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Abstract
Background: The phylogeny of Cetacea (whales) is not fully resolved with substantial support.
The ambiguous and conflicting results of multiple phylogenetic studies may be the result of the use
of too little data, phylogenetic methods that do not adequately capture the complex nature of DNA
evolution, or both. In addition, there is also evidence that the generic taxonomy of Delphinidae
(dolphins) underestimates its diversity. To remedy these problems, we sequenced the complete
mitochondrial genomes of seven dolphins and analyzed these data with partitioned Bayesian
analyses. Moreover, we incorporate a newly-developed "relaxed" molecular clock to model
heterogenous rates of evolution among cetacean lineages.

Results: The "deep" phylogenetic relationships are well supported including the monophyly of
Cetacea and Odontoceti. However, there is ambiguity in the phylogenetic affinities of two of the
river dolphin clades Platanistidae (Indian River dolphins) and Lipotidae (Yangtze River dolphins).
The phylogenetic analyses support a sister relationship between Delphinidae and Monodontidae +
Phocoenidae. Additionally, there is statistically significant support for the paraphyly of Tursiops
(bottlenose dolphins) and Stenella (spotted dolphins).

Conclusion: Our phylogenetic analysis of complete mitochondrial genomes using recently
developed models of rate autocorrelation resolved the phylogenetic relationships of the major
Cetacean lineages with a high degree of confidence. Our results indicate that a rapid radiation of
lineages explains the lack of support the placement of Platanistidae and Lipotidae. Moreover, our
estimation of molecular divergence dates indicates that these radiations occurred in the Middle to
Late Oligocene and Middle Miocene, respectively. Furthermore, by collecting and analyzing seven
new mitochondrial genomes, we provide strong evidence that the delphinid genera Tursiops and
Stenella are not monophyletic, and the current taxonomy masks potentially interesting patterns of
morphological, physiological, behavioral, and ecological evolution.
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Background
Cetaceans (whales, dolphins, and porpoises) have been
the subjects of intense phylogenetic inquiry using both
morphological (including fossil) and molecular data [1-
19]. This attention is not surprising; Cetaceans represent
one of the most fascinating evolutionary transitions
within vertebrates and a robust phylogenetic framework is
the underpinning of any study into morphological,
behavioral, and physiological evolution. The results of
these phylogenetic inquiries agree on several key relation-
ships including the monophyly of Cetacea and Mysticeti
(baleen whales), and the close relationships of the Ama-
zon (Iniidae) and La Plata (Pontoporidae) River dolphins.

However, many of the phylogenetic relationships inferred
by the aforementioned studies strongly conflict. Perhaps
the most obvious incongruencies are the interrelation-
ships of the major odontocete (toothed whales) clades
(Fig. 1). All published phylogenies disagree on the phylo-
genetic placement of one or more families, and many of
these incongruencies are strongly supported with high
bootstrap proportions or posterior probabilities (Fig. 1).
Thus, we have little confidence in the "deeper" relation-
ships of odontocetes and this situation limits the power of
any comparative analyses that incorporate phylogenetic
information.

There is also evidence that the traditional taxonomy of
dolphins (Delphinidae) does not adequately capture the
diversity of the group, especially within the Sousa-Delphi-
nus-Tursiops-Stenella complex (Fig. 2). Bottlenose dol-
phins (genus Tursiops) have been classified into as few as
one and as many as eight different species [20-22], but
most recent analyses recognize two distinct species, the
common bottlenose dolphin (T. truncatus), and the Indo-
Pacific bottlenose dolphin (T. aduncus). The points of
contention, however, are the phylogenetic affinities of
these two species. Recent molecular evidence lends sup-
port to the hypothesis that T. aduncus is not only a distinct
species, but is more closely related to the striped dolphin
(Stenella coeruleoalba) than to T. truncatus ([9], Fig. 2b).
This contrasts with osteological similarities suggesting
that the two Tursiops species are sister taxa [23]. In addi-
tion, two molecular phylogenetic studies of Delphinidae
inferred strong support for the paraphyly of the genus
Stenella with respect to Tursiops and Delphinus ([9,17], Fig.
2). Moreover, the phylogenetic relationships of all of
these genera with respect to the genus Sousa (humpback
dolphins) is also unresolved (Fig. 2) (see also [19]).

Thus, it is clear that the overall state of odontocete phylo-
genetics, and the evolutionary history of delphinids in
particular, remains incompletely resolved. There are myr-
iad possible explanations for ambiguous and conflicting
results among these phylogenetic studies. One possiblity
is that the phylogenetic methods used in these analyses do

not adequately capture the complex nature of DNA evolu-
tion, thus allowing systematic error to bias the results.
Some studies [8,9,12,14,24] have used phylogenetic anal-
yses that are known to be misled by the complexity of
DNA evolution (e.g., maximum parsimony; [25-29]) or
do not implement an optimality criterion to distinguish
between competing hypotheses (e.g., neighbor joining
[27,29]). While many studies [5,11,15-17,19,30] have
incorporated phylogenetic methods that explicity incor-
porate molecular evolution parameters including base fre-
quencies, substitution rates, and rate heterogeneity and an
optimality criterion (e.g., maximum likelihood and Baye-
sian), this does not necessarily mean that they have ade-
quately incorporated all of the critical parameters for
modeling DNA evolution. For example, until very
recently, there have been insufficient methods to incorpo-
rate lineage-specific rates of evolution in phylogenetic
analyses. Instead, most phylogenetic methods assume
that a phylogeny is unrooted, thereby assuming every lin-
eage evolves at an independent rate (e.g., maximum par-
simony, most implementations of maximum likelihood
and neighbor-joining) or that all lineages evolve at the
same rate (e.g., UPGMA and methods enforcing a molec-
ular clock) [31]. However, the recent development of
"relaxed" molecular clocks [31] offers a compromise
between the two extremes of a global rate and completely
independent species-specific rates. The advantage of
incorporating this parameter is the same as incorporating
any other parameter that makes a phylogenetic model
more "realistic"; the better the model, the more accurate
the phylogeny. Moreover, use of relaxed molecular clocks
and fossil calibration constraints also permits estimation
of divergence times of clades. Therefore, the rich fossil his-
tory of cetaceans (see [32]), the development of relaxed
molecular clocks, and newly available computer programs
to implement this advancement in phyogenetic modeling
(e.g., BEAST; [33]) may provide powerful new tools to
examine the phylogenetic history of cetaceans.

Furthermore, ambiguous relationships among the delphi-
nid Delphinus-Tursiops-Stenella complex inferred by analy-
ses of mitochondrial DNA may be attributable to the
relatively small number of nucleotides used by previous
phylogenetic analyses (1140 of cytochrome b [9,17]).
Given the massive number of potentially informative
characters (>10,000+ nucleotides) that they contain, com-
plete mitochondrial genomes could potentially resolve
the current uncertainty in the phylogeny of these delphin-
ids. While complete genomes exist for all the major fami-
lies of cetaceans, and have been subsequently used in
phylogenetic analyses [5,6,30,34], to date, mitochondrial
genomic information is available for only a single delphi-
nid (Lagenorhynchus albirostris).

A reanalysis of cetacean phylogeny and Stenella and Tursi-
ops taxonomy, using recently-developed complex phylo-
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Recent hypotheses of the interrelationships of the major cetacean lineagesFigure 1
Recent hypotheses of the interrelationships of the major cetacean lineages. Clade support values, when available in 
the original study, are provided. Decimal numbers represent posterior probabilities and numbers between 50 and 100 repre-
sent nonparametric bootstrap proportions.
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genetic models of DNA evolution and an expanded
mitochondrial dataset, is warranted. To this end, we
sequenced the complete mitochondrial genomes of seven
dolphin species including the common bottlenose dol-
phin, Indo-Pacific bottlenose dolphin, Long-beaked com-
mon dolphin (Delphinus capensis), Pantropical spotted
dolphin (Stenella attenuata), striped dolphin (St. coerule-
oalba), Risso's dolphin (Grampus griseus), and the Indo-
Pacific humpback dolphin (Sousa chinensis). We analyze
these data, and existing cetacean mitochondrial genomes,
with Bayesian relaxed clock phylogenetic analyses to
address two questions in cetacean phylogenetics. First,
how do implementing complex phylogenetic models
affect our understanding of the relationships of the major
odontocete families? Secondly, does mitochondrial
genomic data support the hypotheses that the delphinid
genera Tursiops and Stenella are polyphyletic? Resolution
of both questions may have a profound impact of any
future comparative biological analyses of odontocetes,
and delphinids in particular.

Results
Characteristics of the mitochondrial genes
In terms of base compositions, gene structure, and gene
order, the characteristics of the mitochondrial genomes of
the seven newly sequenced delphinids are very similar to
the only other existing delphinid mt genome, that of the
white-beaked dolphin, L. albirostris [5]. The sizes of the
genomes range from 16,384 to 16,393 bp. The base com-
position of the heavy-strand, excluding the control region,
was similar among different mt-genomes, with average
values and ranges (in parenthesis) of: A, 31.5% (31.4%–
31.7%); C, 28.0% (27.8%–28.3%); G, 11.4% (11.3%–
11.6%); and T, 29.0% (28.7%–29.2%). Most genes had
standard stop codons, while ND3 and ND4 had incom-
plete stop codons (TA or T), with the terminal 3' nucle-
otide being contiguous with the 5' terminal nucleotide of
the following tRNA genes. It is assumed that the stop
codon is completed with the addition of the poly-A tail
[35]. Gene order of all eight available delphinid mt-
genomes was consistent and did not deviate from those of
other cetaceans or the standard vertebrate gene order.

Phylogenetic results
The two partitioned Bayesian analyses achieved stationar-
ity by 5 million generations, and posterior distributions of
each parameter were calculated for the remaining 15 mil-
lion post burn-in trees. The phylogeny, and 95% credible
intervals of divergence times, are provided in Fig. 3. Over-
all support for the phylogeny is very high with 13 clades
strongly (i.e., statistically) supported. The "deeper" rela-
tionships of the phylogeny are all well-supported includ-
ing the monophyly of Cetacea and Odontoceti (toothed
whales). The basal divergence within odontocetes is
between the physeteroids (sperm whales) and a strongly
supported clade (Clade G; PP = 1.0) of remaining odon-
tocete families. The basal relationships within this clade
are weakly supported and essentially form a trichotomy
including Platanistidae (Indian River dolphins), Ziphii-
dae (bottlenose whales), and a strongly supported clade
(Clade I; PP = 1.0) including other dolphins and por-
poises. The relationship between Lipotidae (Yangtze River
dolphin) to the two other river dolphin families Pontop-
oridae (La Plata River dolphins) and Iniidae (Amazon
River dolphins) is only weakly supported (PP = 0.61), but
support for the sister relationship of the latter two families
is significant (PP = 1.0). The remaining marine dolphins
and porpoises form a strongly supported clade (Clade L;
PP = 1.0), with a basal divergence between a strongly sup-
ported Delphinidae (PP = 1.0) and a clade including
Phocoenidae (porpoises) and Monodontidae (narwhals
and belugas). The interrelationships of G. griseus, L. albi-
rostris, and other delphinid genera are not well supported.
Within the strongly supported clade of remaining delphi-
nids (Clade P; PP = 1.0), there is statistically significant
support for the paraphyly of Tursiops and Stenella. Stenella

Recent hypotheses of the interrelationships of selected Del-phinidae speciesFigure 2
Recent hypotheses of the interrelationships of 
selected Delphinidae species. The original phylogenies 
were pruned to include only species used in the current 
study. Decimal numbers represent posterior probabilities 
and numbers between 50 and 100 represent nonparametric 
bootstrap proportions.
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Chronogram of Cetacea inferred by partitioned Bayesian analyses, enforcing a lognormal relaxed molecular clock, of 12 mito-chondrial protein-coding genesFigure 3
Chronogram of Cetacea inferred by partitioned Bayesian analyses, enforcing a lognormal relaxed molecular 
clock, of 12 mitochondrial protein-coding genes. Numbers above the clades represent Bayesian posterior probabilities. 
Clade letters refer to Table 1. Red boxes indicate nodes for which a prior calibration constraint distribution was used and 
orange boxes indicate divergence dates estimated without prior calibration constraints for that node. The bounds of the boxes 
delimit the 95% highest posterior density (HPD) for the clade age. The asterisk indicates that the monophyly of this group was 
constrained in the phylogenetic analysis.



BMC Evolutionary Biology 2009, 9:20 http://www.biomedcentral.com/1471-2148/9/20
attenuata, Sousa chinensis, and T. truncatus form sequen-
tially more exclusive, strongly supported clades (Clades P,
Q, and R; PP = 1.0) with the other delphinids. T. aduncus
(Indo-Pacific bottlenose dolphin) forms a strongly sup-
ported clade (PP = 1.0) with D. capensis and St. coerule-
oalba. (but the sister relationship of D. capensis and T.
aduncus is highly but not statistically supported [PP =
0.94]).

The divergence dates inferred by the Bayesian relaxed
clock analyses suggest that the major odontocete lineages
diversified in Mid- to Late Oligocene (Fig. 3; Table 1). The
four river dolphin lineages diverged in distinctly different
time periods, with the Indian River dolphins (Platanisti-
dae) diverging Late Oligocene, Yangtze River dolphins
(Lipotidae) in the very Late Oligocene or Early Miocene,
and La Plata River (Pontoporidae) + Amazon River (Inii-
dae) dolphins in the Mid-Miocene. The divergence of the
three extant delphinoid lineages occurred in the Mid-
Miocene. The crown Delphinid lineages radiated in the
Late Miocene, with the Sousa-Delphinus-Tursiops-Stenella
complex diverging recently in the Mid- to Late Pliocene.

Discussion
This study is the first to use partitioned Bayesian analyses
with models of rate autocorrelation (i.e., the relaxed
molecular clock) and complete mitochondrial genomes
to elucidate the phylogenetic relationships of Cetacea and
age of each clade. Furthermore, we focused our analysis
both at the "deep" phylogenetic level, reconstructing the
evolutionary relationships among the major extant odon-
tocete lineages, and the "shallow" level examining interre-
lationships among delphinid species in the Sousa-
Delphinus-Tursiops-Stenella complex. Our results do much
to increase our understanding of cetacean phylogenetic
relationships, and our estimation of molecular divergence
dates allow us to test previous hypotheses of ancestral
divergence events.

Odontocete relationships and potential explanations for 
continuing phylogenetic uncertainty
Although numerous studies have demonstrated that Phy-
seteridae (sperm whales) represent the sister lineage to all
other odontocetes [5,8,10,11,13,17,30,36], there has
been significant disagreement about the phylogenetic
affinities of the other odontocete families. Although pre-
vious studies have supported various hypotheses (Fig. 1),
they can essentially be simplified to disagreements about
the placement of the river dolphin families Platanistidae
(Indian River dolphins) and Lipotidae (Yangtze River dol-
phins) and relationships among the delphinoids, Delphi-
nidae (marine dolphins), Monodontidae (narwhals and
belugas), and Phocoenidae (porpoises).

Numerous studies have refuted the existence of a single
river dolphin clade [5,8,10,13,17,24,30,37-40], and

instead have proposed conflicting relationships of the
four major river dolphin clades. While most studies
strongly support the sister relationship between Iniidae
(Amazon River dolphins) and Pontoporidae (La Plata
River dolphins), there are numerous strongly supported
conflicting hypotheses of evolutionary relationships of
Platanistidae (Indian River dolphins) and Lipotidae
(Yangtze River dolphins) (Fig. 1).

Table 1: Divergence times of lineages analyzed in this study, 
estimated from partitioned Bayesian phylogenetic analyses of 12 
mitochondrial protein-coding genes using a lognormal relaxed 
molecular clock.

Clade Age Lower 95% HPD Upper 95% HPD

A 55.04 48.86 65.58

B 17.16 10.10 30.71

C 49.34 48.61 55.71

D 33.74 33.52 35.43

E 2.49 2.46 9.20

F 31.29 25.35 33.20

G 28.77 23.62 31.68

H 27.95 - -

I 20.78 18.17 24.82

J 20.70 17.18 24.01

K 11.95 11.25 16.88

L 14.21 12.36 17.32

M 11.10 10.51 11.59

N 7.21 4.61 9.46

O 6.50 3.80 7.89

P 2.35 1.77 3.53

Q 1.86 1.36 2.79

R 1.45 1.04 2.26

S 0.77 0.62 1.58

T 0.68 0.59 1.47

Clade letters refer to Fig. 3. HPD = highest posterior density of the 
age of the clade (HPD not available for node H due to its low 
posterior probability). Units are in millions of years.
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The results of the current partitioned Bayesian analysis
using a relaxed molecular clock (Fig. 3) do not fully
resolve the relationships of the river dolphin lineages. Pla-
tanistidae is strongly placed in a clade exclusive of physe-
terids (sperm whales), but its relationship with Ziphiidae
(beaked whales) and other odontocetes (Fig. 3, Clade I) is
unclear as the branch leading to Ziphiidae + Clade I is
poorly supported. The situation with Lipotidae is very
similar. Although strongly placed in a clade exclusive of
Physeteridae, Ziphiidae, and Platanistidae (Clade I), their
relationships with the other river dolphins (Iniidae and
Pontoporidae) are only weakly supported.

Given that we were unable to unambiguously resolve all
of the odontocete relationships with confidence, how
does this study further our understanding of cetacean evo-
lution? First, we note that lack of confidence in phyloge-
netic reconstructions is preferable to strong support for
erroneous reconstructions [28]. Yet, more importantly,
because we used fossil calibration constraints and a
relaxed molecular clock, the branch lengths of our phylog-
eny are in units of time. Inspection of the branches critical
to understanding the phylogenetic placement of both Pla-
tanistidae and Lipotidae and their closely related lineages
reveals that they diverged within a very narrow time frame
(Fig. 3). Indeed, the branch leading to the clade of non-
platanistid river dolphins (branch J) is almost indistin-
guishable from zero. These results are indicative of a rapid
radiation, where lineages diversified so quickly that very
few DNA character changes had sufficient time to evolve
and become fixed. Rapid radiations are notoriously diffi-
cult to reconstruct (e.g., [41-44]), especially those that
occurred deeper in time (because synapomorphies are
more likely to be lost due to stochastic changes).

If the hypothesis that rapid radiation accounts for the phy-
logenetic uncertainty in odontocete evolutionary relation-
ships is true, what influenced this radiation? Hamilton et
al. (2001) hypothesized that the extreme fluctuations of
sea levels in the Middle Miocene promoted diversification
in all river dolphin lineages by permitting ecological
diversification when seas inundated formerly terrestrial
habitat [11]. However, this study also assumed that these
lineages diversified ~5 million years more recently than
those estimated by our study. Given that these extreme sea
level changes occurred throughout the Lower and Middle
Miocene [45,46], this hypothesis may explain the rapid
diversification of Lipotidae and Iniidae + Pontoporidae,
which diverged some time between ~25 to 17 Mya (Table
1; Fig. 3). However, our results indicate that the lineage
leading to extant (clade G) platanistids, ziphiids, and their
relatives diverged in the Middle to Late Oligocene, ~32 to
23 Mya (Table 1; Fig. 3) thus precluding Middle Miocene
sea level change explanation for this radiation.

The Oligocene is characterized as an "icehouse" period
where global environments were significantly cooler than
average [47,48] and was also characterized by extensive
expansion of polar ice [49]. Expansion of the polar ice and
more extreme ocean thermal gradients both vertically
(depth) and horizonally (area) may have resulted in a
concomitant expansion of food resources, and have been
hypothesized to explain that radiation of cetaceans also
seen in the fossil record [50-52]. The relationships of fos-
sil odontocete taxa are the subject of ongoing revision,
and it is therefore difficult to determine the phylogenetic
relationships of these taxa with any degree of confidence.
Nonetheless, there are multiple distinct Oligocene odon-
tocete lineages represented in the fossil record that have
subsequently gone extinct (see [32] for review).

Despite partially ambiguous results, our analysis nonethe-
less provides insight into the evolution of river dolphins.
Extant river dolphins are relict lineages whose adaptation
to riverine habitats permitted their survival for many mil-
lions of years [10]. Additionally, our results reject the
hypothesis of a single ecological shift to riverine habitats
in the river dolphins [12], and instead support multiple
shifts [10,11,13,17,30]. Based on the geographical distri-
bution of Lipotidae (China) and Pontoporidae + Iniidae
(South America), and extinct Parapontoporia [53] (Pacific
North America), a sole invasion of the riverine environ-
ment by their most recent common ancestor is unlikely
[12]. Based on our phylogenetic inference, we predict
three older invasions into the riverine habitats by 1) pla-
tanistids in the Early to Late Oligocene, 2) lipotids in the
Early Miocene, and 3) the most recent common ancestor
of Iniidae and Pontoporidae occurring in the Early to Mid-
dle Miocene in addition to a relatively recent reinvasion
into the marine coastal habitat by the La Plata river dol-
phin.

The evolutionary history picture is much clearer within
the Delphinoidea. Numerous studies have disagreed on
the interrelationships of Delphinidae (dolphins), Mono-
dontidae (narwhals and belugas), and Phocoenidae (por-
poises), with some studies supporting the sister
relationship of Delphinidae and Phocoenidae [5,12,30],
Monodontidae and Phocoenidae [10,14,17,54] or are
unable to resolve the relationships [8,11,13,55]. Our
results strongly support the Monodontidae + Phocoeni-
dae hypothesis. Moreover, our divergence date estimates
(Table 1; Fig. 3) indicate that the major extant lineages
radiated in the Middle Miocene, a time, as noted above,
when marine environments underwent cyclical diversifi-
cation and contraction.

The application of recent advances in modeling DNA evo-
lution and use of a large (over 10 kb) data set could not
resolve, with significant support, the closest living rela-
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tives of Platanistidae or Lipotidae. However, given our
results, we propose a potential explanation of why these
relationships are so difficult to reconstruct – these lineages
are part of a rapid radiation. Thus, future phylogenetic
efforts should focus on multiple, independently evolving
loci in the nuclear genome. A larger number of independ-
ent loci would provide additional phylogenetically
informative characters and permit the use of direct statis-
tical tests of the rapid radiation hypothesis (e.g., [43]) as
these tests have little power when used with a single locus
(e.g., mitochondrial DNA).

The taxonomy of Delphinidae underestimates its diversity
As with the odontocetes, there has been considerable phy-
logenetic uncertainty among species within the Delphini-
dae. Our phylogenetic analyses including seven newly
collected complete mitochondrial genomes strongly reject
the monophyly of the genera Stenella and Tursiops. Stenella
coeruleoalba and T. aduncus form a strongly supported
clade with D. capensis (however, the sister relationship
between St. coeruleoalba and D. capensis is marginally
insignificant [PP = 0.94]) and there is strong support for
the exclusion of T. truncatus and St. attenuata from this
clade (Fig. 3). These results mirror those of LeDuc et al.'s
(1999) study using the cytochrome b gene and all three
species of Delphinus [9]; this study also inferred a trichot-
omy of Delphinus spp., St. coeruleoalba, and T. aduncus.
However, unlike LeDuc et al. (1999) [9] (Fig. 2b) and
May-Collado and Agnarsson (2006) [17] (Fig. 2a) and
Caballero et al. (2008) [19], our results are able to resolve
the placement of Sousa chinensis and St. attenuata with very
strong support (PP = 1.0).

The monophyly of the genera Tursiops and Stenella has
been questioned for more than a century [20,56,57].
There exists a complex of cranial characters not shared by
all species of the genus Stenella, some of which may actu-
ally be more closely related to Tursiops or Delphinus than
to their congeners [56]. To add to the confusing phyloge-
netic signal from morphological data, some osteological
studies suggest a greater affinity between the two bot-
tlenose dolphins (T. aduncus and T. truncatus) than
between T. aduncus and any Stenella species [23].

Nonetheless, the results of our phylogenetic analysis are
clear – Tursiops and Stenella are not monophyletic and the
current taxonomy of Delphinidae masks potentially inter-
esting patterns of morphological, physiological, behavio-
ral, and ecological evolution. That these two genera are
not monophyletic suggests that the morphological simi-
larity among species in Tursiops and Stenella (as currently
defined) could be due to adaptive convergence, primitive
retention of ancestral body form, reversal to ancestral
body form (in St. coeruleoalba), or a combination of these
factors. Unfortunately, the current taxon sampling of Del-

phinidae prohibits us from testing these two scenarios
(and indeed, making taxonomic revisions), but it cer-
tainly deserves intense scrutiny in future phylogenetic and
evolutionary analyses of Delphinidae.

Another possible explanation for the phylogenetic pattern
is mitochondrial introgression. Although no record of the
historical geographical distribution of Tursiops or Stenella
species is available, the two extant bottlenose dolphins
(Tursiops) are sympatric across parts of their range, partic-
ularly around the Penghu Archipelago which is situated
midway across the Taiwan Strait [58]. Similarly, both St.
coeruleoalba and St. attenuata are cosmopolitan in tropical
and temperate waters around the world. Considering
numerous cases of hybridization in captivity or in the wild
among inter-species and inter-genera in the family Del-
phinidae, it is possible that ancient mitochondrial intro-
gression may confound the true evolutionary
relationships [9]. Although answering this question with
certainty will require collection of multiple nuclear loci,
our results demonstrate that recent introgression, at least,
is an unlikely explanation for our results. Although closely
related, all of our sampled delphinid species are geneti-
cally distinct. In other words, there are genetic changes on
the terminal branches leading to each species (i.e.,
autapomorphies). If there was recent mitochondrial intro-
gression, we would expect the introgressed species to be
genetically identical (or nearly so) to another species.

Conclusion
Our phylogenetic analysis of complete mitochondrial
genomes using recently developed models of rate autocor-
relation resolved the phylogenetic relationships of the
major Cetacean lineages with a high degree of confidence.
Moreover, our estimation of molecular divergence dates
allowed us to construct hypotheses explaining the lack of
resolution of the river dolphin lineages. Furthermore, by
collecting and analyzing seven new mitochondrial
genomes, we provide strong evidence that the generic tax-
onomy of Delphinidae underestimates the evolutionary
history of the group and that the genera Tursiops and
Stenella are not monophyletic. This result has important
implications for the morphological evolution (and poten-
tially physiological, behavioral, and ecological evolution)
within these genera and indicates adaptive convergence,
retention of ancestral body form, or both.

Methods
Sample collection and location
We sequenced complete mitochondrial (mt) genomes for
seven species representing two species of Stenella and Tur-
siops as well as potentially closely related genera (Table 2).
Complete mt-genome sequences from these specimens
are deposited in GenBank under accession numbers
EU557091–EU557097. Muscle tissue was preserved in a
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solution of 0.25 M disodium EDTA, 20% DMSO, and sat-
urated with NaCl [59], and blood was stored in a vacu-
tainer containing 1.5 mg/ml potassium-EDTA. All tissues
were subsequently frozen at -20°C. The voucher speci-
mens were preserved in 95% ethanol at Nanjing Normal
University. Fourteen additional mt-genomes for other
cetartiodactyla (artiodactyls and cetaceans) were obtained
from the GenBank and included in our analyses (Table 2).

Laboratory protocols
Total genomic DNA from muscle tissue was extracted with
a standard phenol/chloroform procedure followed by eth-
anol precipitation [60]. For blood, we used the DNeasy

Blood Extaction Kit (Qiagen) in a separate laboratory
facility. In order to avoid amplifying nuclear pseudogene
copies, approximately 7 kb and 9 kb fragments were
amplified using the same long-range PCR protocol as Sas-
aki et al. [34]. These large mtDNA products were subse-
quently used as template for short-range PCR of 0.5–1.5
kb using conserved primers (see Additional file 1). PCR
was set up with approximately 100 ng of template DNA,
10 × PCR buffer, 2–3 mM MgCl2, 1.5 uM each primer, 1
mM dNTPs, 2 U of rTaq (Takara, Japan) and increased to
a reaction volume of 50 ul with ultrapure water. Amplifi-
cation conditions involved an initial denaturing step at
95°C for 5 min, followed by 35 cycles of 95°C for 40 s,

Table 2: Cetartiodactyla mitochondrial genomes analyzed in this study.

Superfamily Family Scientific name Common name Sampling location GenBank accession no.

Delphinoidea Delphinidae Tursiops aduncus Indo-Pacific bottlenose 
dolphin

Dongshan, Fujian 
Province, China

EU557092, this study

Tursiops truncatus Common bottlenose 
dolphin

Polar and Oceanic Park, 
Shandong Province, 
China

EU557093, this study

Delphinus capensis Long-beaked common 
dolphin

Leqing, Zhejiang 
Province, China

EU557094, this study

Stenella coeruleoalba Striped dolphin Dongshan, Fujian 
Province, China

EU557097, this study

Stenella attenuata Pantropical spotted 
dolphin

Dongshan, Fujian 
Province, China

EU557096, this study

Sousa chinensis Indo-Pacific humpbacked 
dolphin

Xiamen, Fujian Province, 
China

EU557091, this study

Lagenorhynchus albirostris White-beaked dolphin - AJ554061 
(Arnason et al., 2004)

Grampus griseus Risso's dolphin Dongshan, Fujian 
Province, China

EU557095, this study

Monodontidae Monodon monoceros Narwhal - AJ554062 
(Arnason et al., 2004)

Phocoenidae Phocoena phocoena Harbor porpoise - AJ554063 
(Arnason et al., 2004)

Inioidea Pontoporiidae Pontoporia blainvillei La Plata river dolphin - AJ554060 
(Arnason et al., 2004)

Iniidae Inia geoffrensis Amazon river dolphin - AJ554059 
(Arnason et al., 2004)

Lipotoidea Lipotidae Lipotes vexillifer Yangtze river dolphin Jiangyin, Jiangsu Province, 
China

AY789529 
(Yan et al., 2005)

Platanistoidea Platanistidae Platanista gangetica South Asian river 
dolphin

- AJ554058 
(Arnason et al., 2004)

Ziphioidea Ziphiidae Hyperoodon ampullatus North Atlantic 
bottlenose whale

- AJ554056 
(Arnason et al., 2004)

Physeteroidea Physeteridae Physeter catodon Sperm whale Hvalfjordur, Iceland NC_002503 
(Arnason et al., 2000)

Balaenopteroidea Balaenopteridae Megaptera novaeangliae Humpback whale Antarctic ocean AP006467 
(Sasaki et al., 2005)

Balaenoptera physalus Fin whale - X61145 
(Arnason et al., 1993)

Hippopotamoidea Hippopotamidae Hippopotamus amphibius Hippopotamus - NC_000889 
(Ursing and Arnason, 
1998)

Bovoidea Bovidae Bos taurus Cow - NC_006853 
(Lowe and Eddy, 1997)

Ovis aries Sheep - NC_001941 
(Hiendleder et al.,1998)
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50–55°C for 40 s and 72°C for 60 s, with a final extension
step at 72°C for 10 min. Negative controls were run for all
amplifications to check for possible contamination.
Amplified products were isolated by gel electrophoresis,
then excised and purified on Wizard® SV Gel and PCR
Clean-Up System (Promega, USA). Sequencing reactions
were performed according to the manufacturer's proto-
cols, run on a 3100 or 3700 ABI DNA sequencer, and
sequenced in both forward and reverse directions.

Phylogenetic analyses
Overlapping contigs were compiled using SeqMan II
(DNASTAR, Inc. Madison, WI) to generate continuous
sequences. To minimize alignment error inherent in phy-
logenetic analysis of RNA data, we analyzed only protein-
coding genes encoded by the mitochondrial heavy-strand,
for a total of 10,803 nucleotides from 12 genes (ND6 was
excluded to make the data set comparable to existing mt-
genome studies).

We employed Bayesian phylogenetic analysis to infer the
phylogeny of the sampled cetacean mt genomes. Bayesian
analysis incorporates the likelihood equation and models
of nucleotide evolution, and has been repeatedly shown
to outperform other phylogenetic methods (e.g.,
[25,26,28]). However, unlike maximum likelihood,
model parameters (e.g., tree topology, branch lengths,
substitution rates, base frequencies, site rate heterogene-
ity) in Bayesian analysis are sampled according to their
posterior probability [61-64]. Thus, Bayesian analysis
inherits many of the attractive qualities of maximum like-
lihood, but with the added benefit of simultaneously
inferring the posterior probabilities of model parameters.
In the case of the tree topology, these posterior probabili-
ties can be interpreted as the probability that the clade is
correct, given the model [65]. Bayesian analysis is also
useful because the use of posterior probabilities allows for
very simple hypothesis testing (e.g., the posterior proba-
bility of alternative hypotheses can be calculated). Fur-
thermore, the recent development of "relaxed" molecular
clocks permits the modeling of autocorrelated rates of
evolution [31], thereby relaxing the assumption that every
lineage evolves at the same rate and permitting the simul-
taneous estimated of divergence between lineages.

All phylogenetic analyses were conducted using BEAST
v1.4.8 [33] incorporating a lognormal relaxed molecular
clock to model rate autocorrelation. Incorporating auto-
correlation requires some a priori estimate of molecular
rates. Because locus-specific rates of evolution are rarely
known, one can estimate these rates (i.e., "calibrate" the
rate) for one or more lineages using fossil constraints.
Modern Bayesian methods allow for the incorporation of
a prior distribution of ages ("age constraints"), and thus
uncertainty, into these fossil calibrations and ultimately,

autocorrelation estimates. Fortunately, Cetacea has an
extensive fossil record (see [32]) permitting the use of
multiple calibration constraints. All fossil calibrations
were lognormal distributions of ages as they best repre-
sent the information that fossils provide about the age of
a clade (i.e., a lineage most likely diverged around the age
of the fossil lineage, but may have diverged earlier [66]).
Note that, unlike calibration points, these are distributions
of ages that permit the explicit incorporation of error in
the fossil age and times that lineages actually diverged.

We chose prior age distributions so that the youngest age
of the distribution corresponded with the youngest possi-
ble age of the fossil (i.e., the youngest possible age that
lineage existed). We chose a standard deviation of the dis-
tribution so that 95% of the distribution fell within the
geological time period of the fossil (i.e., 5% of the tail
extended into older ages). For example, if a fossil was
from Late Miocene deposits (11.2 – 6.5 million years ago
[Mya]), we would choose a distribution so that the young-
est age of the distribution was 6.5 and 95% of the distri-
bution fell within 11.2 to 6.5 Mya. We used distributions
of fossil ages that spanned the entire geological age of the
strata in which the fossil was discovered, unless the author
provided a more precise fossil age. We used the following
fossils as calibration age constraints:

1. The age of the divergence between Hippopotomidae
and Cetacea was calibrated using the Ypresian (Eocene:
55.8 – 48.6 Mya) fossil Pakicetus [67,68]. We chose a log-
normal distribution so that the earliest possible sampled
age corresponds to 48.6 Mya and the older 95% credible
interval (CI) encompasses the beginning of the Ypresian
(55.8 Mya) (standard deviation = 1.2). When estimating
divergence dates, calibration ages of divergences close to
the root are extremely important (e.g., [66,69]). We there-
fore enforced the monophyly of this clade in accordance
with numerous phylogenetic analyses that have inferred
this relationship [4,5,17,70-78].

2. The divergence between Mysticeti (baleen whales) and
Odontoceti (toothed whales) was calibrated using the ear-
liest record of mysticetes from the Eocene/Oligocene
boundary (see [32] for a review). The Eocene/Oligocene
boundary was a critical period in the evolution of both
plants and animals (see [79]) and there has been debate
about when this transition occurred (38 – 33.5 Mya;
[80]). We chose a lognormal distribution so that the ear-
liest possible sampled age corresponds to 33.5 Mya and
the older 95% credible interval (CI) encompasses the
beginning of the Late Eocene (40 Mya) (standard devia-
tion = 1.138).

3. The age of the root of crown Odontoceti was calibrated
using the earliest record of a physeterid (sperm whale) the
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Late Oligocene Ferecetotherium ([81]). We chose a lognor-
mal distribution so that the earliest possible sampled age
corresponds to 23.7 Mya and the older 95% credible inter-
val (CI) encompasses the beginning of the Late Oligocene
(30 Mya) (standard deviation = 1.119).

4. The divergence between Iniidae (the Amazon River dol-
phin) and Pontoporidae (La Plata River dolphin) was cal-
ibrated using the earliest record of a pontoporid, the
Middle Miocene Brachydelphis [37,82]. We chose a lognor-
mal distribution so that the earliest possible sampled age
corresponds to 11.2 Mya and the older 95% CI encom-
passes the beginning of the Middle Miocene (16.6 Mya)
(standard deviation = 1.025).

5. The divergence between Phocoenidae (porpoises) and
Monodontidae (narwhals) was calibrated using the earli-
est record of a phocoenid, the Late Miocene Salumi-
phocaena [83]. This fossil is approximately 10–11 million
years old [83], and we chose a lognormal distribution so
that the earliest possible sampled age corresponds to 10
Mya and the older 95% CI encompasses the beginning of
the Late Miocene (11.2 Mya) (standard deviation =
1.138).

Each BEAST analysis consisted of 2 × 107 generations with
a random starting tree, birth-death default priors (with the
exception that we used a uniform [0, 100] prior distribu-
tion for the GTR substitution rates), sampled every 1000
generations. Previous studies have demonstrated that
applying separate models of nucleotide evolution to spe-
cific subsets of nucleotide data (i.e., "partitioned" or
"mixed-model" analyses) improves phylogenetic recon-
struction [84-86]. We therefore partitioned the data a pri-
ori by codon position for the combined protein coding
gene data set (three total partitions). To determine conver-
gence, we constructed cumulative posterior probability
plots for each clade using the cumulative function in AWTY
[87]. Stationarity was assumed when the cumulative pos-
terior probabilities of all clades stabilized. These plots
indicated that excluding the first two million generations
as burn-in was sufficient, and the frequency of inferred
relationships in the remaining trees represented estimated
posterior probabilities. To decrease the chance of reaching
apparent stationarity on local optima, two separate analy-
ses were performed. Posterior probability estimates for
each clade were then compared between the two analyses
using a scatter-plot created by the compare command in
AWTY. If posterior probability estimates for clades were
similar in both analyses, the results of the analyses were
combined. Posterior probabilities ≥ 0.95 are considered
statistically significant (i.e., "strong") clade support [65].
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