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Abstract
Background: Co-expression of genes that physically cluster together is a common characteristic
of eukaryotic transcriptomes. This organization of transcriptomes suggests that coordinated
evolution of gene expression for clustered genes may also be common. Clusters where expression
evolution of each gene is not independent of their neighbors are important units for understanding
transcriptome evolution.

Results: We used a common microarray platform to measure gene expression in seven closely
related species in the Drosophila melanogaster subgroup, accounting for confounding effects of
sequence divergence. To summarize the correlation structure among genes in a chromosomal
region, we analyzed the fraction of variation along the first principal component of the correlation
matrix. We analyzed the correlation for blocks of consecutive genes to assess patterns of
correlation that may be manifest at different scales of coordinated expression. We find that
expression of physically clustered genes does evolve in a coordinated manner in many locations
throughout the genome. Our analysis shows that relatively few of these clusters are near
heterochromatin regions and that these clusters tend to be over-dispersed relative to the rest of
the genome. This suggests that these clusters are not the byproduct of local gene clustering. We
also analyzed the pattern of co-expression among neighboring genes within a single Drosophila
species: D. simulans. For the co-expression clusters identified within this species, we find an under-
representation of genes displaying a signature of recurrent adaptive amino acid evolution consistent
with previous findings. However, clusters displaying co-evolution of expression among species are
enriched for adaptively evolving genes. This finding points to a tie between adaptive sequence
evolution and evolution of the transcriptome.

Conclusion: Our results demonstrate that co-evolution of expression in gene clusters is relatively
common among species in the D. melanogaster subgroup. We consider the possibility that local
regulation of expression in gene clusters may drive the connection between adaptive sequence and
coordinated gene expression evolution.
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Background
The non-random arrangement of genes in the genome is
intimately connected to the pattern of gene expression
across the genome [1]. While the connection between
gene location and expression has been known for some
time in prokaryotes [2], a similar genome-wide connec-
tion between gene order and gene expression has rela-
tively recently been identified in eukaryotes [3]. Clusters
of physically adjacent genes that are co-expressed are now
known to be common in eukaryotic genomes and have
been reported in yeast [4,5], plants [6], worms [7-10],
fruit flies [11-13], mice [14-16], and humans [16-20].

A number of mechanisms have been proposed to explain
the existence of these co-expression clusters including the
presence of duplicate genes that are in close physical prox-
imity, shared regulatory regions, chromatin-level regula-
tion, and common pathway or tissue regulated expression
of physically clustered genes [1,8,21]. Similarly, a number
of hypotheses have been proposed concerning the inter-
play between transcriptome evolution and genome organ-
ization that can explain the existence of co-expression
clusters including positive selection for genomic rear-
rangements leading to close physical proximity of co-
expressed genes [22] and purifying selection against
genomic rearrangments that break-up co-expression clus-
ters [5,18]. The possibility that co-expression results in
correlated rates of sequence evolution among cluster
genes has also been proposed [23] and a recent analysis
has found evidence of co-evolution of tissue specific
expression of adjacent genes [24]. Although not fully
resolved, these analyses have led to a clearer picture of
both the pattern of co-expression clusters within species
and explanations concerning why gene expression is often
coordinated among physically adjacent genes.

If there is a physical clustering of coordinated gene expres-
sion within species, then it is likely that gene expression
can also evolve in a coordinated manner [24]. A block of
consecutive genes where expression evolves in a coordi-
nated manner will leave an evolutionary signature that
can be detected by non-zero expression correlation
among neighboring genes when analyzing multiple spe-
cies. Therefore, just as correlated expression profiles are
used to identify co-expression among genes within species
[4,12] the same approaches can be used to analyze co-evo-
lution of expression in gene clusters when comparing
gene expression among species. Instead of analyzing the
correlations in gene expression among developmental
stages, environments, tissue localizations, etc. [1], we con-
sider the correlations among mean gene expression levels
estimated for each species. This approach will identify
clusters of genes where the evolution of expression is not a
gene independent process.

Our goal is to identify clusters of genes that show consist-
ent patterns of coordinated expression evolution among
species of Drosophila. We assayed genome-wide gene
expression levels using Affymetrix GeneChip Arrays in
three-day-old male adults under standardized environ-
mental conditions [25]. The following seven species in the
D. melanogaster subgroup were analyzed: D. melanogaster,
D. simulans, D. sechellia, D. mauritiana, D. santomea, D.
teissieri, and D. yakuba. The relationships among these spe-
cies are well established (Fig. 1) and represents a taxo-
nomic sampling that spans ~6 million years [26]. Clusters
identified for these species are therefore of value for
understanding how the transcriptomes of species evolve
across time scales on the order of one-hundred thousand
to several million years.

A number of methods have been applied to the identifica-
tion of co-expression clusters within species using micro-
array expression data [4,12,23,27-29]. The most common
of these is calculation of a statistic based on the estimated
correlation matrix for blocks of consecutive genes, gener-
ally the mean of N*(N-1)/2 correlations when consider-
ing N consecutive genes [12]. For the current study, we use
a different statistic to summarize the correlations among
N genes: the fraction of variation explained by the leading
eigenvalue of the correlation matrix. This statistic
describes the maximum fraction of variation that can be
explained by a linear function of the original variables
after scaling the variance of each variable to one. This sta-
tistic therefore provides an intuitive description of the
degree to which a set of genes act as a single unit because
the closer this ratio is to "1" the greater the degree that
expression of the genes are completely correlated, regard-
less of whether the correlations among any gene pair are
positive or negative. While this statistic has not been
explicitly applied to the analysis of co-expression, the
leading eigenvalue(s) of a correlation or covariance matrix
are commonly used to summarize the structure of corre-
lated variation [30,31].

Our analysis shows that a considerable proportion of
transcriptome evolution among species in the D. mela-
nogaster subgroup occurs via co-evolution of expression in
clustered genes. Comparison of the locations of clusters
that reflect coordinated evolution of gene expression
across taxa to clusters of coordinated expression within
the species D. simulans demonstrated a lack of corre-
spondence in locations. This implies that different mech-
anisms may be responsible for producing co-expression
clusters within species and those producing co-expression
clusters that evolve in a coordinated manner. We addi-
tionally analyze a number of genome organization, func-
tional, and evolutionary aspects to identify over-(under-)
representation with clusters displaying coordinated
expression within D. simulans or coordinated expression
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evolution among the seven species. Of these, the most
interesting are genes that show a signature of adaptive
evolution in their coding sequences. A previous analysis
of tissue co-expression within mice and humans did not
find a significant positive correlation between rates of
non-synonymous substitutions (KA) and co-expressed
genes [23], although the ~75 million years since humans
and mice diverged likely limited the power of this analysis
[32]. Here, we find that co-expression clusters that vary
within D. simulans are not enriched for adaptive evolving
loci. However, genes with an adaptive evolutionary signa-
ture are over-represented in clusters where expression is
co-evolving among species. This result points to a connec-
tion between coordinated gene expression evolution and
adaptive evolution in coding regions of genes, although
the exact nature of this connection is still unknown.

Results and Discussion
Clusters of genes evince coordinated evolution of expres-
sion across the seven species (Figure 2). On all chromo-
somes at all scales, there were far more windows with
significant coordinated expression evolution than
expected at random (Table 1). Many of these significant
windows were identified across multiple window sizes
and likely reflect a single larger block of genes where
expression evolution is coordinated [12] (we present
combined significant windows at different cutoffs in
Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). These windows
were also robust to the removal of individual species and
therefore were not being driven by evolution in a specific
lineage (results presented in Additional files 1, 2, 3, 4, 5,
6, 7, 8, 9, 10). In addition, there was no detectable differ-
ence between the absolute level of transcript abundance
as measured by the arrays for neighboring genes where
expression displays co-evolution compared to other
groups of neighboring genes (p-values > 0.05 for all win-
dow sizes). Because we used the D. melanogaster as the ref-
erence genome for ordering genes along chromosomes

there is the possibility that genome re-arrangements
would lead to some of these significant clusters to include
non-physically adjacent genes in some of the species. Our
results are, however, robust to this issue as we found that
breakpoints between D. simulans-D. melanogaster or D.
yakuba-D. melanogaster interrupted clusters where expres-
sion is co-evolving no more frequently than expected by
chance, which is consistent with a previous analysis of co-
expression within species [33].

The use of a sliding window approach to identify co-evo-
lution of expression in gene clusters means that tests at a
given scale will be correlated with neighboring windows
and these tests will also be correlated across window sizes.
There is not a clear optimal approach for dealing with the
multiple testing problem and the properties of strategies
such as estimation of False Discovery Rates (FDRs)
[34,35] are not clear in such cases. To assess whether there
was a clear genome-wide tendency for coordinated expres-
sion evolution, we therefore used a permutation approach
using total number of significant tests at a given window
size (2, 5, 10, and 20) as a test statistic to assess the null
hypothesis that there are no more gene clusters where
expression is co-evolving than we would expect at random
[12]. With only seven species (samples) these tests are not
expected to be particularly powerful. However, the test
was still rejected at a window size of 2 (p-value < 0.02)
and at a window size of 10 (p-value < 0.04) (although not
for window sizes of 5 and 20) indicating that at least on
genomic scales spanning 2 to 10 genes, there is genome
level co-evolution of gene expression in neighboring
genes.

Similar results were obtained for the analysis of within
species co-expression for D. simulans (Table 2, Figure 3).
Many windows on all chromosomes at all scales were sig-
nificant. Interestingly, the test of a genome-wide pattern
produced significant results for window sizes of 2 (p-value
< 0.04) and 10 (p-value < 0.01). While this could be inter-
preted as an artifact of microaray design [36,37], there is
no regular spacing to the distribution of significant win-
dows [28]. Interestingly, there was little overlap between
the significant windows identified as evolving across spe-
cies and being co-expressed within D. simulans (Table 3).
The number of overlapping windows obtained when
comparing repeated analysis of mean expression levels for
all species and the number of overlapping windows for
repeated analysis of the D. simulans data (i.e. non-overlap
due to permutation effects) are presented for comparison.
Given that many of the co-evolving expression clusters
and the co-expression clusters identified within D. simu-
lans may reflect false positives, a small fraction of overlap
between these cluster types might be expected. However,
even at a conservative cutoff (p-value < 0.001) the abso-
lute number of overlapping clusters is still very low (Table

Relationships among the seven species in the D. melanogaster subgroup that were analyzedFigure 1
Relationships among the seven species in the D. melanogaster 
subgroup that were analyzed. Times of speciation events fol-
low estimates from [26].

D.m elanogaster

1Mya5Mya 4Mya 3Mya 2Mya

D.sim ulans

D.m auritiana

D.sechellia

D.teissieri

D.santom ea

D.yakuba
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3) indicating that there is little correspondence. It there-
fore appears that completely different sets of genes are
involved in the pattern of co-expression within species
compared to those where expression evolves in a coordi-
nated manner across species.

While the mechanisms underlying the existence of clus-
ters of co-evolution of expression among species and co-
expression clusters within species cannot be resolved from
these data, the existence of paralogous genes in close prox-
imity can be ruled out as the major factor for the observed
pattern. Paralogous genes in close proximity may be
expected to produce the evolving clusters or within species
co-expression clusters as a result of shared regulatory ele-
ments and/or maintained common functions. However,
paralogs may also produce the pattern by cross-hybridiz-
ing to common probes on the microarray. If the second of
these possibilities can explain a considerable proportion
of clusters, this could mean the observed pattern was an
artifact of the microarray assay. However, we find that very
few paralogous gene sets are within either evolving clus-
ters or co-expression clusters (between 1.4%–12.0% of
evolving clusters identified using window sizes 2–20 and
a p-value cutoff of 0.001 contain paralogous genes and
2.1%–8.5% of co-expression clusters within D. simulans
contain paralogous genes; see Additional file 9). The
majority of evolving clusters and co-expression clusters
cannot therefore be explained by paralogous genes.

Spatial, Adaptive, and Functional Distribution of Co-
expression Clusters
To determine if co-expression or co-evolution of expres-
sion is related to the physical organization of genes within
clusters, we investigated the spatial distribution of the
clusters across the genome of D. melanogaster. While order
of genes in clusters where expression is co-evolving are
conserved across species in our analysis (see above), the
physical location of these clusters relative to D. mela-
nogaster need not be. Fortunately, the local spatial organi-
zation of genes is highly conserved across these species,
which allows us to again use the heavily annotated D. mel-
anogaster genome as a reference for our spatial analysis.

There are fewer co-evolving expression clusters in centro-
mere proximal regions (heterochromatic centrometric
regions were not included in our analysis). This was also
observed for the within species co-expression clusters.
Two hypotheses may explain this pattern. First, gene den-
sity tends to decline in regions proximal to the centromere
[38], which may reduce the total number of gene clusters
observed in these relatively gene depauperate regions. Sec-
ond, centromere proximal regions have higher amounts
of heterochromatin, which can dramatically affect gene
expression [39,40]. Most euchromatic gene expression is
suppressed in heterochromatin and natively heterochro-
matic genes are typically only expressed when surrounded
by heterochromatin. Therefore, local shifts over evolu-

Table 1: Number of significant windows where expression is co-evolving.

Chr Pval 2 4 6 8 10 12 14 16 18 20

X 0.05 31(28.95) 82(75.8) 95(96.75) 114(105.35) 116(109.45) 123(111.2) 117(112.3) 121(112.9) 113(113.25) 126(113.5)
X 0.01 13(5.79) 22(15.16) 25(19.35) 22(21.07) 30(21.89) 28(22.24) 30(22.46) 33(22.58) 30(22.65) 33(22.7)
X 0.001 5(0.579) 7(1.516) 9(1.935) 9(2.107) 9(2.189) 9(2.224) 12(2.246) 10(2.258) 7(2.265) 5(2.27)
2L 0.05 37(31.8) 79(82) 110(106.1) 121(118.3) 135(123.95) 132(126.15) 143(127.3) 139(128.35) 144(129.05) 137(129.35)
2L 0.01 9(6.36) 19(16.4) 26(21.22) 27(23.66) 29(24.79) 33(25.23) 40(25.46) 26(25.67) 35(25.81) 39(25.87)
2L 0.001 2(0.636) 9(1.64) 5(2.122) 5(2.366) 4(2.479) 7(2.523) 15(2.546) 10(2.567) 10(2.581) 8(2.587)
2R 0.05 47(37.9) 113(94.9) 151(121.55) 163(133.4) 150(138.7) 139(140.95) 126(142.15) 143(143.05) 143(143.6) 170(144.15)
2R 0.01 11(7.58) 24(18.98) 39(24.31) 45(26.68) 48(27.74) 48(28.19) 57(28.43) 63(28.61) 65(28.72) 68(28.83)
2R 0.001 3(0.758) 10(1.898) 16(2.431) 26(2.668) 24(2.774) 31(2.819) 30(2.843) 41(2.861) 34(2.872) 41(2.883)
3L 0.05 46(38.25) 105(94.8) 133(118) 129(128.4) 145(132.95) 141(135.1) 147(136.3) 147(137.1) 135(137.65) 133(138)
3L 0.01 16(7.65) 28(18.96) 38(23.6) 33(25.68) 34(26.59) 39(27.02) 39(27.26) 33(27.42) 25(27.53) 19(27.6)
3L 0.001 9(0.765) 10(1.896) 10(2.36) 10(2.568) 13(2.659) 14(2.702) 5(2.726) 12(2.742) 5(2.753) 1(2.76)
3R 0.05 68(50.45) 129(120.65) 148(152.05) 170(165.25) 193(170.9) 198(173.7) 175(175.25) 160(175.8) 161(176) 181(176.05)
3R 0.01 15(10.09) 34(24.13) 33(30.41) 39(33.05) 44(34.18) 38(34.74) 37(35.05) 31(35.16) 32(35.2) 27(35.21)
3R 0.001 6(1.009) 8(2.413) 12(3.041) 16(3.305) 15(3.418) 11(3.474) 13(3.505) 16(3.516) 6(3.52) 10(3.521)
4 0.05 1(0.55) 2(2) 4(2.95) 8(3.6) 8(3.85) 9(3.95) 9(3.9) 5(3.8) 3(3.7) 2(3.6)
4 0.01 0(0.11) 2(0.4) 3(0.59) 5(0.72) 6(0.77) 5(0.79) 3(0.78) 5(0.76) 0(0.74) 0(0.72)
4 0.001 0(0.011) 1(0.04) 3(0.059) 5(0.072) 6(0.077) 5(0.079) 0(0.078) 0(0.076) 0(0.074) 0(0.072)

TOTAL 0.05 230(187.9) 510(470.15) 641(597.4) 705(654.3) 747(679.8) 742(691.05) 717(697.2) 715(701) 699(703.25) 749(704.65)
TOTAL 0.01 64(37.58) 129(94.03) 164(119.48) 171(130.86) 191(135.96) 191(138.21) 206(139.44) 191(140.2) 187(140.65) 186(140.93)
TOTAL 0.001 25(3.758) 45(9.403) 55(11.948) 71(13.086) 71(13.596) 77(13.821) 75(13.944) 89(14.02) 62(14.065) 65(14.093)

The total number of significant tests obtained from the sliding window analysis for even numbered window sizes are presented with the expected 
numbers assuming a null distribution in parentheses.
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Sliding window heat map of p-values resulting from the clustering analysis across species projected onto the D. melanogaster genomeFigure 2
Sliding window heat map of p-values resulting from the clustering analysis across species projected onto the D. melanogaster 
genome. Approximate position on chromosomes is plotted along the x-axis and window size on the y-axis. Centromere prox-
imal regions are indicated by yellow shading on the chromosome. The spectrum runs from highly significant p-values (red) to 
highly non-significant p-values (dark blue).
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tionary time in the heterochromatin content – which are
common in centromere proximal regions – may inhibit
the formation of clusters near centromeres [39].

Most genes in the genome are physically grouped together
on the chromosome as determined by the coefficient of
deviation (Table 4). In contrast, clusters of genes where
there is co-expression or where there is co-evolution of
expression tend to be more dispersed, which suggests that
co-expression is not simply a function of gene density.
Nor is it the result of local recombination rate; there is no
relationship between the rate of recombination in D. mel-
anogaster and the density of clusters (analysis not shown).
This conflicts with the hypothesis that lower recombina-
tion tends to evolve among co-expressed genes [24,41].
This result may however be confounded by variation in
recombination rate across the species analyzed.

In contrast to these large scale patterns, genes within
evolving clusters do not show unusual local structural
organization relative to the rest of the genome. For exam-
ple, the genes in clusters where there is co-evolution of
expression are not physically closer to each other relative
to the rest of the genome (whole genome median spacing:
827 bases, whole genome mean spacing 4853 bases; clus-
ter gene median spacing: 3573 bases; cluster gene mean
spacing: 8503 bases). Likewise, there is no strand bias –
genes are equally likely to be on either strand of DNA (+
strand: 118; - strand: 114). When considering pairs of
genes – "window 2" clusters – there was no significant dif-
ference in the strand orientations of these pairs. Pairs of

genes were essentially equally likely to both be on the
same strand or on opposite strands in either the + - or -+
orientation (χ2 = 3.468, d.f. = 3, p-value = 0.3249). Nor
were there significant runs of genes on the same strand
among genes within the largest clusters (p-value = 0.45).
There was similarly no unusual structural organization for
clusters of co-expression within D. simulans compared to
the rest of the genome.

However, as noted above, clusters where there is coordi-
nated evolution of expression among species seldom cor-
respond to clusters where there is co-expression within
species. This fact suggests that the evolutionary and
genetic forces affecting coordinated expression within and
between species are distinct. If the evolution of co-expres-
sion clusters reflected a neutral process, we would expect
the patterns of co-expression within species to be reflec-
tive of the patterns of co-expression between species.
Instead, we see very different patterns within and between
species. Between species, our analysis identifies groups of
genes whose expression is correlated across evolutionary
time. Natural selection, directional or purifying, could
drive or preserve patterns of co-expression among genes.
Directional selection, however, is the more likely explana-
tion for the diversification in expression we observe across
species. We tested this idea using data from Begun et al.
2007 [42]. Using polymorphism data in D. simulans in
conjunction with divergence data from D. melanogaster
and D. yakuba, Begun et al. 2007 identified genes evincing
recurrent directional selection using a McDonald-Kriet-
man test [43]. These genes had normal levels of within

Table 2: Number of significant co-expression windows in D. simulans.

Chr Pval 2 4 6 8 10 12 14 16 18 20

X 0.05 39(28.95) 93(75.8) 121(96.75) 144(105.35) 138(109.45) 146(111.2) 125(112.3) 129(112.9) 137(113.25) 143(113.5)
X 0.01 13(5.79) 28(15.16) 36(19.35) 46(21.07) 41(21.89) 41(22.24) 58(22.46) 48(22.58) 50(22.65) 33(22.7)
X 0.001 5(0.579) 9(1.516) 11(1.935) 16(2.107) 24(2.189) 23(2.224) 16(2.246) 13(2.258) 15(2.265) 13(2.27)
2L 0.05 31(31.8) 100(82) 142(106.1) 161(118.3) 173(123.95) 170(126.15) 165(127.3) 176(128.35) 186(129.05) 178(129.35)
2L 0.01 6(6.36) 29(16.4) 41(21.22) 41(23.66) 45(24.79) 56(25.23) 41(25.46) 52(25.67) 55(25.81) 51(25.87)
2L 0.001 4(0.636) 13(1.64) 15(2.122) 11(2.366) 12(2.479) 23(2.523) 22(2.546) 17(2.567) 19(2.581) 22(2.587)
2R 0.05 38(37.9) 102(94.9) 141(121.55) 165(133.4) 175(138.7) 187(140.95) 154(142.15) 147(143.05) 147(143.6) 127(144.15)
2R 0.01 9(7.58) 27(18.98) 45(24.31) 56(26.68) 60(27.74) 45(28.19) 39(28.43) 47(28.61) 49(28.72) 46(28.83)
2R 0.001 3(0.758) 3(1.898) 17(2.431) 18(2.668) 16(2.774) 14(2.819) 9(2.843) 12(2.861) 11(2.872) 11(2.883)
3L 0.05 43(38.25) 104(94.8) 129(118) 140(128.4) 143(132.95) 134(135.1) 138(136.3) 146(137.1) 153(137.65) 156(138)
3L 0.01 11(7.65) 29(18.96) 33(23.6) 38(25.68) 44(26.59) 36(27.02) 46(27.26) 49(27.42) 60(27.53) 51(27.6)
3L 0.001 6(0.765) 14(1.896) 14(2.36) 13(2.568) 17(2.659) 26(2.702) 29(2.726) 28(2.742) 31(2.753) 26(2.76)
3R 0.05 55(50.45) 110(120.65) 151(152.05) 168(165.25) 152(170.9) 152(173.7) 159(175.25) 157(175.8) 178(176) 173(176.05)
3R 0.01 10(10.09) 27(24.13) 31(30.41) 39(33.05) 35(34.18) 36(34.74) 46(35.05) 44(35.16) 44(35.2) 45(35.21)
3R 0.001 4(1.009) 5(2.413) 14(3.041) 9(3.305) 9(3.418) 15(3.474) 14(3.505) 13(3.516) 7(3.52) 10(3.521)
4 0.05 0(0.55) 1(2) 0(2.95) 1(3.6) 3(3.85) 3(3.95) 3(3.9) 0(3.8) 1(3.7) 1(3.6)
4 0.01 0(0.11) 0(0.4) 0(0.59) 0(0.72) 0(0.77) 0(0.79) 0(0.78) 0(0.76) 0(0.74) 0(0.72)
4 0.001 0(0.011) 0(0.04) 0(0.059) 0(0.072) 0(0.077) 0(0.079) 0(0.078) 0(0.076) 0(0.074) 0(0.072)

TOTAL 0.05 206(187.9) 510(470.15) 684(597.4) 779(654.3) 784(679.8) 792(691.05) 744(697.2) 755(701) 802(703.25) 778(704.65)
TOTAL 0.01 49(37.58) 140(94.03) 186(119.48) 220(130.86) 225(135.96) 214(138.21) 230(139.44) 240(140.2) 258(140.65) 226(140.93)
TOTAL 0.001 22(3.758) 44(9.403) 71(11.948) 67(13.086) 78(13.596) 101(13.821) 90(13.944) 83(14.02) 83(14.065) 82(14.093)

The total number of significant tests obtained from the sliding window analysis for even numbered window sizes are presented with the expected 
numbers assuming a null distribution in parentheses.
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species polymorphism, but high levels of between species
divergence. We compared the frequency of genes with sig-
nificant McDonald-Krietman tests (MKtest) within the
clusters where there is co-evolution of expression to the
whole genome empirical distribution (nominal threshold
of p-value < 0.05). Genes within clusters have 27% more
adaptively evolving genes than the genome average using
a polarized MKtest, which does not confound evolution
on two branches (p-value < 0.001; unpolarized test differ-
ence is only 4%). This result suggests that recurrent direc-
tional selection may be the evolutionary force shaping the
evolution of co-evolving expression of neighboring genes.
Recent work looking at a subset of the species we analyzed
also suggests a tie between adaptive evolution of coding
sequences and changes in gene expression [44]. The phe-
nomena observed here may reflect that larger evolution-
ary process.

Our within species analysis of D. simulans identified clus-
ters where expression is coordinated and we applied the
MKtest analysis to these blocks of genes. In contrast to the
among species analysis, the within D. simulans clusters
lack genes evidencing recurrent adaptive amino acid evo-
lution (nominal MKtest p-value < 0.05; polarized, 15%
fewer adaptively evolving genes, p-value < 0.001; unpolar-
ized 30% fewer adaptively evolving genes, p-value <
0.001). This paucity of significant MKtests may indicate a
role for balancing selection in maintaining some, but not
all, of these polymorphic within-species clusters. Regard-
less, distinctly different evolutionary forces appear to be

operating to produce co-evolution of expression in clus-
ters compared to co-expression clusters within species.

The seven species that we analyze are morphologically
almost indistinguishable except for differences in male
genitalia and in the case of D. santomea which has distinct
pigmentation [26]. The co-evolving expression clusters are
therefore not likely to be related to tissue specific expres-
sion of clustered genes underlying morphological diver-
gence. We do, however, find there are more statistically
over-represented GO categories involved in reproduction
in clusters where there is co-evolution of expression and
more genes involved in immune response for clusters
evincing co-expression within species clusters (Table 5
and Additional file 9). Recurrent selection has repeatedly
been shown to drive evolution of reproduction related
genes, especially in males [45-47]. Thus it makes sense
that our co-evolving expression clusters are enriched for
both adaptively evolving and reproduction related genes.
Similarly, a subset of immune response genes have high
levels of nucleotide polymorphism within species [48-
50], which is also consistent with our MKtest analysis of
within species clusters.

Conclusion
To understand how complex phenotypes evolve, we need
to understand how interacting genes evolve. We have ana-
lyzed expression microarray data from species in the Dro-
sophila melanogaster subgroup, including data from ten
distinct D. simulans lines and identified blocks of genes

Table 3: Number of overlapping significant windows between the analysis of all species and within D. simulans.

Chr Pval 2 4 6 8 10 12 14 16 18 20

X 0.05 2(28,34) 4(64,73) 5(90,107) 2(101,128) 6(98,126) 5(109,122) 1(105,109) 5(101,117) 8(102,128) 3(110,121)
X 0.01 1(10,10) 2(15,19) 1(11,30) 0(15,32) 0(20,34) 0(26,34) 0(25,38) 0(26,37) 0(21,35) 0(25,31)
X 0.001 0(4,4) 0(7,6) 0(2,6) 0(4,9) 0(2,16) 0(7,11) 0(4,1) 0(2,7) 0(3,7) 0(2,7)
2L 0.05 2(31,25) 6(72,86) 10(88,129) 12(107,144) 19(117,155) 17(123,143) 18(130,154) 15(121,160) 20(126,171) 23(128,163)
2L 0.01 0(7,6) 2(15,25) 1(15,30) 0(16,33) 0(21,38) 1(25,36) 0(29,36) 2(23,42) 1(23,49) 1(27,41)
2L 0.001 0(1,2) 2(6,8) 1(3,10) 0(3,3) 0(3,5) 0(1,11) 0(6,14) 0(6,10) 0(7,14) 0(6,17)
2R 0.05 5(39,30) 3(104,86) 2(139,121) 6(150,146) 1(130,163) 1(123,171) 2(115,137) 7(122,130) 7(133,132) 5(159,120)
2R 0.01 0(5,7) 0(19,16) 0(30,35) 0(39,37) 0(42,41) 0(45,38) 0(49,27) 0(57,41) 0(58,43) 0(56,33)
2R 0.001 0(1,1) 0(5,2) 0(10,12) 0(18,14) 0(10,15) 0(21,12) 0(17,6) 0(37,9) 0(29,6) 0(35,11)
3L 0.05 6(36,37) 9(89,90) 9(114,107) 10(114,118) 14(123,127) 13(118,122) 22(132,129) 30(125,133) 26(119,134) 23(117,146)
3L 0.01 5(12,9) 4(16,20) 5(31,24) 6(25,35) 7(28,33) 10(26,35) 8(29,44) 12(21,43) 10(22,46) 1(11,44)
3L 0.001 3(7,5) 3(5,11) 3(8,9) 3(9,11) 5(8,12) 4(6,18) 2(5,25) 4(4,22) 2(3,22) 0(0,21)
3R 0.05 0(61,42) 4(113,96) 7(133,129) 13(143,149) 13(172,133) 20(172,139) 18(145,145) 16(149,137) 17(146,159) 20(158,155)
3R 0.01 0(13,8) 0(25,16) 0(30,24) 0(31,25) 1(36,27) 0(28,28) 3(29,35) 3(30,36) 0(27,36) 0(24,31)
3R 0.001 0(4,2) 0(7,3) 0(9,5) 0(10,4) 0(8,2) 0(8,8) 0(4,11) 0(10,11) 0(1,6) 0(5,9)
4 0.05 0(1,0) 0(2,0) 0(4,0) 0(7,0) 0(8,3) 0(9,3) 0(9,3) 0(5,0) 0(2,1) 0(1,1)
4 0.01 0(0,0) 0(1,0) 0(3,0) 0(5,0) 0(6,0) 0(5,0) 0(3,0) 0(1,0) 0(0,0) 0(0,0)
4 0.001 0(0,0) 0(1,0) 0(0,0) 0(0,0) 0(6,0) 0(5,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0)

TOTAL 0.05 15(196,168) 26(444,431) 33(568,593) 43(622,685) 53(648,707) 56(654,700) 61(636,677) 73(623,677) 78(628,725) 74(673,706)
TOTAL 0.01 6(47,40) 8(91,96) 7(120,143) 6(131,162) 8(153,173) 11(155,171) 11(164,180) 17(158,199) 11(151,209) 2(143,180)
TOTAL 0.001 3(17,14) 5(31,30) 4(32,42) 3(44,41) 5(37,50) 4(48,60) 2(36,57) 4(59,59) 2(43,55) 0(48,65)

The first number in parentheses is the number of overlapping significant windows when comparing repeated analysis of the mean expression data 
for all species and the second number in parentheses is the number of overlapping windows when comparing repeated analysis of the D. simulans 
data.
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Heat map of p-values resulting from the sliding window analysis within D. simulans projected onto the D. melanogaster genomeFigure 3
Heat map of p-values resulting from the sliding window analysis within D. simulans projected onto the D. melanogaster genome. 
Color coding follows Figure 2.



BMC Evolutionary Biology 2008, 8:2 http://www.biomedcentral.com/1471-2148/8/2
where there is coordinated evolution of expression among
species. We have also identified clusters where there is co-
expression within the species D. simulans. Our work
shows that coordinated evolution of expression among
physically adjacent genes among species and co-expres-
sion among adjacent genes within species is common. In
general, there is little correspondence between clusters
where there is co-evolution of expression and those clus-
ters where there is co-expression within species for the
species analyzed. The evolutionary forces shaping these
two types of clusters are clearly different. Our analysis of
co-expression within a species showed no relationship
between adaptive evolution at the sequence level and
expression of genes within clusters. In contrast, adaptive
sequence evolution is associated with those genes in clus-
ters where expression is evolving in a coordinated man-
ner. In sum, we find that just as expression of genes is not
independent of physical location of genes within a spe-
cies, the evolution of expression of many genes is not
independent of the evolution of their neighbors. We also
show that this result is not simply the byproduct of clus-
ters of duplicated genes. Our analysis suggests that clusters
of genes where there is co-evolution of expression may be
natural units for quantifying and understanding the evo-
lution of transcriptomes.

Methods
Data Collection
For all species, flies were raised under the standardized
conditions as described in Nuzhdin et al. 2004 [25].
Under these conditions, a component of the variation in
gene expression will reflect evolved differences among
species. For males three days post-pupation, RNA was
extracted from whole adult tissue using 20 individual flies
per replicate. Assays of transcript abundance were carried
out using Drosophila 1.0 Affymetrix GeneChip Arrays
using the recommended protocols (Affymetrix Inc, Santa
Clara, CA). Assays were carried out on three independent
(biological) replicates per species for a single line of the
following five additional species: D. yakuba (Tuscon Stock
Center Number: 14021-0261.00), D. santomea (TSCN:
14021-0271.00), D. teissieri (TSCN: 14021-0257.00), D.
mauritiana (David 105, TSCN: 14021-0241.01), D. sechel-

lia (Roberstson, TSCN: 14021-0248.21). These data were
combined with data previously collected for D. mela-
nogaster and D. simulans under the same conditions that
used the same Affymetrix GeneChip Array [25]. Analyses
of the entire data set therefore included a total of 48 inde-
pendent transcript assays covering seven Drosophila spe-
cies in the D. melanogaster subgroup (Figure 1). Array data
have been deposited in GEO repository (Series record
GSE7873). Processed data after background correction
and normalization without masking are available in the
Additional files (Additional file 2).

Note that the samples assayed for D. melanogaster reflect
an even genotypic contribution of 10 isogenic lines devel-
oped from a wild population (Winters, CA) and crossed in
a round-robin design. Variation in transcript abundance
in D. melanogaster therefore includes variation due to pol-
ymorphism and measurement error. For D. simulans, three
replicate arrays were used to assay each of 10 round-robin
crosses between 10 isogenic lines developed from the
same population. Each group of three replicates for D.
simulans can therefore be used as an estimate of the expres-
sion levels associated with individual (heterozygous) gen-
otypes and the variation assayed can be attributed to
measurement error. Variation in transcript abundance
among these D. simulans genotypes provides an estimate
of the within species genetic variation in gene expression.
For all other species, variation among replicate arrays
includes only measurement error. Analysis of the means
of transcript abundance among these seven different spe-
cies therefore provides an estimate of the variation in gene
expression that has evolved among species.

Microarray Probe Masking and Normalization
The Drosophila 1.0 Affymetrix GeneChip is designed with
probe sets for 14,010 locations of the D. melanogater
genome with sets usually containing 14 pairs of 25-
nucleotide probes. For each pair, one of the pair is a 'per-
fect' match (PM) to the D. melanogaster reference sequence
and the other differs only at the 13th base and is the mis-
match probe (MM), the latter used to account for non-
specific hybridization. We expect many of the PM probes
to not be perfect matches for other species. To account for

Table 4: Comparisons of the spatial distributions of co-expression clusters.

X 2L 2R 3L 3R

Within Species 1.16 1.47 1.24 0.96 1.1
Between Species 1.4 0.83 1.13 1.16 0.8
Genome 2.63 2.23 2.76 4.88 2.64

See Methods for full description. Typically, values around 1 suggest a random spatial distribution; values above 1 indicate clustering. Due to our 
masking approach, this was limited to genes included in our analysis. Interleaved and nested genes were ignored. "Within species" refers to the co-
expression clusters found within D. simulans. "Between species" refers to the clusters found to be evolving among species. "Genome" refers to the 
genome wide estimate from the D. melanogaster genome.
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these effects, we removed all probe pairs where the PM
probe is not an exact sequence match to D. yakuba. D. mel-
anogaster and D. yakuba shared a common ancestor ~6
million years ago [26] and reflect the broadest taxonomic
sampling of the species analyzed. Probe homology
between them makes the probes likely to be perfect
matches for all species analyzed. Indeed comparison of D.
yakuba to D. simulans shows that this is true for 87.4% of
genes included in our analysis. For maximum power, we
would mask only those probes that were divergent in a
particular species, however, for several practical reasons
we did not do this: 1. we found that including the D. simu-
lans mismatches had little effect, once the D. yakuba was
masked, 2. adding D. sechellia has little effect vs D. simu-
lans, 3. as genome sequences are not available for all spe-
cies in our study, we cannot make masks for all taxa. From
an analysis point of view, using multiple masks is prob-
lematic as the power and precision of expression estima-
tion would then vary across taxa. We therefore opted for a
conservative approach of masking all taxa based on the
most divergent genome, which should catch the most
egregious cases. This approach is conservative as
unmasked divergent probes typically, but not always, lead
to over-estimates of expression (see below). As explained
below, our analysis looks for genes showing consistent
patterns of expression across taxa among expressed genes
(e.g. those that appear to be above background). Includ-

ing the occasional mismatch likely reduces our power to
detect such a pattern, not create it. Thus, positive results in
our analysis are probably robust to the spurious noise
caused by mismatched probes.

To identify probes for removal (masking) we used BLAST
to compare the Affymetrix target sequences from this array
to identify homologous regions in release 2.0 of the D.
yakuba genome. We conducted this analysis on each chro-
mosome arm to minimize spurious matches. Contigs with
the best matches to the target sequences were then com-
pared to the Affymetrix probe sequences. Full matches
were then extracted and the percent match calculated and
the locations and types of mismatches noted. After probe
removal, a total of 7024 probe sets were still represented
on the array, with the following breakdown for number of
probes removed (0–3) 85, (4–6) 396, (7–9) 1701, (10–
12) 4842. Note that if (13) or (14) probes were removed,
the probe set was not included in the analysis.

A number of previous analyses have found that highly
expressed genes tend to evolve at a slower rate [51-53].
This will result in two effects. First, we expect genes with
low expression to have more probes removed and on aver-
age will therefore have higher standard errors. This will
tend to reduce our chances of identifying co-expression
clusters for these genes. Second, a larger proportion of

Table 5: Over-representation of gene classes in clusters.

Among Species D. simulans Both

Male specific sperm protein Protein of unknown function UPF0131 Glycoside hydrolase, family 22, lysozyme
Fruit fly testis-specific protein Chorion 2 Lysozyme c
Developmental protein Insect vitellogenin LYZ1
Establishment of localization Uncharacterized conserved protein Antimicrobial
Exocrine system development Antibacterial humoral response Bacteriolytic enzyme
Glycerol kinase activity Antimicrobial humoral response Chorion
Localization Cell wall catabolism External encapsulating structure
Multigene family Defense response to bacteria Lysozyme activity
Reproduction Eggshell formation Polysaccharide degradation
Salivary gland determination Female gamete generation Sexual reproduction
Salivary gland development Gametogenesis Structural constituent of chorion (sensu Insecta)
Spermatogenesis Glycosidase
Tandem repeat Humoral defense mechanism (sensu Protostomia)
Transport Humoral immune response
Transporter activity Hydrolase activity, acting on glycosyl bonds

Insect chorion formation
Membrane lipid metabolism
Phospholipid metabolism
Response to bacteria
Response to pest, pathogen or parasite
Signal
Structural molecule activity
Sulfation
Vitellogenesis

Classes presented are those with a p-value < 0.05 as determined by DAVID (see Methods) for the clusters identified with a window size of 2 and a 
p-value cutoff of p < 0.001.
Page 10 of 17
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:2 http://www.biomedcentral.com/1471-2148/8/2
genes with low expression will be removed from the anal-
ysis completely since none of the probes will be homolo-
gous between D. melanogaster and D. yakuba. If higher
expressed gene are comparatively enriched for co-expres-
sion clusters within species, our analysis will be consider-
ing a subset of genes that are potentially enriched for
within species clusters. Given that our permutation
approach permutes among genes for which we have data
this may lead to inflation of the number of clusters iden-
tified as significant at different cutoffs. However, testing
the null hypothesis of the existence of co-expression clus-
ters or clusters where there is co-evolution of expression is
still valid in this case and the relative ordering of signifi-
cance will not be affected. We therefore expect the clusters
identified as the most significant in our analysis to reflect
the most likely candidates for being true co-expression
clusters or clusters where there is co-evolution of expres-
sion.

Background correction and normalization of our masked
set was carried out using packages available in Bioconduc-
tor [54]. We found that a Loess smoothing followed by
"mas5" and "liwong" [in Bioconductor: liwong or
mas5(normalize(, method="loess"))] produced the best
correction for intensity dependent trends as determined
by MA plots (see Additional file 1). Results of our co-
expression analysis for these two normalizations did not
differ qualitatively and in the following we only present
the results for MAS5. Note that the Loess smoothing has a
stochastic component which results in slightly different
measures for a given run. We repeated our Loess + normal-
ization five times to assess the effects of this stochastic
component. Differences when running the co-expression
analysis on these were found to be minimal and we ran-
domly chose one outcome for further analysis.

Obtaining accurate transcript abundance measures using
the masking approach depends on the assumptions that
using a subset of the 14 probe pairs does not dramatically
bias the final measure of transcript abundance. Con-
versely, using a known PM probe that is diverged among
species is expected to produce a biased measure. To assess
the first of these assumptions, we compared the level of
expression for in D. yakuba for 21 genes where all 14
probesets in D. yakuba were also PM in D. melanogaster.
We analyzed the effect of removing 1, 5, 9, and 12 probes
on the final expression measure using Loess + MAS5 (Fig-
ure 4A). We found that while the effect of probe removal
can have a significant effect on expression (mean R2 for
removal of 1, 5, 9, and 12 probes were 0.008, 0.0236,
0.1449, 0.1718, respectively), the effect is equally likely to
be an increase or decrease – that is, the direction of the
change in effect tends to be random (p-value >> 0.05 for
sign tests). For the second assumption, we compared the
gene expression levels after masking sets of 21 randomly

chosen genes that had 1, 5, 9, and 12 mismatched probes
when compared to D. yakuba to the results when not
masking these probes (Figure 4B). The results were even
more significant (mean R2 for removal probes were
0.2887, 0.3480, 0.3333, 0.4310, respectively) but biased
towards producing smaller values when masking (sign
test p-value << 0.01). In other words, including mis-
matched probes tends to bias estimates of expression
upward. This is the overall trend when comparing the
masked to unmasked measures for the probe sets included
in the analyses described below (Figure 4C). We suspect
this result occurs because a small subset of probes hybrid-
ized heterologous cRNA better than homologous cRNA.
This subset of probes has a disproportionate effect on the
mean because of the inability of the technology to detect
differences between poorly hybridizing probes and very
poorly hybridizing probes.

We used Ensembl (CG/CR) annotation provided by
Affymetrix and merged these with the Drosophila melano-
gater genome annotation (release 4.3) retaining genes
with protein coding regions (CDS, protein, and gene). We
used the D. melanogaster annotation to determine gene
order. In total, our gene ordering included 14517 genes.
After masking, we obtained transcript abundances for
7024 that were dispersed relatively evenly across the entire
genome and generally tracked gene density: X: 1118, 2L:
1236, 2R: 1421, 3L: 1408, 3R: 1811, 4: 30. Our co-expres-
sion analysis was carried out on the entire ordering of
14517 genes handling missing data as described below.
The genes along each chromosome were ordered based on
the start coordinates of D. melanogaster and were num-
bered consecutively (See Additional file 3).

We performed ANOVAs to assess whether there was signif-
icant variation among the 7024 genes among species and
within D. simulans. For a significance level of 0.05 we
found 5344 (among) and 6825 (within) tests and at
0.001 we found 3111 and 2887, respectively. Thus, there
appears to be detectably significant variation for most of
the genes consider in our analysis.

Evolutionary Co-Expression Analysis
Our approach for identifying clusters where there is co-
evolution of expression is closest to the analysis of corre-
lation approach used by Spellman and Rubin 2002 with
the following two differences: 1. use of an eigenvalue ratio
statistic to summarize correlations within a window
instead of the mean correlation, and 2. analysis of all win-
dow sizes from 2–20 instead of limiting analysis to a sin-
gle window size of 10 genes. For the co-expression
analysis, we calculated the mean value of each gene for a
given species using the total set of the arrays used to assay
that species. We then carried out a sliding window analy-
sis of the correlations among pairs of consecutive genes,
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i.e. correlations for pairs of genes were considered where
there were seven 'species' observations per gene. Our test
statistic for each window is calculated as follows: 1. per-
form a principal components analysis (i.e. calculate eigen-
vectors) on the correlation matrix for all the genes in the
window, 2. calculate the ratio of the first eigenvalue com-
pared to the sum of all of the eigenvalues. Intuitively, this
statistic reflects the fraction of variation along the first
principal component. As an example of the structure of
correlation captured by this statistic, consider the follow-
ing correlation matrices:

The value of our statistic for these matrices is 0.45, 0.825,
and 0.825 respectively. Note that this statistic tends to
reflect our intuition about the extent of correlation among
the (in this case) four genes in the window. In the first
case, gene pairs {1,2} and {3,4} are highly correlated but
there is no correlation between genes in different pairs.
This is therefore a case where the entire set of genes are not
highly correlated compared to the case of the second
matrix where every gene is highly correlated with every
other gene in the window, and the statistic reflects this
structure (0.825 > 0.45). Also, note that it does not matter
if the correlations are negative or positive, only that the

genes are acting as a correlated group, i.e. the second and
third matrices have the same value of the statistic.

The co-expression analysis proceeded by calculating the
eigenvalue ratio statistic for each consecutive (overlap-
ping) window along each individual chromosome for
window sizes of 2–20. Note that in most cases, missing
data caused the total number of genes in a given window
to be less than the window size. A direct consequence of
this is that larger window sizes often included the same
number of gene sets as smaller window sizes for specific
windows. Each window size in the analysis should there-
fore not be considered as analyzing the exact number of
genes of the window size but as a relative measure consid-
ering more genes on average as the window size increases.

To identify specific sets of genes that have more extreme
co-expression for a given window size, we randomly per-
muted data within each chromosome for genes where we
had data. We did this randomization 1000 times and
repeated the sliding window analysis each time. We then
counted the number of consecutive windows that had val-
ues of the statistic greater than the top 5%, 1%, and 0.1%
of these random sets. In many cases, these groups of genes
at the various cutoffs overlap. We compared the number
of significant tests at these cutoffs to the expected number
we would obtain if there were no true significant tests.
This is the expected number of false discoveries and the
ratio of these two is an estimate of the false discovery rate
[34]. We present the number of significant windows
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Effects of probe masking on the estimated expression levelFigure 4
Effects of probe masking on the estimated expression level. Each circle reflects the slope of the regression divided by mean 
squared error for a single probe set for a regression using all 48 samples: A) Effect of masking random probes for probe sets 
where all 14 probes are perfect matches for both D. melanogaster and D. yakuba, B) Effect of masking in probe sets where 
probes masked have diverged between D. melanogaster and D. yakuba (all other probes in a set are perfect matches for both 
species), C) Effect of masking for all probe sets included in the analysis.
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(Table 1), the p-values associated with each window
(Additional file 4), and merged significant windows at the
0.05 significance level (Additional file 5).

We additionally used a randomization approach to assess
whether the genome-wide number of clusters where
expression is co-evolving is greater than we would expect
at random. We repeated the analysis and 1000 permuta-
tions for 100 random data sets, where again, we randomly
re-ordered the genes within a chromosome for which we
had data (i.e. we kept the missing data structure intact).
We then repeated the co-expression analysis for window
sizes 2, 5, 10, and 20 and counted the number of windows
that had p-values less than 0.001 of the 1000 random sets
of a given window size as described in the previous para-
graph, i.e. our statistic used to assess significance is the
number of windows identified at a given cutoff in our
original data (Table 1). We used the 0.001 cutoff since this
corresponds to the lowest FDR levels associated with the
number of significant windows that we identified and we
therefore have the greatest confidence that many of these
reflect true clusters where expression is co-evolving. We
did not perform this analysis for all window sizes given
computational constraints.

A potential concern with this approach is that a single spe-
cies with dramatically different gene expression levels may
be driving the pattern across all species, i.e. not all species
are evolving so co-expression is species specific. To assess
this possibility we performed the sliding window analysis
after removing a single species and compared the results
to the analysis including all species. A dramatic difference
between the number of regions identified would indicate
that the overall pattern may be lineage/species specific.
We determined the number of windows that were below
a given cutoff in both the analysis of all species and for the
analysis with one species removed. We present these
results in Additional file 6. As a metric for comparison, we
also determined the number of windows below cutoffs for
the original analysis of all species and for a repeated anal-
ysis of all species (i.e. an additional independent 1000
permutations). Results are presented in Table 3.

An additional concern with our analysis is we are using
the gene ordering of D. melanogaster. For species in the D.
yakuba branch there are known to be a considerable
number of rearrangements affecting gene order. For such
locations, our analysis is not being performed on genes
that are physically adjacent for all species. If our analysis
is identifying adjacent genes that are more correlated than
other gene sets, we would not expect to find highly corre-
lated genes that are interrupted by these breakpoints more
often than expected by chance. To assess this possibility,
we mapped D. yakuba breakpoints to positions of the
regions where expression is co-evolving. We generated

this file by computationally comparing the locations of all
D. yakuba genes in our array data set to the position of
their D. melanogaster homolog. Anywhere that a block of
D. yakuba genes shifted to a new position was recorded
and marked as an inversion breakpoint. These break-
points are essentially the same as those noted in Lemeu-
nier and Ashburner 1976 [55]. Like Ranz et al. 2007, we
find no effect of the presences of breakpoints on the pres-
ence or absence of cluster.

Within Species Co-Expression Analysis
The entire co-expression analysis was also repeated to
identify co-expression domains within D. simulans. We
used the D. yakuba mask file for this analysis so that the
results are directly comparable to the results among spe-
cies and conservative as we likely mask more genes than
necessary. These data consisted of three replicate array
assays for 10 crosses between D. simulans lines [56]. While
expression array analysis of each cross therefore does not
assess the transcript abundance variation associated with
a single genotype, assay of these crosses provides a reason-
able estimate of the variation observed in this D. simulans
population. We performed the co-expression analysis on
the mean value associated with each of the genotype
crosses. We present the number of significant windows
(Table 2), the p-values associated with each window
(Additional file 7), and merged significant windows at the
0.05 significance level (Additional file 8). We compared
these regions to those found among species by comparing
the number of windows with p-values below 0.05, 0.01,
and 0.001. As a metric for comparison, we also deter-
mined the number of windows below cutoffs for a
repeated analysis of D. simulans (Table 3).

The evolutionary analysis of transcript abundance consid-
ers a single representative line per species with the excep-
tion of D. simulans. Thus, the observed variation between
species – in principle – may only reflect the typical intra-
specific variation between any two lines within species. To
assess this possibility, we performed individual ANOVAs
for each gene comparing the values of the D. simulans
crossed-genotypes to the other six species considered as a
group. We compared the distribution of p-values for this
analysis to ANOVAs for the same partition where each
array was assigned to a partition at random. We identified
far more p-values at a given cutoff for the D. simulans vs.
other species indicating that the variation we are analyz-
ing between species is far greater than the variation we
observed within the 10 combined-genotypes of D. simu-
lans (6825 significant tests as compared to 5291 in the
random assignment at 0.05, 2887 significant compared to
2022 random at 0.001).

We compared the relative locations of clusters we identi-
fied to be evolving across species and within D. simulans
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at the 0.05 and 0.001 cutoffs to the intra-species clusters
identified in D. melanogaster by Spellman and Rubin 2002
[12]. Since Spellman and Rubin 2002 reported a set of
clusters representing merged overlapping windows using
a window size of 10 genes, we calculated merged windows
for a window size of 10 for our among and within species
analysis and compared the overlap between these win-
dows. Note that in the Spellman and Rubin 2002 study,
the co-expression among genes expressed at different
developmental stages and under different environmental
conditions was analyzed while in the current study, only
expression at the adult stage was considered. Not surpris-
ingly, we found little correspondence between the co-
expression clusters identified within D. simulans when
compared to the results of Spellman and Rubin 2002.

Additional Representation Analyses
We considered whether the existence of paralogous genes
could explain the existence of clusters. Tandem pairs of
duplicated genes were identified by sequentially estimat-
ing the degree of similarity of all neighboring pairs of
genes on all major chromosomes using the gene ordering
of FLYBASE v5 (i.e. we are using D. melanogaster as a refer-
ence). At a local scale these syntenic relationships should
be preserved across taxa [33]. The first transcript of each
gene (e.g. PA) was translated and pairs of proteins were
then aligned with bl2seq, a version of BLAST that is opti-
mized for pair wise alignments. Genes with 85% amino
acid similarity were considered tandem duplicates. Typi-
cally, more than 90% of these genes were greater than
90% similar in amino acid sequence. We then determined
the number of cases where paralogs gene pairs were
located within clusters identified among species and
within D. simulans (Additional file 9).

We also considered whether clusters either within D. simu-
lans or among species tend to be located at regions of high
gene density. We calculated the gene density in a co-evolv-
ing or co-expression window from the start of the first
gene to the start of the last gene in that cluster. We then
calculated the empirical distribution of like sized win-
dows across that chromosome arm. The mean gene den-
sity of clusters was then compared to this distribution.

We used the coefficient of dispersion ( ), a com-

monly used as a measure of spatial clustering, to look at
large scale spatial patterns of both genes and clusters. For
genes, the distance (in nucleotides) from the end of one
gene to the start of the next was calculated for each locus.
For clusters, we used the distance in nucleotides from the
end of one cluster to the start of the next. The mean, vari-
ance, and CD were calculated for each chromosome arm
for both genes and clusters. CD much greater than one

normally suggests clumping; CD less than one indicates
over dispersal.

We mined FLYBASE for genetic map data and physical
map data. From these data we inferred regional recombi-
nation rates. We then compared the mean recombination
rate of the genes in our clusters to the genome average.
There was no significant difference.

We used the D. melanogaster annotation to see if pairs of
genes within clusters tended to be on the same strand as
each other. For simplicity, we limited this analysis to clus-
ters of only two genes. If shared cis-regulatory regions were
critical to coordinated expression evolution, we may
expect that the genes would tend to be on the same stand.

We used the DAVID analysis tool [57] to determine which
gene ontology classes were over-represented in identified
clusters. We did this for both clusters identified across spe-
cies and within D. simulans at window size of 2 and 10
using the 0.05 and 0.001 cutoffs.

Evolutionary Analysis
Begun et al. 2007 identified genes in the D. simulans
genome that deviated from the standard neutral model in
a manner consistent with recurrent directional selection.
They performed both polarized and unpolarized McDon-
ald-Krietman tests [43]. Polarized tests only identify genes
evolving "adaptively" along the D. simulans lineage.
Unpolarized tests confound divergence across both D.
melanogaster and D. simulans lineages, but may capture
genes adaptively evolving in both species. Both data sets
were used to see if genes within clusters – either within D.
simulans or among taxa – are enriched for adaptively
evolving genes. We employed a re-sampling approach to
determine if one particular subset of genes was enriched
(10,000 samples for each analysis). As only those genes
for which sufficient polymorphism data were used Begun
et al.'s analysis, only a subsample of the genome was
tested (unpolarized N = 6704; polarized N = 2653). As
detailed in Begun et al. 2007, if a correction for multiple
testing, such as a Bonferroni correction, is used very few
genes in the genome-wide comparison are significant.
Thus, for the resampling analysis we set a nominal p-value
threshold for the McDonald-Krietman tests; enrichment is
thus defined as having a significantly greater number of
McDonald-Krietman tests with p-values below this nomi-
nal threshold.
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Additional File 1
MA plots. Representative MA plots comparing array results within D. 
simulans and across species.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-2-S1.ppt]

Additional File 2
Array data without mask. Processed data for the 48 Affymetrix arrays used 
to analyze the seven species after Loess smoothing and background correc-
tion + normalization using MAS5 without masking (see text). The list 
includes genes with protein coding regions from the Drosophila mela-
nogaster genome annotation (release 4.3). Columns are as follows: A. 
Ensembl - the CG/CR annotation provided by Affymetrix, B. Chromo-
some, C. Strand - + sense/- anti-sense, D/E. Start/Stop from release 4.3, 
F. Affymetrix Probe Set ID, G-I. Replicates for Drosophila mela-
nogaster, J-L. D. sechellia, M-0. D. mauritiana, P-R., D. teissieri, S-
U. D. yakuba, V-Y. D. santomea, Z-BB Replicates for the 10 crosses (3 
each) of D. simulans.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-2-S2.7Z]

Additional File 3
Array data with mask. Processed data for the 48 Affymetrix arrays used to 
analyze the seven species after Loess smoothing and background correction 
+ normalization using MAS5 after probe masking (see text). A-F. Same 
as Additional file 2, G. Number of probes in the probe set removed by 
masking, H-N. Mean values for the seven species, O-BJ. see Additional 
file 2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-2-S3.7Z]

Additional File 4
Among species sliding window analysis. p-values determined for each win-
dow in the among species analysis. The p-value is listed on the row of the 
first gene of the window considered. A-G. Same as Additional file 3. H. 
number of genes used to calculate values, I. eigenvalue statistic, J. p-value, 
for a window size of 2 genes, L-BL. same for window sizes 3–20.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-2-S4.7Z]

Additional File 5
Merged windows among species 1. Merged windows found to be signifi-
cant at p-value = 0.05 in the across species analysis. A-G. Same as Addi-
tional file 3. H-Z. Window sizes 2–20.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-2-S5.xls]

Additional File 6
Merged windows among species 2. Results of repeating the sliding window 
analysis when removing one species at a time. Each window size presents 
the number of significant windows found in the analysis of all species and 
the numbers in parentheses reflect the range of significant windows iden-
tified when repeating the analysis removing one species at a time.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-2-S6.xls]

Additional File 7
Drosophila simulans sliding window analysis. p-values determined for 
each window in the D. simulans analysis. The p-value is listed on the row 
of the first gene of the window considered. A-BL same as Additional file 4.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-2-S7.7Z]

Additional File 8
Merged windows Drosophila simulans 1. Merged windows found to be 
significant at p-value = 0.05 in the D. simulans analysis. A-G. Same as 
Additional file 5. H-Z. Window sizes 2–20.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-2-S8.xls]

Additional File 9
Merged windows Drosophila simulans 2. Sets of paralogous genes and 
representation of these sets among significant windows identified at p-
value < 0.001. A-C. Chromosome location and names of paralogous gene 
pairs. Note that some of these combine into larger paralog gene sets (high-
lighted in yellow or green). D-H. Results for the among species analysis 
("AS"), i.e. window size used in the analysis, number of significant win-
dows (numbers correspond to Table 1), number of these windows that con-
tain paralogous, the number of paralogous in significant windows, the 
number of paralogs not in significant windows. I-M. Analogous results for 
the analysis within D. simulans ("WS").
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-2-S9.xls]

Additional File 10
Over-represented gene classes. Classes of genes over-represented in co-
expression clusters as identified using DAVID (see text). Results are pre-
sented for the analysis among species and for the analysis within D. simu-
lans for window size of 2 at the p-value cutoff of p-value = 0.001. Classes 
with p-values < 0.05 as determined by DAVID are presented.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-2-S10.xls]
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