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Abstract

Background: Geographic clines within species are often interpreted as evidence of adaptation to
varying environmental conditions. However, clines can also result from genetic drift, and these
competing hypotheses must therefore be tested empirically. The striped ground cricket,
Allonemobius socius, is widely-distributed in the eastern United States, and clines have been
documented in both life-history traits and genetic alleles. One clinally-distributed locus, isocitrate
dehydrogenase (Idh-1), has been shown previously to exhibit significant correlations between allele
frequencies and environmental conditions (temperature and rainfall). Further, an empirical study
revealed a significant genotype-by-environmental interaction (GxE) between Idh-1 genotype and
temperature which affected fitness. Here, we use enzyme kinetics to further explore GxE between
Idh-1 genotype and temperature, and test the predictions of kinetic activity expected under drift

or selection.

Results: We found significant GXE between temperature and three enzyme kinetic parameters,
providing further evidence that the natural distributions of Idh-1 allele frequencies in A. socius are
maintained by natural selection. Differences in enzyme kinetic activity across temperatures also

mirror many of the geographic patterns observed in allele frequencies.

Conclusion: This study further supports the hypothesis that the natural distribution of Idh-1
alleles in A. socius is driven by natural selection on differential enzymatic performance. This example
is one of several which clearly document a functional basis for both the maintenance of common
alleles and observed clines in allele frequencies, and provides further evidence for the non-

neutrality of some allozyme alleles.

Background However, these diverse adaptations all have a molecular
Individuals within populations are under selection pres-  basis and the study of molecular adaptation to environ-
sure to adapt to their environment; these adaptations can ~ mental conditions is an active area of research within evo-
be morphological, physiological, or behavioral in nature.  lutionary biology. One biochemical adaptation that lends
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itself to empirical study is the kinetic performance of dif-
ferent enzyme alleles (allozymes) under a range of envi-
ronmental conditions, such as temperature. Allozyme
alleles arise when a point mutation in the protein-coding
sequence leads to an amino acid substitution which alters
the charge, weight, and folding of the protein [1]. Amino
acid substitutions may also affect the function of the pro-
tein, altering optimal ranges for temperature, pH, or sub-
strate concentration. Most amino acid changes will likely
be deleterious and quickly eliminated by purifying selec-
tion [2,3]. However, some substitutions may not signifi-
cantly affect the function of the protein, and are therefore
selectively neutral, while others may improve enzyme
function and be favored by selection.

Originally, evolutionary biologists and geneticists
thought genetic diversity in populations would be quite
low due to purifying selection [3], but early studies of pro-
tein polymorphism revealed unexpected levels of poly-
morphism at most loci, in a range of organisms including
mice, humans, and fruit flies [1-3]; as a result of the high
levels of diversity revealed, allozymes were thought to be
neutral [4,5]. However, others believed that allozymes
would be subject to selection, and subsequent studies
have supported selection in many cases [e.g., [4,6]]. Thus,
a debate over whether allozymes were neutral or were sub-
ject to selection began soon after their discovery, and it
has been stated that "few subjects in biology have been
more strongly debated than the evolutionary significance
of protein polymorphisms" [7].

As enzyme function depends on temperature, pH, sub-
strate concentration, and other environmental factors,
some amino acid substitutions will result in an enzyme
that functions best under certain conditions, and these
may be favored locally by natural selection, depending on
environmental factors. In populations inhabiting hetero-
geneous environments, multiple alleles at one enzyme
locus may be maintained by balancing selection [8-10].
Evidence for selection acting upon allozyme loci includes
the presence of clines in allozyme allele frequencies [7],
correlations between environmental variables and alloz-
yme allele frequencies [11], differences in chemical prop-
erties between allozyme alleles [12], and differential
performance and/or fitness differences between individu-
als with different allozyme genotypes [e.g., [5,6,8,13,14]].
These types of evidence are often combined within a sys-
tem, and several lines of evidence together provide sup-
port for the hypothesis that selection is acting on certain
allozyme loci (see below).

Another important evolutionary question which is often
overlooked is 'why are common alleles common?'. Such
common alleles may be prevalent across a wide environ-
mental landscape for many reasons, including ancestral
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inertia, recent range expansion, genetic drift, purifying
selection, or some combination of these or other proc-
esses. While it is not always possible to determine the
underlying processes that drive or maintain the existence
of common allozyme alleles, experiments testing for dif-
ferential enzyme performance of alleles across a wide-
range of environmental conditions can shed light on the
possibility of commonness being maintained by natural
selection.

Numerous studies providing strong evidence for both
neutrality and selection of allozyme loci are found in the
literature, and only a few will be detailed here. Cases of
neutrality include widespread surveys of allelic variation
in white spruce [15], Peromyscus mice [16], and several
others [4,17]. In contrast, strong evidence for selection has
been found for two well-studied loci, phosphoglucose iso-
merase (Pgi; [11,13]) and alcohol dehydrogenase (Adh;
[4,18]) in a wide range of organisms, and for other loci on
a smaller scale [e.g., [7,8]]. Another allozyme locus, isoci-
trate dehydrogenase (Idh), has been studied less than the
well-known examples above, but evidence of natural
selection acting on this locus has been found across a
range of taxa, including bacteria [19,20], plants [21,22],
invertebrates [23,24], and vertebrates [25,26]. Isocitrate
dehydrogenase is a metabolic enzyme in the Krebs cycle,
and its activity is therefore one of several key steps in the
generation of ATP from glucose [5]. In the striped ground
cricket, Allonemobius socius, there is a naturally-occurring
cline in Idh-1 allele frequencies, hypothesized to have
resulted from natural selection [14]. Here, we further test
this hypothesis using enzyme kinetics (see below).

It has been proposed that four criteria are needed to dem-
onstrate selection on a single allozyme locus [27]. First,
populations must contain allelic variation at the locus in
question. We have previously demonstrated this to be the
case for Idh-1 in A. socius, as there is significant geographic
variation in the allele frequency distributions of two Idh-1
alleles (1.8 and 2.2), while a third allele (2.0) is found at
a frequency of approximately 50% in most locations (Fig-
ure 1A). Next, it must be demonstrated that the observed
allelic variation is correlated with an ecological variable
(or variables), thus linking natural variation in frequen-
cies to a possible selective force. In A. socius, the significant
geographic variation in the frequencies of the 1.8 and 2.2
alleles is coupled with significant correlations between
allele frequencies and two important environmental vari-
ables, temperature (Figure 1B, [14]) and rainfall [14].
Third, there must be phenotypic or fitness consequences
to individuals possessing particular alleles in particular
environments, providing variation on which selection
may act. A previous empirical study of homozygous indi-
viduals revealed a significant genotype-by-environment
interaction between Idh-1 genotype and temperature on
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Geographic variation in allele frequencies at the Idh-1 locus in the cricket Allonemobius socius. (A) Allele fre-
quency data from field-collected populations (data from [14]), represented by individual points; lines are least-squares regres-
sions. The |.8 allele is symbolized by open diamonds and a dashed line, the 2.0 allele by grey squares and a grey line, and the 2.2
allele by black circles and a black line. (B) Relationship between allele frequencies and average summer (June-August) tempera-

ture near collection locality.

fitness in the direction hypothesized based on the envi-
ronmental correlations [14], providing experimental evi-
dence supporting temperature-driven selection on the Idh-
1 locus in A. socius. The fourth criterion for demonstrating
selection on a single enzymatic locus is to show that dif-
ferent allelic variants perform differently under the envi-
ronmental conditions with which they are correlated (i.e.,

temperature). Together, these four lines of evidence show
that natural variations in allele frequencies are linked to
ecologically-relevant differences in enzymatic perform-
ance, ultimately leading to differences in organismal fit-
ness on which selection can act [27].
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If selection is acting on a locus of interest, then alleles for
that locus which occur at a high frequency across a broad
geographic range are expected to outperform less com-
mon alleles across a wide range of environmental condi-
tions. Additionally, if clinal variation at a locus of interest
is driven by selection, then the common allele in a given
environment is expected to outperform less common alle-
les in that same environment. In contrast, if a locus of
interest is evolving under drift, then alleles which occur at
a relatively high frequency across a broad geographic
range are not expected to perform better than other alleles
across a wide range of environmental conditions. Moreo-
ver, if clinal variation at a locus is a by-product of drift,
then there is no expectation that the common allele in a
given environment will perform better than other, less
common alleles in that environment. These predictions
based on drift also hold for a locus of interest that is evolv-
ing neutrally but linked to a locus that is under selection.
In both cases, common alleles at the locus of interest in a
given environment are not expected to perform better
than, or increase fitness relative to, other less common
alleles.

Here, we use enzyme kinetics techniques to address the
fourth criterion for demonstrating selection acting on a
locus for Idh-1 in the model cricket A. socius, and test two
specific hypotheses based on the selection vs. drift predic-
tions outlined above: 1) that the 2.0 allele is common
across all thermal environments because it performs bet-
ter than other alleles over a wide range of temperatures,
and 2) that the clinal distributions of the 1.8 and 2.2 alle-
les are due to differences in performance across tempera-
tures, consistent with their geographic distributions. If
these two hypotheses are supported, and different alleles
perform differently as predicted by their geographic distri-
butions, then there will be strong evidence in support of
the fourth criterion required to show selection is acting on
the Idh-1 locus in A. socius.

To further explore the hypothesis that selection has
shaped allelic distributions of the Idh-1 locus in A. socius,
we performed enzyme kinetics assays at a range of ecolog-
ically-relevant temperatures (ranging from 18-36°C; see
Figure 1B) to explore the molecular basis of the GxE inter-
action between Idh-1 genotype and temperature. For all 3
kinetic parameters examined (K, V,,.,, and enzyme effi-
ciency), there was a significant GXE between Idh-1 geno-
type and temperature which affected enzyme
performance. Additionally, there were significant differ-
ences in performance parameters between alleles at both
high and low temperatures. Together, these results pro-
vide additional evidence that natural selection underlies
the naturally-occurring geographic distribution of Idh-1
alleles in A. socius.

http://www.biomedcentral.com/1471-2148/9/113

Methods

Study System

Crickets of the genus Allonemobius range from southern
Canada to the southern United States, primarily in the
East, and are abundant in appropriate habitat throughout
their range. Due to their large distribution, abundance in
the field, and ease of laboratory maintenance, members of
the A. socius complex have been used as a model system
for several aspects of evolutionary biology, including
studies of speciation and hybrid zone dynamics [28-30],
Wolbachia [31,32], life-history evolution [14,33-36], and
morphological variation [33,37-39]. Additionally, given
their naturally widespread distribution, the A. socius com-
plex is an ideal model system for studying geographic var-
iation in life-history traits and genetic diversity. Within
the A. socius complex, clines have been found in oviposi-
tor length [37], diapause occurrence [33,34,40], allozyme
alleles [14,28,30], and nuclear and mitochondrial mark-
ers [31].

Members of the A. socius complex are morphologically
cryptic, and species were originally discovered and
described using allozymes [28,41,42]; therefore, much
data about the geographic distribution of allozyme alleles
are readily available. One locus in particular, isocitrate
dehydrogenase (Idh-1), is strongly clinal within A. socius,
with the 1.8 allele being common in the north and east
and the 2.2 allele being common to the south and west
(Figure 1A; [14]).

The geographic distributions of these alleles are also cor-
related with two important environmental variables, tem-
perature (Figure 1B) and rainfall, with 1.8 at highest
frequency in cooler, drier locations while 2.2 is associated
with hotter, wetter locations [14]. A third allele, 2.0, is
found at intermediate frequencies in most locations
(~50%; Figure 1A) and not significantly distributed in
relation to geography or climate [14]. In a previous study,
we found a significant interaction between Idh-1 genotype
and temperature on fitness, such that individuals
homozygous for the 1.8 allele laid more eggs at a cool
temperature relative to the two faster alleles, and
individuals homozygous for the two faster alleles laid
more eggs at a warm temperature than 1.8 individuals
[14]. However, the molecular basis for this GXE was not
examined. Here we use enzyme kinetics to assay differ-
ences in performance between these 3 alleles across a
range of ecologically-relevant temperatures. Temperatures
chosen ranged from 18-36°C, and were chosen to reflect
temperatures experienced by populations in the field
across the species' range (see Figure 1B).

Kinetic Parameters and Calculations
The initial velocity of an enzyme-catalyzed reaction
depends on the initial substrate concentration; this rela-
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tionship is typically hyperbolic, with a linear increase at
lower concentrations until the reaction approaches satura-
tion, at which point further increases in substrate will not
increase reaction velocity (see Figure 2A). Two important
parameters are typically calculated using kinetic assay
data: V., the initial reaction velocity at saturated sub-
strate concentration, and the Michaelis constant, K,
which is a measure of the affinity of the enzyme for the
substrate and the rate at which the substrate is converted
to product [43]. These parameters are obtained through a
double-reciprocal plot of velocity against substrate con-
centration for the linear portion of the original curve (see
Figure 2B). First, least-squares regression is performed on
the double-reciprocal data and the slope and y-intercept
calculated. V,, is then calculated from the regression
equation, using the formula: V,_, = 1/y-intercept [43].
Next, K, is obtained from the equation: K, = V,,, *slope
[43].

Because the y-intercept changes with enzyme concentra-
tion (Figure 2B), K, and V_,, are also influenced by the
initial enzyme concentration, such that the values of both
parameters increase when enzyme concentration
increases (Table 1). However, the slope of the least-
squares line is not dependent on the initial enzyme con-
centration (Figure 2B, Table 1), and is equal to K,/V .., @
measure of enzyme efficiency. As V. is a measure of reac-
tion velocity, a relatively higher value of V., means the
reaction can progress faster, and therefore higher values of
V,ax indicate better enzymatic performance. Conversely,
K., contains a measure of enzyme-substrate affinity, and is
the amount of substrate needed to achieve one-half V..
Therefore, an enzyme with a lower K, needs less substrate
to achieve a given rate than one with a higher K. Lastly,
because enzyme efficiency (as defined above) is calculated
from reciprocal plots, a smaller value of this parameter
(either due to a lower K, and/or a higher V,,,) means the
enzyme is more efficient than a higher value. Here we
report all 3 kinetic parameters (efficiency, K, and V,,,,),
but note that K and V,,, may be influenced by variation
in amount of enzyme present in each individual. Specifi-
cally, differences in these two parameters when compar-
ing two individuals could be due to differences in the
relative amounts of enzyme in individuals (see Table 1) or
real differences in performance between individuals for
these two parameters.

Experimental Methods

Experimental Animals

To further detail the relationship between temperature
and enzyme activity in A. socius, we conducted an enzyme
kinetics experiment using tissue homogenates derived
from laboratory-raised Idh-1 homozygotes. Juvenile crick-
ets were collected in July 2006 from a field population in
western North Carolina (35.199°N, 81.371°W), an area

http://www.biomedcentral.com/1471-2148/9/113

known to have all 3 alleles at roughly equal frequencies
(see Figure 1 in [14]). Field-collected juveniles were raised
to adulthood at 27°C in sex-specific cages to prevent mat-
ing. Adults were individually genotyped for malate dehy-
drogenase (Mdh-1; diagnostic of the A. socius complex
relative to other species in the genus) and isocitrate dehy-
drogenase to screen for individuals homozygous at the
Idh-1 locus. Allozyme electrophoresis and staining was
performed using standard methods for Allonemobius [28].

Individuals homozygous for each of the 3 alleles (1.8, 2.0,
and 2.2) were placed in genotype-specific mating cages
and allowed to mate for 2 weeks, producing homozygous
offspring. Offspring were raised to adulthood at 27°C and
~10 individuals per genotype were randomly chosen and
frozen at -80°C. For these individuals, Idh-1 genotype was
confirmed with allozyme electrophoresis on head tissue
as above. Enzyme homogenates from 3 individuals of
each genotype were generated by homogenizing both rear
legs in 25 pl 0.2 M tris-citrate buffer, pH 8.0 [28], centri-
fuging for 2 minutes at 10,000 x g and removing the
supernatant for use in enzyme kinetics assays.

Kinetics Assays

Enzyme kinetics assays were performed in 96-well micro-
plates using a temperature-controlled microplate reader
(Bio-Tek Instruments, Winooski, VT), similar to the proce-
dure described by [44]. A pilot study was conducted using
a wide range of substrate concentrations and standard Idh
staining media optimized for Allonemobius ([28]; 0.2 M
tris-citrate buffer, pH 8.0 with 1 mg/ml MgCl,, 0.2 mg/ml
NADP, 0.2 mg/ml NBT, and 0.04 mg/ml PMS; all reagents
from Sigma-Aldrich) to determine the range of concentra-
tions which produced a linear relationship between initial
reaction velocity and substrate concentration (see Figure
2A; [43]). This staining solution produces a purple color
as the reaction progresses, and absorbance was read at 595
nm using the microplate reader. Although this assay
measures combined activity for Idh-1 and Idh-2, the Idh-2
locus is monomorphic in A. socius (and all species of
Allonemobius; [14,29,30,42]); therefore, all differences
observed between Idh-1 genotypes should result from
variation in performance of Idh-1 alleles. From these pre-
liminary data, four concentrations of isocitric acid were
used for further assays (0.077, 0.055, 0.043, and 0.035
mg/ml).

Next, assays were performed on 3 individuals per geno-
type (i.e., 1.8, 2.0, and 2.2 homozygotes) at 7 ecologi-
cally-relevant temperatures (18, 21, 24, 27, 30, 33, and
36°C; see Figure 1B). For each individual, at each temper-
ature and substrate concentration, a 1 pl aliquot of
enzyme homogenate was added to 25 pul of staining media
and used in an assay following the protocol outlined
above. All samples for each temperature were conducted
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Figure 2

Example enzyme kinetics data. Experimental Idh-| kinetic data using homogenates from | cricket (2 legs; solid diamonds)
and 2 crickets (4 legs; open squares). (A) Initial reaction velocity as a function of substrate concentration, showing the
expected hyperbolic relationship. Reaction velocity increases linearly until approaching the saturation point. (B) Lineweaver-
Burk plot, the double-reciprocal method for calculating K., the Michaelis constant, and V.., the maximum reaction velocity,

from kinetic assay data.

simultaneously with absorbance readings taken for every
15 sec for 20 minutes (yielding 80 absorbance readings
per aliquot).

Using standard Michaelis-Menten kinetics [e.g., [43,45]]
implemented by the program KC3 (Bio-Tek Instruments),
initial reaction velocity of the enzymatic conversion of
isocitrate to a-ketoglutarate was calculated using the lin-
ear portion of the curve (approximately 5-15 minutes).
For each individual at each assay temperature, the increase
in velocity with increasing isocitric acid concentration was

plotted and slopes calculated (see Kinetic Parameters and
Calculations above; Figure 2B), yielding a measure of
enzyme efficiency - i.e., the inverse of the change in the
rate of the reaction with increasing substrate concentra-
tion. K, and V,, were also calculated from the assay data
using standard methods as described above.

Statistical Analyses

Kinetic data were analyzed using repeated-measures anal-
ysis of variance (ANOVA) with Idh-1 genotype as a
between-subjects factor and assay temperature and the
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Table I: Estimation of 3 enzyme kinetic parameters from data
presented in Fig. 2.
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Table 2: Repeated-measures ANOVA on kinetic efficiency (see
Methods) across a temperature gradient.

parameter | cricket 2 crickets Ratio (2/1) Between Subjects
Efficiency 0.0081 0.0080 0.9877 Source df MS F P
Vinax 5.6180 20.0803 3.5743
m 0.0455 0.1606 3.5302
Genotype 2 0.00303 5.07 0.0627
Error 5 0.00060

This table demonstrates that kinetic efficiency is nearly equal with
approximately double the amount of enzyme, while both K and V.
increase by a factor of approximately 3.5.

interaction of temperature and Idh-1 genotype as within-
subjects factors. Enzymatic efficiency, K, and V,,,, were
analyzed using separate ANOVA's. Post-hoc ANOVA's
were then used to test for significant differences between
alleles at each temperature and groupings assigned using
Ryan-Einot-Gabriel-Welsch  (REGWQ) multiple-range
tests [46]. All statistical analyses were performed with SAS
Learning Edition 4.1 [46]. Statistics were considered sig-
nificant at P < 0.05.

Results

There was a significant interaction between Idh-1 geno-
type and assay temperature that affected enzyme effi-
ciency, measured as the increase in velocity with increased
substrate concentration (Table 2). Because of the inverse
relationships plotted by this method, a lower value indi-
cates greater efficiency. Enzyme efficiency was signifi-
cantly different between alleles at the two lowest
temperatures tested (18 and 21 °C; Figure 3A), while there
was no difference at the higher temperatures tested (24-
36°C; Figure 3A). At 18°C, 2.0 individuals outperformed
1.8 and 2.2 individuals, which were not significantly dif-
ferent from each other, whileat 21°C, 2.0 and 2.2 individ-
uals were not significantly different and more efficient
than 1.8 individuals (Figure 3A).

There was also a significant GXE between Idh-1 genotype
and assay temperature for K, the Michaelis constant
(Table 3). K,,, is a measure of the binding affinity between
the enzyme and the substrate, and a lower value of K,
indicates a higher affinity. There were significant differ-
ences in K, between alleles at 3 temperatures (the two
lowest temperatures, 18 and 21°C, and the highest tem-
perature, 36°C; Figure 3B). Similar to the results for effi-
ciency (see above), at 18°C, 2.0 individuals had lower K,
than 1.8 and 2.2 individuals, which were not different
from each other, while at 21°C, 2.0 and 2.2 individuals
were not significantly different from each other and had
lower K, than 1.8 individuals (Figure 3B). At 36°C, indi-
viduals of all three alleles were significantly different from
each other, with 2.0 having the lowest K, followed 1.8
and 2.2 (Figure 3B).

Within Subjects

Source df MS F P
Temperature 6 0.00996 39.89 <0.0001
Genotype X Temperature 12 0.00108 43I 0.0009
Error (Temperature) 30 0.00025

Within-subject P-values are with Huynh-Feldt corrections.

Lastly, the maximum reaction velocity, V,,,,, was affected
by a significant GXE between Idh-1 genotype and assay
temperature (Table 4). At 36°C, 2.2 had a significantly
higher V.. than 1.8 and 2.0, which were not significantly
different (Figure 3C). These data indicate that the 2.2
allele encodes an enzyme with the highest velocity but
also the highest K, at 36°C, an expected tradeoff between
velocity and affinity [5].

Discussion

Previous studies have shown that the effect of temperature
on enzyme performance can affect many aspects of organ-
ismal fitness, including growth rate and size at maturity
[47]. Thus, based on previous geographic and empirical
data for A. socius, we hypothesized that the observed dis-
tributions of Idh-1 alleles, including the high frequency of
the 2.0 allele and the cline in the frequency of the 2.2
allele, had resulted from natural selection on differential
enzymatic performance across thermal environments. By
conducting kinetics assays, we found a significant GxE
between Idh-1 genotype and temperature on 3 measures
of enzyme kinetic performance in A. socius. Additionally,
we found significant differences in performance among
alleles at the two lowest and one highest temperatures.

Specifically, at 18°C, 2.0 was more efficient because of
higher substrate affinity (lower K,,) of the Idh enzyme
than the 1.8 and 2.2 alleles. At 21°C, the 2.0 and 2.2 alle-
les both had higher substrate affinities that that of 1.8 for
those two parameters; there was no significant difference
among alleles in V. at low temperatures. At 36°C, there
was no significant difference in overall efficiency between
alleles. However, K, and V,,,, were significantly higher for

the 2.2 allele. K, and V_,, for 2.0 were lower than the
other alleles at this temperature, while the 1.8 allele had
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Kinetic performance across a temperature gradient of 3 Idh-1 alleles in the cricket Allonemobius socius. Enzyme
efficiency (A) was measured as the increase in reaction velocity with increasing substrate concentration (see Methods). K, (B)
and V,,,. (C) were calculated using standard Michaelis-Menten methods. Means + SE are given (n = 3 individuals per genotype).
Individual ANOVA's were used to test for differences between genotypes at each temperature and significant differences indi-

cated (*P < 0.1, **P < 0.05, ***P < 0.01).

intermediate values for K, and V,,, when compared to
the other two. Overall, we found that K, and V,,, varied
at critical temperatures for all 3 alleles, in contrast to the
results of Johns and Somero [48], who found that a cold-
adapted allele of lactate dehydrogenase (Ldh-4) had a
higher K than warm-adapted alleles across all assay tem-
peratures in Pacific damselfishes.

The kinetics results, in general, are consistent with
hypothesized results based on the naturally-occurring dis-
tribution of Idh-1 allele frequencies and previous fitness

data [14]. Specifically, the 2.0 allele was the most efficient
allele at lower temperatures (< 27°C) and equivalent in
efficiency to the other two alleles at higher temperatures
(> 27°C; Figure 3A); these data indicate that the 2.0 allele
performs well across the widest range of temperatures,
and it is therefore not unexpected that it occurs at approx-
imately 50% frequency in all populations in the eastern
United States (Figure 1A; [14]). Conversely, the 2.2 allele
had the highest maximum reaction velocity (V,,,,) at
higher temperatures (> 27 °C); this allele occurs at approx-
imately equal frequency with the 2.0 allele at lower lati-
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Table 3: Repeated-measures ANOVA on K, across a
temperature gradient.
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Table 4: Repeated-measures ANOVA on V, . across a
temperature gradient.

Between Subjects

Between Subjects

Source df MS F P Source df MS F P
Genotype 2 0.07596 294  0.1431 Genotype 2 73.7718 1.67  0.2787
Error 5 0.02582 Error 5 44.2408

Within Subjects

Within Subjects

Source df MS F 4 Source df MS F P
Temperature 6 0.17803 7.79 0.0010 Temperature 6 119.7032 2546 <0.0001
Genotype X Temperature 12 0.06115 267 0.0426 Genotype X Temperature 12 13.5814 289 00133
Error (Temperature) 30 0.02286 Error (Temperature) 30 4.7018

Within-subject P-values are with Huynh-Feldt corrections.

tudes, but is not as common to the north (Figure 1A).
However, it is somewhat surprising that the 1.8 allele did
not perform better at lower temperatures (18 and 21°C),
given the earlier fitness data and its geographic distribu-
tion (Figure 1; [14]). At the lowest assay temperature
(18°C), the 1.8 allele was equivalent to the 2.2 allele in
both efficiency and substrate affinity, while the V., of all
3 alleles were not significantly different. Thus, we hypoth-
esize that the increased frequency of the 1.8 allele in
northern latitudes may be more reflective of processes
such as genetic drift, rather than a strict by-product of nat-
ural selection. In all, our findings support the hypotheses
that 1) the 2.0 allele is common across all thermal envi-
ronments due to superior performance, for at least some
kinetic parameters, relative to the other two alleles at
many different temperatures, and 2) the clinal distribu-
tion of the 2.2 allele is driven by selection on thermal per-
formance. Combining these data with an earlier study on
geographic variation, environmental correlates, and fit-
ness data [14], Idh-1 in A. socius now meets the criteria
described by Mitton [27] and others (e.g, [5-8,11-13]) for
demonstrating selection on a single enzyme locus.

In general, enzymatic performance depends on tempera-
ture and typically decreases at high temperatures due to
degradation and inactivation of enzyme molecules [5,49-
52]. Interestingly, we did not observe a decrease in per-
formance, even in our highest temperature assays (Figure
3). Therefore, the temperature range over which we con-
ducted our assays appears not to have exceeded the ther-
mostability threshold of the isocitrate dehydrogenase
enzyme over the time period of the assay, which is not sur-
prising given that temperatures were chosen to reflect the
natural conditions experienced by field populations.

Within-subject P-values are with Huynh-Feldt corrections.

At extreme reaction temperatures (cold or hot), research-
ers typically observe a tradeoff between K, and V..
Although an enzyme may tightly bind a substrate, the rate
at which the substrate is converted to product may be
lower [5,13,53-56]. Our data appear to show this tradeoff
at our highest assay temperature (36°C), as the 2.2 allele
has both the highest K, and V, .., while 2.0 has the lowest
(Figure 3). These data may be influenced by overall differ-
ences in amounts of Idh enzyme produced by individuals
of different genotypes. However, if differences in perform-
ance of alleles at 36°C were due to differences in Idh con-
centrations among the samples, we would expect alleles to
show similar patterns of performance for these two
parameters across all temperatures, not just 36°C. Over-
all, we found that at low temperatures all three alleles
have a similar V,,, but significant differences in efficiency
and K, while at high temperatures all three alleles have
the same efficiency but significant differences in K, and
Voax (see Figure 3). These findings point to a clear per-
formance tradeoff, in that a single allele cannot perform
optimally for all measures of kinetic performance across
all temperatures.

When one genotype produces different phenotypes over a
range of environmental conditions, the relationship
between the phenotype produced and the environment is
known as a reaction norm [57]. Similarly, a genotype-by-
environment interaction (GxE) occurs when different gen-
otypes produce different reaction norms across the same
environmental conditions. Reaction norms and GxE inter-
actions are thought to be adaptive for species living in
temporally-variable environments or with wide geo-
graphic ranges, as populations may experience different
environmental conditions across the species' range or dur-
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ing the year. Such environmental variation can lead to bal-
ancing selection on alternative alleles and/or the
evolution of phenotypic plasticity. Given GxE and spa-
tially- or temporally-variable environments across a spe-
cies' range, balancing selection is predicted to maintain
genetic diversity in natural populations [5,9,10,58]. It
appears that all 3 alleles are being maintained in A. socius,
possibly due to differences in GXE across temperatures.

There are a few alternative explanations for the allele-fre-
quency distributions observed in natural populations of
this species. For example, it is also possible that Idh-1 is
linked to another locus which is under temperature-
driven selection, and that the allele frequencies observed
in nature reflect this linkage disequilibrium [5,27]. How-
ever, our kinetics assays were designed to specifically
measure Idh activity, and we observed significant GxE.
Alternatively, there could be other genes in the Krebs cycle
or other metabolic pathways which are affected by Idh-1
activity and that selection is acting on the pathway as a
whole [5]. To further test the hypothesis that natural selec-
tion (and/or genetic drift) is acting specifically on the Idh-
1 locus in A. socius, we are currently sequencing the pro-
tein-coding region for all alleles from multiple individuals
spanning the geographic range of this species.

The link between allozyme allele frequencies, differential
thermal performance of alleles, and natural environmen-
tal gradients has been shown in several other recent stud-
ies. For example, Piccino et al. [58] found significant
differences in phosophoglucomutase (Pgm-1) allele fre-
quencies between populations of the polychaete Alvinella
pompejana which inhabited either newly-created or older
hydrothermal vents. The enzyme allele at highest fre-
quency in populations living near recently-established,
warmer vents was both more thermostable and had
higher activity at warmer temperatures than the allele
found in populations dwelling in older, cooler vents [59].
Similar results have been found for Ldh in species of
Pacific damselfish of the genera Chromis [48] and Sphy-
raena [60] inhabiting different thermal regimes. Similarly,
clines in allele frequencies of Pgi-1 in the leaf beetle Chry-
somela aeneicollis were linked to enzyme kinetic perform-
ance across ecologically-relevant temperatures, providing
strong evidence of temperature-driven selection [61].
Together, these and other studies indicate that some alloz-
yme loci are not neutral markers of diversity, but rather
that the geographic distributions of alleles can be a conse-
quence of environmental conditions and the differential
performance of alleles in those environments. Thus, com-
mon alleles may be common due to their enhanced per-
formance relative to other, less-common alleles, while
clinal distributions can be attributed to either selection or
drift across thermal gradients. The distribution of Idh-1
alleles in A. socius appears to be another example of this
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phenomenon, as we are now able to link a GXE between
genotype and temperature on enzyme kinetic perform-
ance to the natural distribution of alleles in this species.

Conclusion

Clines in allele frequencies within a species can be caused
by natural selection on allele variants along an environ-
mental gradient or by genetic drift across the species'
range. Similarly, common alleles may be common due to
superior fitness or to genetic drift. Previously, we hypoth-
esized that natural selection may be maintaining a natural
cline in Idh-1 allele frequencies (1.8, 2.0, and 2.2) in the
cricket A. socius, due to both correlations between allele
frequencies and environmental conditions and fitness dif-
ferences between homozygotes of the various alleles
across temperatures [14]. Using enzyme kinetics to further
dissect the GXE between Idh-1 genotype and temperature
at the molecular level, we found significant differences in
enzymatic performance between alleles across tempera-
tures. These data suggest that 1) natural selection is main-
taining the cline in frequency of the 2.2 allele, 2) the 2.0
allele is common across a wide geographic range because
it performs well across a broad range of temperatures, and
3) drift may be acting on the 1.8 allele. Together, our data
indicate that natural selection is acting on the Idh-1 locus
in A. socius. Although these enzymatic performance data
point to selection maintaining the high frequencies of the
2.0 and 2.2 alleles in given environments, we still have
not assessed the molecular signature of positive or balanc-
ing selection on the Idh-1 locus. To fill this gap, we are cur-
rently sequencing Idh-1 alleles from populations that span
the geographic range of A. socius and will be assessing pat-
terns of synonymous and nonsynonymous changes to
identify any allele-specific signatures of molecular
evolution.
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Idh: isocitrate dehydrogenase; GXE: genotype-by-environ-
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affinity; V_: the maximum reaction velocity at saturating
substrate concentration.
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