sites (BEB)

Nirp4_mouse

Mla -7999.63 py=0.33 Not allowed

M2a -7986.58 p,=0.28,(p, = 0.67), p,=0.05  26.09* 2 sites > 95%
w,=3.93 (M2avs Mla) 133C, 677V

M7 -7999.85 p=0.04,q=0.02 Not allowed

M8a -7999.55 py=0.34,(p,= 0.66), 27.56* Not allowed
p=08l,q=6.69 (M8 vs M7)

M8 -7986.07 p,=0.94,p, = 0.06, 26.98* 4 sites > 95%
p =0.20, g = 0.09, (M8 vs M8a) 133C, 153S, 657N, 677V
o, = 3.64

NIrp9_mouse

Mla -7140.29 p,=0.36043 Not allowed

M2a -7107.99 p,=0.28, p, = 0.66, p, = 0.06, 64.60%* 10 sites > 95%, 2 sites > 99%
@, =10.17 (M2avs Mla) 106H, 123 E, 356F, 360L, 378R, 513E, 536V, 571V, 661L, 948A

M7 -7140.98 p =10.02,q=0.0l Not allowed

M8a -7140.29 p,=0.36,(p, = 0.64), 65.99% Not allowed
p =0.01,q=98.97 (M8 vs M7)

M8 -7107.99 p,=0.94, p, = 0.06, 64.60* Il sites > 95%, 6 sites > 99%
p=10.01,g=00I, (M8 vs M8a) 106H, 123 E, 278L, 356F, 360L, 378R, 513E, 536V, 571V, 66IL, 948A
w,=10.20

NOTE. Log-likelihood values (l) are given for each model. The value wsis the average d\/d; ratio for sites under positive selection in the models
M2a and M8, p and q are the shape parameters for the beta distribution of @ in M7 and M8. p,, p,, and pgare the proportions of codons subject to
purifying, neutral, and positive selection, respectively. * p value is significant at 0.001. Predicted positively selected sites with posterior probabilities
> 95% are listed, and the sites with p > 99% are in boldface. Site numbers and amino acids refer to the reference sequences Nirp4a (NP_766484)
and Nirp9a (NP_001041684) for the two datasets, respectively.
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When the 3D structures or models of these proteins are
available in the future, we could investigate whether these
positively selected sites are located in functionally pivotal
regions.

Discussion

Independent evolution of reproduction-related NLRP
genes in different mammalian lineages

Phylogenetic analyses show that NLRP genes have been
originated and duplicated before the divergence of mam-
mals. Certain genes are well conserved during their evolu-
tion, such as NLRP3 (82% identity between the human
and the mouse), whereas many genes involved in repro-
duction have rapidly evolved resulting in higher sequence
divergence among lineages, such as NLRP5 (50% identity
between the human and the mouse) and NLRP14 (62%
identity between the human and the mouse). The pair-
wise estimates of evolutionary divergence between the
reproduction-related paralogues are ranged from 61% to
75% (except that the pairwise distance between NLRP2
and its recent primate-specific duplicate, NLRP7, is 45%),
which is obviously higher than the one between the non-
reproduction-related paralogues (ranged from 43% to
69%). Moreover, gene duplication and/or gene loss is
found to have occurred independently in different mam-
malian lineages. On the one hand, Nilrp4 (originated
before the divergence of primates and rodents) and Nlrp9
have been extensively duplicated in rodents, and other
lineage-specific gene duplication events concern the spe-
cific duplication of Nirp1 (three paralogues) in the mouse
as well as the unique origin of NLRP7 and NLRP11 in pri-
mates. On the other hand, NIrp8 and Nirp13 are seemed
to be lost from the genomes of rodents. Interestingly, the
major gene duplication and gene loss events are found to
be associated with the reproduction-related genes (such as
NLRP4, 7, 8,9, 11 and 13), implying that reproduction-
related genes have undertaken a fast and diverged evolu-
tion among different mammalian lineages. Given note
that major reproduction-related NLRP genes are germ-cell
specificc whereas the other non-reproduction-related
genes are usually expressed in multiple tissues from a sin-
gle organism. Recent large-scale gene expression studies
have shown that the tissue specificity of genes is correlated
positively with gene evolution rates [39-41]. Furthermore,
our result reinforces the hypothesis that reproduction-
related genes are most highly divergent and evolve more
rapidly than genes expressed in other organs [42-45].

Functional divergence of the oocyte-specific genes

Gene duplication is thought to be the essential source of
gene novelty, with new or altered functions, as shown by
widespread existence of gene families. Among NLRP
genes, there are at least four oocyte specifically expressed
in mammals, including NLRP4, 5, 9 and 14. These genes
have been found to be restricted expressed in oocytes and
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early embryos [9,15], suggesting their important roles in
oogenesis and preimplantation embryo development.
Additionally, their temporal expression in oocytes and
degradation during preimplantation development coin-
cide with the timing of gene expression transition from
maternal to zygotic control, indicating their roles as
maternal effect genes.

In the present work, by using an in silico method (with the
help of the program DIVERGE), we demonstrate that the
functional divergence could have occurred between each
pair of oocyte-specific NLRP genes. This result is sup-
ported by certain published experimental data. For exam-
ple, the knock-out of mouse NIrp5 induced female
infertility due to a blockage of early embryonic develop-
ment [8]; and the injection of siRNA against NIrp14 into
fertilized eggs resulted in arrested development of
embryos between 1-cell and 8-cell stages [9]. These results
suggest that the expression of other oocyte-specific NLRP
genes is not able to compensate the absence of neither
NLRP5 nor NLRP14 genes. Additionally, recent research
has shown that NLRP14 is also expressed in the testis and
its mutation might cause spermatogenic failure in the
human [46]. Thus, we presume that the expressional
divergence of NLRP5 and NLRP14 during the develop-
ment of mouse germ-cells and embryos may lead to func-
tional specialization. On the other hand, target
invalidation/inhibition of NLRP5 and 14 did not reveal
any deleterious effect on ovarian folliculogenesis but
rather in early embryonic development, suggesting other
genes might play the similar roles during folliculogenesis
and meiotic maturation. For these latter functions, plausi-
ble candidates could be other oocyte-specific NLRP genes,
such as NLRP4 and NLRP9. To investigate this possibility,
further functional studies such as knock-out models or
other targeted inhibition experiments on these genes
should be carried out.

Gene duplication is thought to be a major driving force in
enabling the evolution of tissue specialization. By using
microarray gene expression data from mammals [47],
fruit flies and yeast [48], it has recently shown that as gene
family size enlarges, there is a general trend for paralogous
genes with decreased breadth and increased specificity of
expression. In particular, by studying the relationship
between gene family size and expression breadth of 1249
protein families in the mouse, Freilich and his colleagues
[49] have recently demonstrated that duplicates that arose
through post-multicellularity duplication events show a
tendency to become more specifically expressed, support-
ing the view suggested by the subfunctionalization model
[50]. In our case, especially with the evidence that NLRP5
and NLRP14 genes are significantly involved in different
developmental stages of embryos, we hypothesize that the
functional divergence of oocyte-specific NLRP duplicates
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might be derived by the expression specialization of
duplicate genes, which could provide the mammals repro-
ductive advantages such as in adaptation.

Segmental duplication in the mouse genome

The phylogenetic research indicates the rodent-specific
expansion of Nilrp4 and NLRP9, and the furthermore
genomic analyses find that these Nilrp duplicates, espe-
cially Nlrp4, have been duplicated together with other
genes, such as VIr copies. This segmental duplication is
not rare during the mouse and human genomic evolution.
It has recently revealed that the segmental duplication
constitutes about 5% of mouse genome, and its distribu-
tion is in a highly non-random fashion [51]. Interestingly,
the duplication blocks account for 32% of the first 50 Mb
of the chromosome 7, where the segmental duplications
concerning Nilrp4 and VIr genes are located. NIrp9 has
been also duplicated in this region, but its duplication sce-
nario is not clear and might be due to subsequent recom-
bination.

As found in the human [52], the segmental duplication
regions in the mouse might also be "hot spots" for the
occurrence of non-allelic homologous recombination,
leading to genomic mutations such as deletion, duplica-
tion, inversion or translocation [53-55]. Thus, these insta-
ble regions might have a biological significance in form of
genome evolution [56,57].

Adaptive diversification after gene duplications in Nirp4
and Nlrp9

In the mouse, Nirp4 and Nlrp9 are specifically extensive in
gene copies. By using Site-Models implemented in
PAML4, we evaluated the variation of selective pressure
acting on Nirp4 and Nirp9 duplicates, respectively. Our
result shows that positive selection is significant in both
datasets, which consistent with other reports referring that
the rapid divergence of the reproductive genes may be
driven by positive selection [43,58]. In particular, in the
mouse, several gene cluster concerning lineage-specific
expansion of reproduction-related genes have been found
to be under adaptive evolution (positive selection), such
as the Sva (seminal vesicle autoantigen) gene cluster [59],
the Prame (or oogenesin) gene cluster [60], the Psg (preg-
nancy-specific glycoprotein) gene cluster [61], the Rhox4
gene cluster [62] and the Sus (seminal vesicle secretion
proteins) gene cluster [63]. The lineage-independent
expansion and subsequently rapid evolution of such
genes might contribute to speciation or adaptation, such
as genetic barriers between species and hybrid incompati-
bilities, or provide the species specification in reproduc-
tive processes such as sperm competition, host immunity
to pathogens, and manipulation of female/male repro-
ductive physiology and behavior. In the case of NLRP4
and 9 genes, their biological functions are still unclear, so
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we can not evaluate the significance of their specific dupli-
cations in the reproduction of the mouse. However, the
similar evolutionary mechanism driven by positive selec-
tion suggests that after duplication, these NLRP gene cop-
ies diverged and acquired abilities (probably by
subfunctionalization) to adapt the new environment. In
the subsequent research, the adaptive evolution of the
other reproduction-related NLRP genes could be further
evaluated. Hopefully, when the biological functions of
these NLRP genes are elucidated, the nature of the selec-
tive pressure acting on NLRPs will be better understood.

Interestingly, the evolution of V1r genes, the other genes
involved in the segmental duplication with Nirp4 and 9, is
also driven by positive selection in rodents [33]. V1R pro-
teins are thought to be responsible for the detection of
pheromones that induce innate reproductive behaviors
between members of the same species [31,32]. Thus, it is
presumed that the adaptive evolution of the VIr genes
might play an important role in reinforcing pre-zygotic
barriers among species of rodents [33].

Conclusion

NLRP genes have originated and duplicated mainly before
the divergence of mammals. During evolution, NLRPs,
especially the reproduction-related NLRP genes, have
undergone a fast and independent diversification in dif-
ferent mammalian lineages. The expansion of reproduc-
tion-related NLRP genes has been associated with
functional divergence after duplication, suggesting that
each NLRP oocyte-specific gene might play an essential
role in oogenesis and early preimplantation embryo
development. The mouse-specific expansion of Nirp4 and
Nirp9, concerning segmental duplication events, has been
driven by positive evolution. Our founding suggests that
the duplication and functional divergence of NLRP might
provide mammals advantages in reproductive biology.

Methods

Molecular phylogenetic and syntenic analyses

The protein sequences of all the 14 known human NLRPs
were  retrieved from  the  GenBank  http://
www.ncbi.nlm.nih.gov/. The NLRP proteins from other
species were searched by PSI-BLAST [64] with human
NLRP protein sequences as queries against the protein
databases (NCBI: RefSeq protein databases) of chimpan-
zee (Pan troglodytes), dog (Canis familiaris), cattle (Bos tau-
rus), mouse (Mus musculus), rat (Rattus norvegicus) and
chicken (Gallus gallus). The predicted coding sequences of
the best hit proteins were retrieved when the hits pre-
sented more than 80% in length to be aligned with the
query sequence (with E values < 10-100). These settings
could effectively detect the potential NLRP members from
different species but avoid involving the relative NLR pro-
teins from other protein subfamilies. After removal of
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redundant sequences, the initial data set (Additional file
2) for NLRP phylogenetic studies includes 83 protein
sequences from 6 mammals and 1 sequence from chicken.

Analyses of the orthologous and paralogous relationships
among different species were carried out by combining
the phylogenetic reconstruction of the gene family with
the syntenic comparison. Multiple sequence alignments
were performed using the Clustal W algorithm [65] and
then manually edited. The alignment was submitted as
Online Additional file 3. All alignment gap sites were
eliminated before phylogenetic analyses. The phyloge-
netic trees were reconstructed with Neighbor Joining (NJ),
Minimum-Evolution (ME) and Maximum Parsimony
(MP) methods implemented in MEGA4 [66], as well as
with Maximum Likelihood (ML) method implemented in
PhyML [67]. The consensus phylogenetic tree [68] was
generated by the fusion of the independent trees recon-
structed by the four methods. In all analyses, chicken
NLRP protein (Q5F3J4) was treated as the root of all the
mammalian NLRPs. The bootstrap values [69] were esti-
mated with 1000 replications. The syntenic comparison is
based on Ensembl http://www.ensembl.org/index.html
utilities such as "orthologue prediction" and "view syn-
tenic regions".

Test for functional divergence of oocyte-specific NLRP
genes

The program DIVERGE [30] was used to estimate type I
functional divergence [70,71] between oocyte-expressed
NLRP paralogues (NLRP4, 5, 9 and 14). Type I sites repre-
sent amino acid residues conserved in one clade (gene
cluster) but highly variable in another, suggesting that
these residues have been subjected to different functional
constraints. Statistically, this functional divergence
between two clades is measured by the coefficient of func-
tional divergence, 6, ranging from 0 to 1. A null hypothe-
sis of 8= 0 indicates that the evolutionary rate is virtually
the same between two duplicate genes at each site [70,71].
If the null hypothesis was rejected, a site-specific profile
was then used to predict the critical amino acid residues
most likely to be responsible for the detected functional
divergence.

A set of 33 protein sequences from mammalian NLRP4, 5,
9 and 14 is included in the analysis. Sequences of rat
NLRP4d, 9a and 14 were excluded from the alignment
because of their shorter lengths. Before the use of
DIVERGE, our sequence dataset was examined to satisfy
the conditions recommended by Gu et Vander Velden
(2002), which permit us to obtain higher efficiency of
detecting functional divergence-related residues: 1) each
cluster has more than four amino acid sequences; (2) all
pairwise sequence identities are <90%; and (3) multiple
alignment is reliable. The phylogenetic tree used for
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DIVERGE was reconstructed by MEGA4 [66] with ME
method. The coefficients of functional divergence (6)
between gene clusters are calculated by Model-Free Esti-
mation (MFE) and Maximum-Likelihood Estimation
under two-state model (MLE). To detect amino acid resi-
dues reflecting functional divergence, all four reproduc-
tion-related NLRP gene clades were compared to each
other.

Investigation of mouse specific segmental duplications

In order to investigate the predicted segmental duplica-
tions concerning NIrp4 duplicates on the mouse chromo-
some 7, a tBLASTn search [64] was implemented by using
the mouse Nirp4a (the longest Nirp4 sequence) as a query
against the mouse genome. This method permitted us to
identify both expressed Nirp4 genes and traces of the pseu-
dogenes. Then we combined phylogenetic analyses and
genomic mapping to identify the segmental duplication
[35]. The phylogenetic tree of mouse Nirp4 genes and
pseudogenes was reconstructed by using nucleotide
sequences instead of protein sequences. The phylogenetic
tree was also reconstructed for vomeronasal 1 receptor
proteins (V1R), because their encoding genes are located
paralleling to Nirp4 duplicates in the mouse genome and
they are presumed to have duplicated together with Nirp4.
The accession numbers of the VIR protein sequences used
here are listed in Additional file 4. The genomic organiza-
tion of all the concerned genes and pseudogenes in the
mouse is inferred from Ensembl (release 49).

Evolutionary analyses

To examine whether the duplicates of Nirp4 and Nirp9 in
the mouse have been submitted to adaptive evolution, an
analysis of variation in selective pressure following gene
duplication events was carried out with the CODEML pro-
gram implemented in PAML4 [38]. The alignments were
resulted from Clustal W and PAL2NAL [72]. The shorter
mouse Nirp4g was excluded in order to obtain more
informative sites.

Two datasets named Nilrp4_mouse (including 7
sequences) and Nirp9_mouse (including 3 sequences)
were investigated for different Site Models [73] imple-
mented in PAMLA4. In this study, we employed three pairs
of models including M1a (NearlyNeutral: 0< w,<1 and o,
= 1) versus M2a (PositiveSelection: 0< ®,<1, ®; = 1 and
o,>1) [73], M7 (beta: 0< ® <1) versus M8 (beta and @: 0<
o <1 and o,>1) [74], and M8a (beta &w,= 1: 0< ® <1 and
®,= 1) versus M8 [75]. LRTs (Likelihood Ratio Tests) were
used to test for significant differences in the fit of the mod-
els incorporating selection relative to their (nested) coun-
terparts that did not allow positive selection [73]. These
tests provide a useful series of metrices for interpreting the
significance of the results and a degree of protection
against false positives [76]. Bayes empirical Bayes (BEB)
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method [77] implemented in PAML4 was used to esti-
mate posterior probabilities of selection on each codon.
Furthermore, a newly described model MEC [78] was also
employed on the Selecton Server [79] to compare with the
results from other models for positive selection. The
advantage of the MEC model over the other models used
here is that by treating specifically each amino-acid
replacement, Ka is computed differently. So under the
MEC model, a position with radical replacements will
obtain a higher Ka value than a position with more mod-

erate replacements [78].
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Additional file 1

The phylogenetic tree of oocyte-expressed NLRPs for DIVERGE analy-
ses. The figure shows the phylogenetic tree of oocyte-specific NLRPs
derived from amino acid sequences for DIVERGE analyses.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-202-S1.pdf]

Additional file 2

The NLRP sampling for all the analyses. The table shows the NLRP
sampling (including the gene symbol, their genomic location and the
accession number) for all the analyses.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-202-52.pdf]

Additional file 3

The Clustal W alignment of 84 NLRP protein sequences for phyloge-
netic analyses. The data shows the alignment result of 84 NLRP protein
sequences used for phylogenetic analyses (Figure 1).

Click here for file
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Additional file 4

The mouse V1r sampling used for phylogeny. The Table shows the
mouse V1r sampling used for phylogenetic analysis (Figure 3).
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