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Abstract

Background: The microbial community in the gut of termites is responsible for the efficient decomposition of
recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of
prokaryotes with the cells of cellulolytic flagellated protists. Bacteria in the order Bacteroidales are involved in
associations with a wide variety of gut protist species as either intracellular endosymbionts or surface-attached
ectosymbionts. In particular, ectosymbionts exhibit distinct morphological patterns of the associations.
Therefore, these Bacteroidales symbionts provide an opportunity to investigate not only the coevolutionary
relationships with the host protists and their morphological evolution but also how symbiotic associations
between prokaryotes and eukaryotes occur and evolve within a complex symbiotic community.

Results: Molecular phylogeny of 3| taxa of Bacteroidales symbionts from |17 protist genera in 10 families was
examined based on 16S rRNA gene sequences. Their localization, morphology, and specificity were also examined
by fluorescent in situ hybridizations. Although a monophyletic grouping of the ectosymbionts occurred in three
related protist families, the symbionts of different protist genera were usually dispersed among several
phylogenetic clusters unique to termite-gut bacteria. Similar morphologies of the associations occurred in multiple
lineages of the symbionts. Nevertheless, the symbionts of congeneric protist species were closely related to one
another, and in most cases, each host species harbored a unique Bacteroidales species. The endosymbionts were
distantly related to the ectosymbionts examined so far.

Conclusion: The coevolutionary history of gut protists and their associated Bacteroidales symbionts is complex.
We suggest multiple independent acquisitions of the Bacteroidales symbionts by different protist genera from a
pool of diverse bacteria in the gut community. In this sense, the gut could serve as a reservoir of diverse bacteria
for associations with the protist cells. The similar morphologies are considered a result of evolutionary
convergence. Despite the complicated evolutionary history, the host-symbiont relationships are mutually specific,
suggesting their cospeciations at the protist genus level with only occasional replacements.
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Background

In phylogenetically basal termite species, the so-called
lower termites, the gut community comprises several spe-
cies of flagellated protists (single-cell eukaryotes) as well
as a diverse array of prokaryotes [1]. The relationship
between termites and cellulolytic protists in their gut is a
well-known example of symbiosis; gut protists are essen-
tial for the survival of termites that thrive on cellulosic
matter [2]. Gut protists of termites belong to either the
phylum Parabasalia or the order Oxymonadida (phylum
Preaxostyla) and most of them are unique to termites and
related wood-feeding cockroaches of the genus Cryptocer-
cus |3,4]. They are very difficult to cultivate, and their
molecular phylogeny has been studied without cultiva-
tion [5-15]. They are likely to have been inherited from a
common ancestor of termites and Cryptocercus and diver-
sified within the gut [16].

Gut bacteria of termites aid in efficient digestion and a
large majority of them comprise yet-uncultivated species
[17]. Culture-independent studies indicate that the gut
community harbors hundreds of bacterial species most of
which are novel [18-23]. Most of the gut bacteria are
unique and indigenous to termites, and they phylogenet-
ically form many lineages that comprise bacteria species
from diverse termites [24-26]. Methanogenic archaea also
inhabit termite guts, but they represent only a small pop-
ulation in the community [27-29]. Albeit this complexity,
the composition of the gut microbial community is signif-
icantly conserved within a termite genus. The direct trans-
fer of gut fluids (nutrients) from anus to mouth between
nest mates (proctodeal trophallaxis), allows the stable ver-
tical transmission of gut symbionts from generation to
generation [30].

Most gut protists, if not all, harbor prokaryotes as either
endosymbionts that exclusively live within the host pro-
tist cells or ectosymbionts that firmly attach onto the cell
surface of the host protists. These are characteristic fea-
tures in the termite-gut community [1,31,32]. Endosym-
biotic methanogens [33-35], ectosymbiotic spirochetes
[35-38], endo- and ectosymbiotic Bacteroidales members
[37,39-45], and endosymbiotic bacteria in the candidate
phylum Termite Group 1 (TG1) [46-48] have been
reported in several gut protist species. It has been noted
that protist-associated bacterial species are one of the pre-
dominant populations in termite guts. In one marked
example, a single endosymbiont species was shown to
account for 70% of the bacterial cells in a termite gut [40].
Therefore, they should considerably contribute to gut
metabolism and play important roles [1].

Among these protist-associated bacteria, members in the
order Bacteroidales are widely spread in a variety of protist
species. At least three distinct lineages in Bacteroidales

http://www.biomedcentral.com/1471-2148/9/158

have been reported as ectosymbionts of seven genera of
gut protists [41]. Since then, there have been a growing
number of identifications of Bacteroidales members as
either ectosymbionts or endosymbionts of termite-gut
protists [40,42-45]. Nevertheless, the overall phylogenetic
relationships have not yet been fully examined. These
studies are also limited to a narrow range of taxonomic
sampling in a broad diversity of gut protists and some
important protist taxa still lack the identification of asso-
ciated prokaryotes. Furthermore, morphological appear-
ances of the Bacteroidales associations vary due to
differences in cell shape, attachment mode, and the effect
on the host protist cell, providing an attractive model to
investigate morphological evolution of protist-bacteria
associations. Recently, cospeciations of the tripartite sym-
biotic partners have been described in gut protists of the
genus Pseudotrichonympha, their Bacteroidales endosymbi-
onts, and the host termites [43]. In general, such coevolu-
tionary studies have usually been conducted with
relationships involving endosymbionts [49-54], and few
have investigated coevolution with ectosymbionts.

In this study, we investigated Bacteroidales symbionts in a
variety of gut protist species, particularly in the protist
groups that have been yet-untouched in this regard. Even
in the previously examined protist genera, we analyzed
multiple species to evaluate the specificity and stability of
the symbionts. The phylogeny of the Bacteroidales symbi-
onts were inferred to understand the relationships to the
host protist phylogeny, the connection with their mor-
phology, the extent of their specificity, and the evolution-
ary process of these impressive symbiotic associations.

Results and discussion

16S rRNA gene sequences of symbionts

Figure 1 outlines the protist genera investigated in this
study and their taxonomic assignments. First, the associa-
tions of Bacteroidales bacteria with gut protists were sur-
veyed in various species of termites by fluorescent in situ
hybridization (FISH) using a group-specific probe for this
order. Among the four orders of Parabasalia, the associa-
tion of Bacteroidales symbionts was rarely observed in
members of Trichomonadida and Spirotrichonymphida.
Therefore, we focused on the symbionts of three protist
orders: Cristamonadida and Trichonymphida (in Paraba-
salia), and Oxymonadida.

The cells of the protist species that stably harbored Bacter-
oidales symbionts were physically isolated and used for
PCR amplification of bacterial 16S rRNA gene. Multiple
clones in each protist species were sorted into phylotypes
with a criterion of > 98% sequence identity. In most cases,
a single phylotype belonging to the order Bacteroidales
was the most abundant in clone numbers. Although the
FISH detected stable associations of Bacteroidales symbi-
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A schematic tree showing phylogenetic relationships
of gut protist families. The simplified tree was drawn
based on their current molecular phylogeny [10-15]. The
names of protist families are shown in bold and the genera
examined for their Bacteroidales symbionts in this study and
previously are listed in each family. The orders Cristamonad-
ida, Trichonymphida, and Oxymonadida are indicated by ver-
tical bars in green, red, and blue, respectively. The range of
the phylum Parabasalia is also shown by a vertical bar. No
stable association of Bacteroidales members was observed
for protist genera in the orders Trichomonadida and Spirot-
richonymphida.

onts with the protist species in the genera Stephanonympha
and Pyrsonympha, [36,38], we failed to identify any Bacter-
oidales-like sequence from these protist species with bac-
terial universal PCR primers because numerous
spirochetes attached onto their cell surface; however, we
successfully used primers that could not amplify most spi-
rochete sequences to identify their Bacteroidales symbiont
sequences. As a whole, we identified the phylotype
sequences of the Bacteroidales 16S rRNA gene from 11
protist species of 9 genera, and together with previously
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reported sequences, 31 sequences were phylogenetically
examined (Table 1 and Figure 2). This range of taxon sam-
pling covered important lineages of host protist species in
the gut of termites and Cryptocercus cockroaches.

FISH identifications

The localization, morphology, and specificity of protist-
associated Bacteroidales symbionts were examined by
FISH. In a previous report, the ectosymbiont correspond-
ing to the phylotype NkD2-1 was identified from the larg-
est cells of the genus Devescovina in the termite Neotermes
koshunensis [41]. In this termite, however, there are at least
three Devescovina species represented by distinct
sequences of eukaryotic small subunit rRNA gene [5,7].
Another Bacteroidales phylotype, NkFWB2-4, was identi-
fied in this study from a smaller Devescovina cell repre-
sented by the protist sequence NkFWS. FISH using a
specific probe for phylotype NKFWB2-4 always gave posi-
tive signals in the symbionts of Devescovina cells stained
with a specific probe for the host sequence NKFWS (Figure
3A). Sequence-specific FISH also showed that the symbi-
ont NkD2-1 exclusively associated with Devescovina sp.
corresponding to the protist sequence Nk2 (Figure 3C).
Simultaneous detections of the symbionts NkFWB2-4 and
NKkD2-1 gave positive FISH signals from completely sepa-
rate protist cells (Figure 3B). Each combination of the
probes for (1) the host Nk2 and the symbiont NkFWB2-4,
(2) the host NKkFWS and the symbiont NkD2-1, and (3)
the hosts Nk2 and NkFWS did not give FISH signals in the
same host protist cells (data not shown). The other Deves-
covina sp. represented by the sequence Nk9 harbored
Bacteroidales symbionts detected with a group-specific
probe for cluster V of Bacteroidales [41], but the probes
for neither NkFWB2-4 nor NkD2-1 detected them (data
not shown), indicating the presence of the third yet-uni-
dentified symbiont species specific to Devescovina sp. Nk9.
The results indicate that each of the three Devescovina spp.
in N. koshunensis harbored the specific Bacteroidales sym-
bionts.

Oxymonad protist species of the genera Pyrsonympha and
Dinenympha (Pyrsonymphidae) exist in a high cell
number in the termite Reticulitermes speratus [8,55]. In this
study, the phylotype of the Bacteroidales symbionts was
examined in Pyrsonympha grandis, Dinenympha exilis, and
Dinenympha  porteri. The identified Bacteroidales
sequences were assigned to phylotypes Rs-N39, Rs-N41,
and Rs-N74, respectively, which were previously obtained
from the whole gut community of this termite [20]. The
Rs-N74 phylotype has recently been described as an ecto-
symbiont of Dinenympha spp. [44]. Sequence-specific
probes for Rs-N39 and Rs-N41 were successfully applied
in the FISH detections of the corresponding ectosymbi-
onts, and the specific signals were obtained for Rs-N39 in
P. grandis (Figure 3D) and for Rs-N41 in Dinenympha spp.
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Phylogenetic relationships of Bacteroidales symbionts of gut protests. The sequences identified from the symbionts
of gut protists are shown in bold letters. Their morphological types and names of their host protist genera are shown after the
names of the sequences. Abbreviations of the morphological types examined by FISH or predicted by previous electron micro-
scopy are R, rod-shaped ectosymbionts; F, filamentous ectosymbionts; B, bristle-like ectosymbionts; and IR, intracellular rods
(endosymbiotic). The host genera belonging to Cristamonadida, Trichonymphida, and Oxymonadida are shown in green, red,
and blue, respectively. Vertical black bars indicate previously described clusters of termite-gut Bacteroidales members (clusters
IV and V) [19]. Nodes supported by both an ML-bootstrap value of > 70% and a Bayesian posterior probability of > 95% are
indicated by filled circles. Those of > 50% supported by either ML-bootstrap or Bayesian analysis are represented by open cir-
cles. Reference sequences tagged Rs, Rsa, and RPK were identified from whole gut communities of Reticulitermes termites,
whereas those tagged Nt, M2, Mg, Tc, COB, and BCf were identified from the termite genera Nasutitermes, Microcerotermes,
Macrotermes, Termes, Cubitermes, and Coptotermes, respectively. Reference sequences tagged Pe were identified from the gut
community of a scarab beetle of the genus Pachnoda. Scale bar represents 0.1 nucleotide substitutions per position.
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including D. exilis (Figure 3E and 3F). FISH using a probe
for the sequence identified from the largest Pyrsonympha
species (designated sp.3 [56]) in the termite Hodotermopsis
sjoestedti gave signals specifically in its ectosymbionts (Fig-
ure 3G).

The Bacteroidales symbionts of Protrichonympha sp. were
also detected by FISH using a sequence-specific probe
(data not shown), while only the group-specific probe for
Bacteroidales was applied for the detection of the symbi-
onts of the other protist species.

Host-symbiont specificity and consistency

Most of the Bacteroidales symbionts were not shared
between each protist species even when the congeneric
protist species coexisted in the same termite gut as clearly
shown by the ectosymbionts of Devescovina spp. in the gut
of N. koshunensis. Each of the specific probes examined so
far usually gave FISH signals from symbionts of only a sin-
gle protist species, indicating a high specificity of the asso-
ciation. This mutual specificity between Bacteroidales
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symbionts and their hosts is in clear contrast to the cases
of ectosymbiotic spirochetes and endosymbiotic metha-
nogens. A single spirochete species is often shared by the
host protists in different genera [36,38] and closely related
endosymbiotic methanogens are often shared between
distantly related protist species [33,34]. Therefore, the
host-symbiont specificity is lower in spirochetes and
methanogens than in Bacteroidales bacteria.

A unique phylotype of the Bacteroidales symbionts was
usually identified in a protist species, which is also in clear
contrast to ectosymbiotic spirochetes; a single protist cell
usually harbors multiple spirochete species [36,38].
Although the presence of the second associated Bacteroi-
dales species cannot be denied completely, the FISH using
the probe for the Bacteroidales group detected the symbi-
onts of only the similar morphology. Therefore, the iden-
tified sequence from each protist species is considered to
represent the most abundant symbiont species. Mean-
while, simultaneous associations of bacteria in distinct
phyla with a single protist cell are common in termite

Table I: The sequences of Bacteroidales symbionts identified from gut protist species.

Clone name Protist species Host insect Accession number References
NkFWB2-4 Devescovina sp. NkFWS Neotermes koshunensis AB462742 This study
NkD2-1 Devescovina sp. Nk2 Neotermes koshunensis AB194938 [41]
CdD3-1 Devescovina lemniscata Cryptotermes domesticus AB194939 [41]
CcCv-03 Caduceia versatilis Cryptotermes cavifrons AB299517 [45]
ImMB5 Metadevescovina cuspidata Incisitermes minor AB462743 This study
Bé6 Mixotricha paradoxa Mastotermes darwiniensis AJ488195 [37]
KfjBI1 Joenia annectens Kalotermes flavicollis AB462744 This study
CcStWBa3 Stephanonympha sp. Cryptotermes cavifrons AB462745 This study
CdSt3-3 Stephanonympha sp. Cryptotermes domesticus AB462746 This study
CcSn-04 Snyderella sp. Cryptotermes cavifrons AB462747 This study
AspBI-1 Protrichonympha sp. Archotermopsis sp. AB462749 This study
ImSWBI Staurojoenina assimilis Incisitermes minor AB462748 This study
--a Staurojoenina sp. Neotermes cubanus AY540335 [39]
HsH2-8 Hoplonympha sp. Hodotermopsis sjoestedti AB194940 [41]
CpBB18-3 Barbulanympha sp. Cryptocercus punctulatus AB200973 [41]
CpBAII-4 Barbulanympha ufalula Cryptocercus punctulatus AB200972 [41]
CpUBS5-3 Urinympha talea Cryptocercus punctulatus AB200971 [41]
CfPtl-2 Pseudotrichonympha grassii Coptotermes formosanus AB218918 [40]
TpPtN-4 Pseudotrichonympha sp. Termitogeton planus AB218919 [40]
PSa-B Pseudotrichonympha sp. Psammotermes allocerus AB262561 [43]
HsPWBa2 Pyrsonympha sp. 3 Hodotermopsis sjoestedti AB462750 This study
Rs-N39 Pyrsonympha grandis Reticulitermes speratus AB088920 This study
RsaPvl3 Pyrsonympha vertens Reticulitermes santonensis AY572027 [46]
RfPv9 Pyrsonympha vertens Reticulitermes flavipes AY572026 [46]
Rs-N41 Dinenympha spp. Reticulitermes speratus AB088947 This study
Rs-N742 Dinenympha spp. Reticulitermes speratus AB088917 [44]
Asp4-1| Streblomastix sp. Archotermopsis sp. AB194942 [41]
Asp4-2 Streblomastix sp. Archotermopsis sp. AB194943 [41]
Asp5-9 Streblomastix sp. Archotermopsis sp. AB194945 [41]
NkOxy -9 Oxymonas sp. Neotermes koshunensis AB231290 [42]
NkOxy -3 Oxymonas sp. Neotermes koshunensis AB231289 [42]

a Candidate epithets, 'Vestibaculum illigatum' and 'Symbiothrix dinenymphae', were given for the symbionts of Staurojoenina and Dinenympha,

respectively.
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Figure 3

In situ detection of Bacteroidales symbionts of gut protists of termites. (A-C) Ectosymbionts of Devescovina spp. in
the gut of termite Neotermes koshunensis. (A) Ectosymbionts corresponding to the sequence NkFWB2-4 (labeled with 6FAM,
stained in green) were associated with the host protist species represented by the sequence NkFWS (labeled with Texas Red,
stained in red). (B) A mixture of Devescovina spp. cells was simultaneously hybridized with the sequence-specific probes for
NkFWB?2-4 (green) and NkD2-1 (red). (C) Ectosymbionts corresponding to the sequence NkD2-| (red) were detected in the
host protist species represented by the sequence Nk2 (green). Arrowheads in phase-contrast images of A-C indicate the
stained Devescovina cells in colors corresponding to the probes, and the cells not detected by either probe are indicated by
white arrowheads. (D-F) Detection of the ectosymbionts of protists in the genera Pyrsonympha and Dinenympha in the gut of R.
speratus. (G) Detection of the ectosymbionts of Pyrsonympha sp.3 in the gut of H. sjoestedti. The upper panels in D-G show
images obtained using sequence-specific probes labeled with 6FAM (green), and the middle panels show images obtained with
the general bacterial probe (red). Insets in the upper panels of D-G are magnifications of the images indicated by squares.
Arrows in panels D-G indicate typical ectosymbionts. Amorphous yellow signals in the upper panels and the corresponding sig-
nals in the middle panels were probably derived from autofluorescence of ingested wood particles. Scale bars: 50 um (A-C, G)

and 20 um (D-F).
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guts, as typically shown by Bacteroidales and spirochete
ectosymbionts on the same cells of diverse protist species
[38,41,42] and by other examples [45,57].

The specific associations of Bacteroidales symbionts with
protists seem to be stable and are consistently observed.
The sequence-specific FISH experiments reported in this
study and previously indicated that a particular species of
protist even in the different individuals of the host termite
species almost always harbored the same Bacteroidales
symbionts. The FISH using the group-specific probe also
detected the symbionts of the same morphology from
almost all the cells of the protist species. As previously
mentioned [31], bacterial associations of typical mor-
phologies have been often critical for taxonomic classifi-
cations of the host protists. Furthermore, numbers of the
cells of the Bacteroidales symbionts per host protist cells
are always within similar ranges: for instance, several
thousands in Staurojoenina anectens, Protrichonympha sp.,
and Pyrsonympha sp. 3; several hundreds in Devescovina
spp-; and several tens in Stephanonympha spp., Snyderella
sp., Metadevescovina sp., Dinenympha spp., and P. grandis.
These observations indicate that the Bacteroidales associ-
ations are not occasional. The specificity and consistency
of the Bacteroidales associations strongly suggest the
established, stable symbiotic relationship between Bacter-
oidales bacteria and their host protists.

The exceptions of mutual specificity and consistency of
the Bacteroidales associations appeared in the case of the
protist order Oxymonadida. FISH using sequence-specific
probes for Rs-N74 and Rs-N41 demonstrated that each of
the corresponding ectosymbionts was associated with,
and was thus shared among, multiple species of Dinenym-
pha, although species in this genus are extremely closely
related to one another [8,9]. In addition, two morpholog-
ically distinct Bacteroidales ectosymbionts were occasion-
ally detected in single cells of D. porteri: one was bristle-
like and the other was rod-shaped, probably correspond-
ing to the phylotypes Rs-N74 and Rs-N41, respectively
(see below). Two distinct Bacteroidales phylotypes have
also been identified in a single species of the genus Ouxy-
monas, but these two ectosymbiont phylotypes rarely
occur simultaneously in individual cells of Oxymonas sp.
[42]. Tt is noted that considerable portions of Oxymonas
sp. and Dinenympha spp., and a small portion of P. grandis
did not harbor any detectable Bacteroidales symbionts,
suggesting that the association of Bacteroidales members
is not always obligate in these protist species.

Relationship between host and symbiont

The phylogenetic identifications of Bacteroidales symbi-
onts in a variety of gut protist species revealed that the
symbionts were distributed widely in this order of bacteria
(see Figure 2). The symbionts did not form a single mono-
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phyletic lineage but occurred as multiple lineages. Even
within a protist order, the symbionts of different protist
genera were phylogenetically diverse. Indeed, approxi-
mately unbiased (AU) tests [58] revealed that monophyly
of the symbionts of each of the three protist orders was
completely rejected (P < 0.003). The results suggest that
various Bacteroidales species have been independently
acquired by gut protists during their evolution.

Analysis of molecular variance (AMOVA) [59] of the sym-
biont sequence at three hierarchical levels of the host pro-
tist taxonomy indicated that on average 70% of the
symbiont sequence variation occurred within protist fam-
ilies (namely, among genera), and 28% between families
within protist orders (Table 2), which was reflected by the
distinct lineages of the symbionts among protist genera.
The differences of the symbiont sequence variations were
statistically significant within families and among fami-
lies within the orders (Table 2).

In contrast to the distinct symbiont lineages among the
host protist genera, the symbionts of many of the conge-
neric protist species were closely related and formed
monophyletic lineages. These protist genera were Deves-
covina, Stephanonympha, Staurojoenina, and Barbulanym-
pha. The monophyletic grouping also occurred in the
symbionts of Devescovina and Caduceia in cluster V of
Bacteroidales and these two protist genera are phylogenet-
ically closely related [12]. These close relationships of the
ectosymbionts between the related protist species suggest
that the symbionts were acquired before diversification of
these protist species. A close monophyletic relationship of
the Bacteroidales endosymbionts and the cospeciation
with their host protists have been demonstrated in 13 of
the 14 taxa of the protist genus Pseudotrichonympha (repre-
sented by the sequences CfPt1-2 and TpPtN-4) with only
one obvious exception (sequence PSa-B) [43]. Another
exception was the distant phylogenetic relationship
between the ectosymbionts HsPWBa2 and Rs-N39 of the
protist genus Pyrsonympha. The symbiont HsSPWBa2 of Pyr-
sonympha sp.3 was rather closely related to the symbiont
Rs-N74 of Dinenympha spp. The gut protist compositions
in the host termites H. sjoestedti and R. speratus are very
similar and the horizontal transfer of gut microbita has
been hypothesized [60]. The symbiont Rs-N39 of P. gran-
dis was related to the sequences obtained from Pyrsonym-
pha vertens (sequences RfPv9 and RsaPv13 [22,46]).

A large monophyletic group occurred in cluster IV of
Bacteroidales, which comprised symbionts of related pro-
tist species in the three families Hoplonymphidae, Stauro-
joeninidae, and Trichonymphidae of the order
Trichonymphida. One explanation for this monophyletic
group is that the symbiont was once acquired by a com-
mon ancestor of these three protist families and stably

Page 7 of 12

(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:158

transmitted to their offspring; however, the branching
orders of the symbionts were not congruent with their
host protist phylogeny (see Figure 2). Also, this mono-
phyletic lineage was distantly related to the symbionts
(endosymbionts) of Pseudotrichonympha, the other protist
genus in Trichonymphida examined so far.

The symbionts of Devescovina and Caduceia protists
formed a monophyletic group together with the symbi-
onts of the distantly related protists genera Snyderella and
Oxymonas, and interestingly, these protist genera exclu-
sively occurred in the termite family Kalotermitidae. For
these symbionts, host-switches or replacements might
have occurred within the gut microbial community. The
taxonomy of the host termites might have affected the
protist-symbiont relationships, although AU tests indi-
cated that monophyly of the symbionts in each host ter-
mite family (Kalotermitidae, Termopsidae, or
Rhinotermitidae) was completely rejected (P < 0.001).

Morphology of the associations

The Bacteroidales symbionts associated with the gut pro-
tists show various morphological appearances. Among
the ectosymbionts of the protists in Hoplonymphidae,
Staurojoeninidae, and Trichonymphidae, an elongated
filamentous form aligning in rows along the longitudinal
direction of the host protist cell occurred only in Hoplo-
nympha sp. [41,61]; the other symbionts in these three
protist families were short rods [39,41,62-64]. Filamen-
tous ectosymbionts with similar association occur in
Devescovina [41,65], Caduceia [45,66], and Streblomastix
[41,67]. Therefore, these filamentous forms have arisen
independently. The cells of Hoplonympha and Streblomastix
share similar morphological features displaying several
longitudinal deep furrows in their cells and thin, out-
wardly extending vane-like structures in the transverse sec-
tions [41,61,67], allowing the attachment of numerous
ectosymbionts. As discussed previously [41], these
impressive appearances are likely evolutionary convergent
because both the host protists and the symbionts are dis-
tantly related to each other.

Ectosymbionts with a bristle-like appearance have
recently been described [44], in which the elongated sym-
biont cells are associated with the host protist at their tip,
similar to ectosymbiotic spirochetes. This form of ectos-
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ymbionts occurred in the protist genera Dinenympha [44],
Metadevescovina [44], Pyrsonympha (see Figure 3G), and
Stephanonympha (data not shown). Their phylogenetic
identifications in distinct lineages suggest that they have
arisen by evolutionary convergence with multiple origins.
These bristle-like ectosymbionts are usually scattered
among numerous ectosymbiotic spirochetes in the same
protist cells, suggesting that this form is important for
sharing spatial niches with spirochetes.

Phagocytosis of the ectosymbionts by the host protist cells
is observed in large numbers in Barbulanympha [62] and
Protrichonympha (data not shown), and to a lesser extent in
many other protist species. The phagocytosed bacteria
appear to be surrounded by a membrane of the host pro-
tists and they maintain their attachment junction with the
surrounding membrane. These observations imply that
the phagocytosis of ectosymbionts within the protist cell
has led to stable intracellular endosymbiosis as discussed
previously [62]; however, the lineages of endosymbionts
of Pseudotrichonympha were completely distinct from the
other ectosymbiont lineages examined so far (Figure 2).

AU tests completely rejected monophyly of each of the
rod-shaped, bristle-like, and filamentous forms (P <
0.001). Monophyly of the endosymbionts was also
rejected (P = 0.024). AMOVA revealed that genetic varia-
tion was more pronounced within similar types of mor-
phology (87%) than among different morphologies
(13%).

Implication of the origin and functional interaction

Gut bacteria in general form several phylogenetic clusters
unique to termites, and these clusters usually contain taxa
from multiple termite species [19,24-26]. The lineages of
the Bacteroidales symbionts of the gut protists are fre-
quently located in these clusters. Many members of these
clusters are considered free-swimming in the gut fluid or
associated with the gut wall. The gut wall-associated mem-
bers are clearly shown to be distributed widely in Bacter-
oidales including clusters IV and V [68,69]. Interestingly,
the ectosymbiont sequence of Mixotricha in cluster IV of
Bacteroidales was closely related to the sequence Rs-K10
identified as representing a species associated with the gut
wall [37,69]. These observations imply that gut protists
have acquired their Bacteroidales symbionts from a pool

Table 2: AMOVA of the Bacteroidales symbiont sequences at three hierarchical levels of their host protist taxonomy.

Source of variation d.f. Sum of Squares Variance components Percentage of variation Fixation indices P-value
Among orders 2 0.374 0.00153 1.65 Fer: 0.01647 0.25709
Among families within orders 7 0.956 0.02635 28.28 Fgc: 0.28757 <0.0001
Within families 21 1.371 0.06528 70.07 Fgr: 0.29930 <0.0001
Total 30 2701 0.09316 100
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of the gut bacteria, which are largely comprised of an
indigenous population to termites but may contain provi-
sionally inhabiting species taken up by termites from the
surrounding environment.

The acquisition of multiple lineages of Bacteroidales sym-
bionts suggests their common function required for sym-
biotic associations with gut protists. Although several
functions of the Bacteroidales symbionts have been spec-
ulated [32,41], the complete genome sequences of two
endosymbiont species of gut protists, one belonging to
the candidate phylum TG1 [70] and the other to the
Bacteroidales order (represented by the sequence CfPt1-2
in cluster V) [71], have disclosed their definitive roles.
Provision of essential nitrogenous nutrients such as
amino acids and cofactors to the host protists is a com-
mon role inferred for the endosymbionts, and the host
protists likely supply sugars produced by cellulose degra-
dation to the endosymbionts. Because wood fed on by ter-
mites is poor in nitrogen, this role of the endosymbionts
is reasonably crucial for nutrition of host protists as well
as host termites. The Bacteroidales ectosymbionts are also
considered to play a similar role and many are indeed
phagocytosed by the host protists as described above.
Although further study is necessary to demonstrate their
exact functions, the spectrum of required nutrients is
probably different among gut protist species and the pro-
tists might have selected their suitable partner from the
gut bacterial population that harbors diverse metabolic
abilities. In the case of the CfPt1-2 symbiont species, the
potential abilities for nitrogen fixation and recycling of
the putative nitrogen wastes of the host protists further
reinforce the efficient provision [71], and the presence of
these abilities should also be addressed in the Bacteroi-
dales ectosymbionts.

Conclusion

Extensive sampling of the sequences of Bacteroidales sym-
bionts of gut protists revealed a more comprehensive view
of the phylogenetic complexity of host-symbiont relation-
ships, caused by multiple independent acquisitions of the
symbionts. At least in an evolutionary sense, the presence
of diverse gut bacteria that potentially harbor various met-
abolic abilities is advantageous for the host protists to
acquire their suitable partner. The acquisitions might be
necessary for their mutual interactions depending on both
partners, and their functional interactions should be clar-
ified to understand the complex evolutionary history of
the associations. Considering that gut protists and their
associated bacteria are major populations in termite guts
[1,72], the functional interactions are also important to
understand how the gut microbial community works for
efficient utilization of recalcitrant lignocellulose. Further-
more, the FISH experiments enabled us to characterize the
symbionts morphologically and to evaluate their specifi-
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city and distribution. The morphological variations
observed for the Bacteroidales associations have likely
originated from evolutionary convergence and these vari-
ations might be advantageous to establish their spatial
niches or habitats on the host protist cells, which are
sometimes shared with other groups of bacteria. Tempo-
ral associations of some Bacteroidales lineages having
similar physiological features with certain protist species
and replacements of the symbionts cannot be completely
rejected; if these events happen even in present days, the
symbiotic associations are still in dynamic processes pos-
sibly toward more effective digestion in the gut commu-
nity. However, despite the complex acquisition of
symbionts and their convergent evolution, most of the
host-symbiont relationships are apparently specific and
consistent, suggesting stable vertical transmissions of the
symbionts at every cell division of host protists. The fact
that congeneric protist species mostly harbor closely
related symbionts also supports cospeciations of the
Bacteroidales symbionts with their host protists. Once
both partners have met, they might gain advantages
through adaptation and specialization to establish stable
and efficient relationships.

Methods

Data collection

The protist species used in this study and their host ter-
mites are listed in Table 1. Living termites or specimens
preserved in acetone were used. Each protist species was
identified based on the morphological characteristics
[55,56,61,64,66,73]. The cells of protist species showing
the typical morphology were physically isolated by using
a micromanipulator (Eppendorf Tranferman NK2) and
were extensively washed as described previously [35]. The
isolated protist cells were used for PCR amplification of
the 16S rRNA gene of the symbiotic bacteria as described
previously [41]. Previously described PCR primers univer-
sal for bacteria [41] were usually used, but in the cases of
protist species in the genera Stephanonympha and Pyr-
sonympha, a newly designed primer Bacte3'R (5'-GGAYR-
TAAGGGCCGTGCT-3") instead of the universal bacterial
primer for the 3'-side were used. Bacte3'R covers most of
the Bacteroidales members but has mismatches against
the sequences of spirochetes and bacteria of the TG1 phy-
lum. The PCR products were cloned into the pCR2.1-
TOPO vector (Invitrogen). Partial DNA sequences of mul-
tiple clones (15-24 clones except 11 clones for the case of
Devescovina sp. NKFWS) were determined and sorted. The
entire DNA sequence was determined in each representa-
tive clone using sequencing primers described previously
[42]. In the case of Devescovina sp. NKFWS, a physically
isolated single cell was subjected to isothermal whole
genome amplification (WGA) as described previously
[45], and the amplified DNA was used as a template for
PCR. The similar methods for physical separation of pro-
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tist cells have successfully applied both for the identifica-
tion of their associated prokaryotes in a variety of
taxonomic groups and for the gene analyses of protists
themselves [8,9,11-14,16,33,35-48,57,74], and in most
cases, the origins of the identified sequences have been
confirmed by sequence-specific in situ hybridizations.
Indeed, using the same isolation method, we analyzed
associated bacteria of the protist species of Dinenympha
rugosa that could not detect any Bacteroidales association
by FISH, and no Bacteroidales-like sequence were identi-
fied although sequences belonging to other groups of bac-
teria were obtained. The sequences reported in this study
have been deposited in the database [DDBJ: AB462742-
AB462750].

Fluorescent in situ hybridization (FISH)

FISH experiments for the detection of ectosymbionts were
performed as described previously [38]. The probe Bactd-
937 for most Bacteroidales members [23] was used for the
initial survey of protist-associated symbionts. The previ-
ously reported general bacterial probe [36] and the probes
that detect most spirochete cells in termite guts [38] were
used as controls for cell permeability. Specific probes for
the protist-associated symbionts designed in this study
were 5'-GGCACCCCTGTTGCATCC-3' for the sequence
NKFWB2-4, 5'-CGCATTITATCCCCCTGCAA-3' for the
sequence NkD2-1, 5'-GCGCTATCGGAGTTCITTATA-3'
for the sequence HsPWBa2, 5'-TGACTCCCCTGTGT-
TATGC-3' for the sequence RsN41, and 5'-CCATAGGAC-
CGTCAATCC-3' for the sequence RsN39. Probes for the
detection of protist species were 5'-GGTCCTGCTAT-
CAATAAATAAC-3' for Devescovina sp. NKFWS and 5'-
GGTCCTGCTATCTITTTCTTAG-3' for Devescovina sp.
Nk2. These probes were labeled at the 5'-end with either
6-carboxyfluorescein (6-FAM) or Texas Red.

Phylogenetic analyses

The 16S rRNA gene sequences identified in this study were
aligned using the ARB package http://www.arb-home.de/
[75]. Accession numbers for the reference sequences used
in the phylogenetic analysis are indicated in Figure 2. A
general time-reversible model with gamma distributed
rates and an invariable site-rate category (GIR+I+I),
selected with Modeltest ver.3.06 [76] as the best-fit model
of nucleotide substitution, was used for the phylogenetic
inferences by the maximum likelihood (ML) and Bayesian
methods. The ML tree was constructed using PHYML
v2.4.4 [77]. The robustness of the branching pattern was
confirmed by bootstrap analysis of 1000 replicates. Baye-
sian posterior probabilities were calculated using MrBayes
3.0b4 [78], which was started with a random tree, run for
500,000 generations in four chains and "burn-in" of
100,000 generations to ensure the use of only stable
chains.
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Alternative tree topologies under monophyletic con-
straints of the concerned symbiont groups were obtained
with Bayesian analyses using only the dataset of the sym-
bionts of gut protists except the sequences RfPv9 and
RsaPv13. The Bayesian analyses were performed with
300,000 generations with burn-in at 50,000 generations.
Therefore, the resulting constraint trees were merely
approximate, but we considered that these approximate
estimations were enough to reject some alternative phylo-
genetic hypotheses. Differences in alternative tree topolo-
gies were compared by the AU tests implemented in
CONSEL [58] using the site-wise log-likelihood outputs
obtained with TREE-PUZZLE 5.2.

Statistical analysis using AMOVA

AMOVA was conducted with Arlequin ver. 3.1 [59] using
uncorrected pair-wise sequence distances as a measure of
genetic variances among the symbionts. Significance was
assessed through 10,000 random permutation replicates.
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