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Abstract
Background: The neprilysin (M13) family of endopeptidases are zinc-metalloenzymes, the
majority of which are type II integral membrane proteins. The best characterised of this family is
neprilysin, which has important roles in inactivating signalling peptides involved in modulating
neuronal activity, blood pressure and the immune system. Other family members include the
endothelin converting enzymes (ECE-1 and ECE-2), which are responsible for the final step in the
synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered
valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family
have not been functionally characterised, but are also likely to have biological roles regulating
peptide signalling. The recent sequencing of animal genomes has greatly increased the number of
M13 family members in protein databases, information which can be used to reveal evolutionary
relationships and to gain insight into conserved biological roles.

Results: The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven
classes, one of which appears to be specific to mammals, and insect genes into five functional classes
and a series of expansions, which may include inactive peptidases. Nematode genes primarily
resolved into groups containing no other taxa, bar the two nematode genes associated with
Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between
chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes.
Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their
biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their
strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite
may be instrumental in determining the specificity of M13 peptidases for their substrates and thus
allows M13 peptidases to fulfil a broad range of physiological roles.

Conclusion: The M13 family of peptidases have diversified extensively in all species examined,
indicating wide ranging roles in numerous physiological processes. It is predicted that differences
in the S2' subsite are fundamental to determining the substrate specificities that facilitate this
functional diversity.
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Background
The neprilysin (M13) family of zinc-metallopeptidases is
a large group of medically and developmentally impor-
tant enzymes of which mammalian neprilysin (EC
3.4.24.11, neutral endopeptidase, NEP) was the first
member to be biochemically characterised [1]. They
metabolise bioactive peptides and are involved in a
number of biological processes in mammals including
modulation of neurotransmitter levels, reproduction,
control of blood pressure and cancer progression. The
majority of M13 peptidases described so far are
endopeptidases with a strong preference for cleaving the
amino-terminal bond of hydrophobic residues [2]. Many
are selectively inhibited by phosphoramidon and, typi-
cally, the substrates are small to medium sized peptides,
including tachykinins, opioid peptides, big-endothelins
and bombesin. Recently, it has been shown that two
members of the neprilysin family cleave the Alzheimer's
amyloid β-peptide (Aβ) in the mammalian brain and that
ex-vivo expression of neprilysin reduces amyloid plaque
burden in a mouse model [3]. Neprilysin and the nepri-
lysin-like peptidases are typically type II integral mem-
brane proteins with their active sites facing the
extracellular environment [2]. Soluble neprilysin-like
enzymes however do occur in mammalian (human
MMEL2 and rodent SEP/NL1 and NEPII) and insect (Dro-
sophila melanogaster) tissues [4,5]. Both mammalian and
insect soluble enzymes are strongly expressed in the testes
suggesting a physiological role in reproduction. Indeed,
female mice mated with males lacking SEP/NL1 have
smaller litters confirming the important role for this
enzyme in mammalian reproduction.

The endothelin converting enzymes (ECE-1 and ECE-2)
and the ECE-like group of enzymes all have distinctive
biology. ECE-1 exists as four isoforms and has a physio-
logical role in the metabolism of endothelins by generat-
ing mature endothelin from the inactive precursor big-
endothelin [6]. ECE-1 knockout mice show a fatal devel-
opmental phenotype with severe disruption to several
developmental processes, including craniofacial develop-
ment [7]. ECE-2 is predominantly neurally expressed and
is thought to be involved in the processing of peptides
prior to secretion [8].

ECEL-1 and its rodent homologue, damage-induced neu-
ronal endopeptidase (DINE), are two of the least well-
characterised members of the M13 family [9]. DINE was
identified due to its up-regulation after neuronal damage
and has been shown to be neuro-protective. DINE-knock-
out mice develop normally, but die immediately after
birth due to an inability to inflate their lungs [10]. No
physiological substrate for ECEL-1/DINE has been identi-
fied, which has hindered understanding the neuro-protec-
tive mechanism and its role in respiratory control.

PHEX is a gene that has been shown to be deficient in
patients suffering X-linked hypophosphataemic rickets
(XLH) [11]. PHEX has no known natural substrate,
although it has been reported that it may cleave FGF-23, a
member of the fibroblast growth factor family that inhib-
its renal tubular phosphate transport [12]. PHEX is unu-
sual for an M13 peptidase in that it appears to have a
preference for acidic residues at its S1' site [13]. Kell is an
important blood group antigen but is also found in the
sertoli cells in the testes [14,15]. Kell can convert big
endothelin-3 to biologically active endothelin-3 from its
precursor protein [14]. Kell is an atypical M13 peptidase
having no transmembrane domain, but is instead nor-
mally covalently anchored to the membrane protein XK
[16]. Deficiency in Kell does not cause disease, but XK null
patients (who also lack Kell) suffer from McLeod's syn-
drome, which leads to acanthocytic anaemia [16].

Invertebrate M13 peptidases have been found in organ-
isms ranging from Hydra vulgaris through to highly
derived insects such as Drosophila melanogaster. The sea
snail Aplysia californica and the mussels, Mytilus edulis and
Mytilus galloprovincialis, have neprilysin-like peptidases
[2]. These activities are involved in control of feeding in
the snail and have been implicated in modulating the
response of mussel immune effector cells [17,18]. Free-
living and parasitic nematodes also possess neprilysin-like
peptidases that cleave peptide bonds N-terminal to hydro-
phobic residues and are inhibited by phosphoramidon
[19-22]. A role for neprilysin in nematode locomotion
and reproduction has been established in a study of a
deletion mutant of Caenorhabditis elegans NEP1 [23].
Neprilysin-like activity is enriched in the brain neuropil
and in isolated synaptic membranes of relatively basal
insects, the locusts,Schistocerca gregaria and Locusta migra-
toria and the cockroach Leucophea maderae, indicating an
evolutionarily conserved role for M13 peptidases in the
functioning of nervous systems that use neuropeptides
extensively as neurotransmitters/modulators [2,24].
Recently an ECE-like gene was identified in L. migratoria
and was shown to be highly expressed in the central nerv-
ous system and the midgut [25]. Insect M13 peptidases
are associated with metamorphosis [26,27] and immunity
to bacterial, fungal and protozoan infections [28,29]. The
most thoroughly characterised insect M13 peptidase is D.
melanogaster NEP2, which is expressed in the stellate cells
of Malpighian (renal) tubules and in the testes of adult
male flies [4,30], where expression is strongest in the
elongating cyst cells.

Genome sequencing projects and individual gene studies
have provided a large and expanding set of protein
sequence data for comparative genomic and phylogenetic
studies. Phylogenetics has traditionally concentrated on
deducing the evolutionary relationships of various taxa
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being examined, ranging from whole reconstruction of
phyla level relationships to finer resolution studies of
individual species groups. However, phylogenetic tech-
niques can also be used to attempt to unravel the func-
tional and evolutionary relationships of a set of
paralogous genes. The work presented here provides an
extensive examination of the functional relationships of
M13 peptidases and provides new insights into the evolu-
tion of this medically important family of peptidases.

Results and Discussion
Identification and alignment of M13 protein sequences
A combination of methods (including, BLASTP, PSI-
BLAST and HMMs) were employed to identify M13
sequences from the genomes of seventeen organisms,
eleven of which were from fully sequenced genomes and
six of which were from individual entries in GenBank
(Additional file 1). Simple BLASTP analysis against NCBI,
ENSEMBL and various species specific databases identi-
fied the majority of sequences used in this study (Addi-
tional file 1); human neprilysin [NP_009220] was used as
the query sequence. The remainder were identified from
the raw genomic data of D. pseudoobscura and Ap. mellifera
using the SHARKhunt software [31], This was particularly
valuable for the analysis of the Ap. mellifera genome, as we
identified two unannotated genes (Ame1 and Ame6).

The large dataset of protein sequences described above
was used to produce a multiple sequence alignment (Fig-
ure 1, Additional file 2). The program, MUSCLE was used
to align these sequences [32,33]. This program was cho-
sen as it aligns areas of strong local homology, which is
advantageous because of the strong conservation of cata-
lytic regions, but high variability in other regions of M13
proteins, in particular, the N-terminal region. This align-
ment was edited to remove large uninformative insertions
and was then analysed manually to determine the conser-
vation of key catalytic residues (Figure 1) as defined by
mutagenesis studies and by the crystal structure of human
neprilysin [34,35].

Phylogenetic analysis
Three methods of phylogenetic reconstruction were com-
pared in this study and were resolved into a single consen-
sus tree (Figure 2; for bootstrap values see Additional file
3). The three methods were able to resolve clades at the
extremes of the branches of the tree with a strong consist-
ency across all three methods. Deeper resolution was less
complete with many branches originating from the same
node (Figure 2).

A section of a multiple sequence alignment of M13 peptidasesFigure 1
A section of a multiple sequence alignment of M13 peptidases. A multiple sequence alignment of 111 protein 
sequences was generated using MUSCLE [32,33] and was as the basis for the analysis presented. A highly conserved section of 
the alignment, representing residues 541 to 652 of human neprilysin, contains important catalytic residues. These residues 
include the HExxH zinc binding motif and the catalytically important GENIAD and VNAFY motifs which are coloured blue. For 
full alignment see additional file 2.

VNAFYSSLENSIQFPAGILQGHFF-NAQRPKYMNFGAIGYVIGHEITHGFDDQGRQFDVKGNLRDWWHPDTQKAYLAKAKCIIEQYGNYTER-ATGLNLNGINTQGENIADNG
VNAFYSSLENSIQFPAGILQGHFF-NAQRPKYMNFGAIGYVIGHEITHGFDDQGRQFDVKGNLRDWWQPDTQKAYLSKAQCIIDQYGNYTER-ATGLHLNGINTQGENIADNG
VNAFYSSIENSIQFPAGILQGQFF-SYDRPKYMNYGAIGFVIGHEITHGFDDQGRQFDKNGNLVDWWQSDTKTAYLEKARCIIEQYGNYTEP-NVKLNLNGINTQGENIADNG
VNAFYSSIENSIQFPAGILQGAFF-SAKRPAYMNYGAIGFVIGHEITHGFDDQGRQFDKNGNLVDWWQEMTKEKYLDKAKCIIDQYSNYTVK-EVGLKLNGVNTQGENIADNG
VNAFYSSLENSIQFPAGILQGAFF-NNDRPRYMNYGAIGFVIGHEITHGFDDQGRQFDKNGNLVDWWAPQTKEKYLEKAECIIHQYGNYTVE-EVNLNLNGINTQGENIADNG
VNAYYSPTKNIIVFPAGILQPPFY-SSNFPKSINYGGIGIVVGHELTHGFDDQGRQYDLNGNLNNWWQKDTLAKFKKKAECMVEQYGSFNFG---GAQVNGVLTLGENIADNG
VNAYYWPTKNQMVFPAGILQSPFY-DMENPNSLNFGGIGVVMGHELTHAFDDQGREYDLHGNLNHWWNNATIERFKNRTKCFVEQYSNFEIN---GRHVNGLQTLGENIADNG
VNAYYTPTKNQIVFPAGILQTPFF-DINNPKSLNFGAMGVVMGHELTHAFDDQGREYDKFGNINRWWDAKSIERFTEKSECIARQYSGYKIN---GRNLNGKQTLGENIADNG
VNAYYTPTKNQIVFPAGILQTPFF-DINNPKSLNFGAMGVVMGHELTHAFDDQGREYDKFGNINRWWDSKSIERFNEKSECIARQYSGYKMN---GRTLNGKQTLGENIADNG
VNAYYTPTKNQIVFPAGILQAPFY-DIGHPKSMNYGAMGVVMGHELTHAFDDQGREYDQNGNLHKWWNNQTIEAFKKRTQCVVDQYSNYTVD---NKHVNGKQTLGENIADNG
VNAYYTPTKNQIVFPAGILQNPFF-DIKNSKSLNYGAMGVVMGHELTHAFDDQGREYDKYGNLHQWWNNQTIERFKNQTECFNQQYSAYRIN---GKTINGKQTMGENIADNG
VNAYYSPTKNEIVFPAGILQAPFY-TSTSPMAQNFGGIGVVIGHELTHAFDDQGREYDKDGNLRPWWKNASVEAFKRQTECITEQYGNYTVN---GEAVNGKQTLGENIADNG
VNAYYSPTKNEIVFPAGILQAPFY-TRSSPNALNFGGIGVVVGHELTHAFDDQGREYDKDGNLRPWWKNSSVEAFKQQTACMVEQYGNYSVN---GEPVNGRHTLGENIADNG
VNAYYSPTKNEIVFPAGILPAPFY-TRSSPKALNFGGIGVVVGHELTHAFDDQGREYDKDGNLRPWWKNSSVEAFKQQTECMVEQYSNYSVN---GEPVNGRHTLGENIADNG
VNAYYSPTKNEIVFPAGILQAPFY-TRSSPKALNFGGIGVVVGHELTHAFDDQGREYDKDGNLRPWWKNSSVEAFKRQTECMVEQYSNYSVN---GEPVNGRHTLGENIADNG
VNAYYSPTKNEIVFPAGILQAPFY-TRSSPNALNFGGIGVVVGHELTHAFDDQGREYDKDGNLRPWWKNSSVEAFKQQTECMVQQYSNYSVN---GEPVNGRHTLGENIADNG
VNAYYSPTKNEIVFPAGILQAPFY-TRSSPNALNFGGIGVVVGHELTHAFDDQGREYDKDGNLRPWWKNSSVEAFKQQTECMVQQYNNYSVN---GEPVNGRHTLGENIADNG
VNAYYMPTKNGIVFPAGILQAPFY-AHDHPKALNFGGIGVVMGHELTHAFDDQGREYDKEGNLRPWWQNSSVEAFRE-TECMVDQYSQYLVN---TEHVNGKQTLGENIADNG
VNAYYLPTKNEIVFPAGILQAPFY-ARNHPKALNFGGIGVVMGHELTHAFDDQGREYDKEGNLRPWWQNESLAAFRNHTACMEEQYNQYQVN---GERLNGRQTLGENIADNG
VNAYYLPTKNEIVFPAGILQAPFH-AHNHPKALNFGGIGVVMGHELTHAFDDQGREYDKEGNLRPWWQNESLTAFQNHTACMEEQYSQYQVN---GERLNGLQTLGENIADNG
VNAYYLPTKNEIVFPAGILQAPFY-AHNHPKALNFGGIGVVMGHELTHAFDDQGREYDQEGNLRPWWQNESLTAFQNHTACMEEQYNQYQVN---GERLNGLQTLGENIADNG
VNAFYSSSTNQIRFPAGELQKPFFWDKQYPRSLSYGAIGVIVGHELTHGFDSNGRKYDSNGNLDQWWSNSSITAFNEKTQCMIDQYNDYFWE-KAGLNVRGKRTLAENIADNG
VNAFYSASTNQIRFPAGELQKPFFWGTEYPRSLSYGAIGVIVGHEFTHGFDNNGRKYDKNGNLDPWWSTESEEKFKEKTKCMINQYSNYYWK-KAGLNVKGKRTLGENIADNG
VNAFYSASTNQIRFPAGELQKPFFWGTEYPRSLSYGAIGVIVGHEFTHGFDNNGRKYDKNGNLDPWWSVESEEKFKEKTKCMINQYSNYYWK-KAGLNVKGKRTLGENIADNG
VNAFYSASTNQIRFPAGELQKPFFWGTEYPRSLSYGAIGVIVGHEFTHGFDNNGRKYDKNGNLDPWWSVDSEEKFKEKTKCMINQYSNYYWK-KAGLNVKGKRTLGENIADNG
VNAFYSPNTNEIIFPAGILQPVFY-SKDFPSSMNFGGIGVVIGHEITHGFDDRGRLYDNLGNIRQWWDNATISKFEHKAQCIEKQYSSYVLD-QINMQINGKSTKGENIADNG
VNAFYSPNTNEIIFPAGILQPVFY-SKDFPSSMNFGGIGVVIGHEITHGFDDRGRLYDNLGNIRQWWDNATISKFEHKAQCIEKQYSSYVLE-QINMQINGKSTKGENIADNG
VNAFYSPSRNQIVFPAGILQPPFY-DAGQPSSMNYGAIGMVIGHEITHGFDNSGAQFDGYGNLNNWWSNSSKENFNVRSQCMIDQYSAISWDTAKGLHLNGENTLGENIADNG
VNAFYSSGRNQIVFPAGILQPPFF-SAQQSNSLNYGGIGMVIGHEITHGFDDNGRNFNKDGDLVDWWTQQSANNFKEQSQCMVYQYGNFSWDLAGGQHLNGINTLGENIADNG
VNAFYSSGRNQIVFPAGILQPPFF-SAQQSNSLNYGGIGMVIGHEITHGFDDNGRNFNKDGDLVDWWTQQSASNFKEQSQCMVYQYGNFSWDLAGGQHLNGINTLGENIADNG
VNAFYSSGRNQIVFPAGILQPPFF-SAQQSNSLNYGGIGMVIGHEITHGFDDNGRNFNKDGDLVDWWTQQSANNFKDQSQCMVYQYGNFSWDLAGGQHLNGINTLGENIADNG
VNAFYSSGRNQIVFPAGILQPPFF-SARQSNSLNYGGIGMVIGHEITHGFDDNGRNFNKDGDLVDWWTQQSANNFKDQSQCMVYQYGNFTWDLAGGQHLNGINTLGENIADNG
VNAFYSSSKNQIVFPAGILQPPFF-SKGQAKSLNYGGIGMVIGHEITHGFDDNGRNYDKDGDLKDWWTPGSTDRFLDLSKCIVNQYGNFSWDLANGLHLNGNNTLGENIADNG
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Insect neprilysins form five main clades
Insect neprilysins from An. gambiae, Ap. mellifera and D.
pseudoobscura cluster in five groups of strongly conserved
genes that delineate with the five D. melanogaster genes
that show the greatest similarity to human neprilysin (Fig-
ure 2 III, VI, VIII, IX). These five clades are present in all
phylogenetic reconstructions and each D. melanogaster
gene can be seen to have a D. pseudoobscura, An. gambiae,
and Ap. mellifera homologue, indicating that these genes
evolved before the divergence of the Hymenoptera and
the Diptera, approximately 35 and 260 million years ago,
respectively [36,37].

The majority of the five clades described above contain
only insect genes. Interestingly, several insect NEP genes,
including DmeNEP1 and DmeNEP4, form a cluster with
the C. elegans gene CelTO5A8.4 and its C. briggsae homo-
logue CbrPO4554 (Figure 2 VI). DmeNEP1, in particular,
also shares an extremely high conservation of active site
residues with CelTO5A8.4, suggesting they are function-
ally very similar. This is the only example of Drosophila
genes clustering with nematode genes. Neighbour-joining
places CelTO5A8.4 and CbrPO4554 outside the
DmeNEP1/DmeNEP4 cluster. However, maximum likeli-
hood places them within the cluster with a strong rela-

Phylogenetic analysis of M13 peptidasesFigure 2
Phylogenetic analysis of M13 peptidases. Majority consensus tree of all three methods of phylogenetic reconstruction. 
The tree was generated using CTree [65]. See additional file 3 for bootstrap values. Key to species; Dme Drosophila mela-
nogaster, Aga Anopheles gambiae, Dps Drosophila pseudoobscura, Lmi Locusta migratoria, Bmo Bombyx mori, Ame Apis mellifera, Hsa 
Homo sapiens, Rno Rattus norvegicus, Mmu Mus musculus, Fru Fugu rubripes, Pfl Perca flavescens, Xla Xenopus laevus, Ocu Oryctola-
gus cuniculus, Bta Bos taurus, Cpo Cavia porcelllus, Cin Ciona intestinalis, Cel Caenorhabditis elegans and Cbr Caenorhabditis briggsae.
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tionship to DmeNEP1. Therefore, it is unclear what is the
true position of these nematode genes within this cluster
and whether DmeNEP1 and DmeNEP4 were formed from
a duplication before or after divergence of the Nematoda
and Insecta

DmeNEP3 contains the ECE-like VNAYY motif (Figure 1)
and was seen to cluster with the extended clade containing
the ECE sub-group of enzymes (Figure 2 III). This is the
only example of insect and vertebrate genes clustering in
this analysis and is seen with all three types of analyses.
There is however some variation as to the position of the
C. intestinalis gene Cin2. C. intestinalis is a urochordate
and shares a very ancient common ancestor with verte-
brates, having diverged from that lineage before the evo-
lution of the Craniata and therefore provides the best
insight into an intermediate between vertebrates and
invertebrates [38]. The neighbour-joining method places
Cin2 outside the cluster of insect and vertebrate genes.
Character based methods however, return trees which bet-
ter reflect the evolutionary relationships of these species
with Cin2 inside the clade between the insect and verte-
brate clusters (Figure 2 III). It seems reasonable to assume
that Cin2 evolved from the same ancestral ECE from
which the vertebrate ECEs also evolved. This provides
strong evidence that these genes arose early in the meta-
zoa before the evolution of the majority of organisms
used in this analysis.

DmeNEP2 is a soluble secreted enzyme found in the renal
tubules and testes of D. melanogaster. Interestingly, the
mammalian group of soluble peptidases (MmuSEP and
HsaMMELII) appears to have evolved recently (Figure 2
IV), after the split from the urochordates and is therefore
un-related to DmeNEP2. DmeNEP2 expression is modu-
lated by dietary phosphate, leading to the suggestion that
this enzyme is functionally related to HsaPHEX [39].
However, the fly enzyme lacks the highly conserved PHEX
motifs [40] and presumably does not share the preference
of HsaPHEX for acidic residues in the P1' position
[4,12,30]. Therefore, it is not surprising that in the current
analysis DmeNEP2 shows no association with the PHEX
cluster.

Vertebrate M13 genes form distinct functionally related 
clades
The majority of the vertebrate M13 peptidases delineate
into functionally related clusters representing the PHEX,
Kell, ECE-1, ECE-2, ECEL1, neprilysin and MMELLII
groups of peptidases (Figure 2 I-V). All of these clusters
contain human and rodent sequences, with the majority
also containing Fugu rubripes NEPs. Most of these groups
have one or more C. intestinalis sequence forming a root at
the base of the cluster, indicating that these genes evolved
before the divergence of these lineages. The Kell group of

genes has neither a C. intestinalis nor a F. rubripes sequence
associated with it, suggesting that Kell is a recently evolved
member of the M13 family, restricted to mammals (Figure
2 II). A single C. intestinalis sequence roots the clade con-
taining NEP/MMELLII clusters (Figure 2 IV). As men-
tioned previously, this implies that the neprilysin and
soluble members of the family arose during the evolution
of vertebrates. Both clusters contain fish sequences indi-
cating that, although these sequences evolved after the
evolution of the Craniata, they must have arisen early in
vertebrate evolution. There are two F. rubripes sequences
which cluster with neprilysin, indicating either a gene
duplication event in fish, or a gene loss in mammals. Sim-
ilarly, it appears that ECE-1 and ECE-2 arose from a com-
mon ancestral gene after the divergence of the vertebrates
and urochordates. Interestingly, no F. rubripes sequence is
found in the ECE-1 sub-cluster (Figure 2 III), which may
indicate that ECE-2 is the prototypical member of this
group as ECE-2 is seen to cluster with a F. rubripes
sequence. Though, it is possible that F. rubripes may have
lost an ECE-1 gene, the drastic consequences of losing
ECE-1 in mammals makes this unlikely. Also the genome
of another fish, Tetraodon nigroviridis, contains two ECE-
like genes and the frog, Xenopus laevis, has an ECE-1 pro-
tein, and therefore it is conceivable that the ECE-1
sequence of F. rubripes has yet to be determined. Maxi-
mum likelihood analysis suggests the possibility that Kell
is derived from the ECE subgroup, which is consistent
with the report that Kell efficiently cleaves big-endothelin-
3, although the physiological relevance of this in vitro
study is unclear [16]. The placing of Kell, however, may
simply be due to its unusual characteristics masking true
evolutionary relationships.

Two C. intestinalis (Cin3 and Cin4) genes are seen to clus-
ter with the PHEX group of peptidases indicating a poten-
tial recent, gene duplication in Ciona (Figure 2 V). The
predicted proteins are very similar to each other with only
minor changes to the side chains that form the substrate
binding pockets, suggesting possible substrate specificity
differences.

Invertebrate gene expansions
The majority of the nematode genes analysed in this work
form a series of extended clades (Figure 2 VII, X-XII). The
majority of C. elegans genes cluster with a C. briggsae
homologue indicating that these gene expansions arose
before these species split, approximately 100 million
years ago (mya) [41]. However some species-specific
expansions have also occurred, consistent with these fam-
ilies continuing to evolve in these lineages. The most thor-
oughly described C. elegans M13 peptidase ZK20.6 (NEP-
1) clusters with several worm peptidases, but is quite dis-
tinct from sequences from outside the Nematoda.
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Outside of the five clades described above, the majority of
Drosophila sequences form a series of Drosophila-specific
expansions (Figure 2 XIII). Many of these expansions con-
tain at least one D. pseudoobscura sequence again suggest-
ing that the expansion occurred before the divergence of
these species approximately 35 mya [37]. The expansion
of the NEP family is larger in D. melanogaster, which may
have resulted from different selection pressures on these
species. These expansions appear to have occurred fairly
early in the diversification of the old world Drosophila as
D. melanogaster and D. pseudoobscura represent two of the
major species complexes of the Drosophila genus. The fact
that the clusters containing these expansions contain no
An. gambiae or Ap. mellifera sequences is confirmatory evi-
dence for these expansions being specific to Drosophila
and not due to gene loss in other organisms. All of the
genes belonging to these groups are expressed (as full
length ESTs), but some lack key catalytic residues, indicat-
ing they probably encode catalytically inactive proteins
with possibly novel non-peptidase roles. Non-enzymatic
functions for metallopeptidase-like proteins have been
shown to be important for development in other organ-
isms [42-44], but there is currently no evidence for physi-
ological roles for these non-peptidase members of the
M13 family. Nevertheless, the fact that these proteins have
been conserved as non-peptidases over 35 million years of
evolution suggests that they do indeed have important
functions.

Conservation of catalytically and structurally important 
residues
Site-directed mutagenesis studies together with the eluci-
dation of the crystal structure of human neprilysin com-
plexed with specific inhibitors have led to a detailed
understanding of the structure of the active site and the
catalytic mechanism [34]. In human neprilysin, this
involves co-ordination of the zinc ion by His583, His587

and Glu646, and the involvement of Glu584 in polarising
the water molecule that attacks the peptide bond of the
substrate. These residues and the substrate co-ordinating
asparagine (Asn542) were generally conserved across the
protein sequences examined, apart from the aforemen-
tioned invertebrate non-peptidases (Figure 1, Additional
file 2).

There is also good conservation of the cysteine residues
involved in the formation of the disulphide bonds of
neprilysin which is indicative of a general conservation of
the tertiary structure of M13 peptidases. However, a
cysteine bridge between Cys233 and Cys241 of human
neprilysin is only present in mammalian neprilysins and
no other M13 peptidases (Additional file 2). The absence
of this disulphide bond in HsaECE-1 and RnoNEPII
shows that it is not essential for M13 peptidase activity per
se. Several genes code for proteins that also lack an equiv-

alent to Cys142 of human neprilysin that forms a bridge
with Cys410. Interestingly, this bond is also not required
for peptidase activity of DmeNEP2, which lacks an equiv-
alent to Cys142 [4]. Conservation of Cys410 is much more
common, which may suggest an alternative disulphide
bridge or function for this residue in other proteins. Fur-
ther structural data on M13 peptidases will hopefully
resolve these issues. Thirty sequences had significant dele-
tions or substitutions in important catalytic or structural
positions and were all invertebrate sequences except for
Rattus norvegicus Kell, which has a lysine instead of the
water-activating Glu584 and a serine rather than the zinc
co-ordinating Glu646 of human neprilysin (Additional file
2).

Of particular importance in determining cleavage site spe-
cificity are the S1' and S2' sub-sites that interact with the
side-chains of the two residues immediately C-terminal to
the scissile peptide bond. Multiple alignment of the nepri-
lysin sequences indicated that there was a greater degree of
variation in the S2' than in the S1' subsite (Figure 3). The
majority of S1' substitutions are relatively conservative,
maintaining a hydrophobic environment (Figure 3). The
S1' pocket of the Ap. mellifera protein Ame7 also contains
a glutamate for isoleucine substitution, as well as the sub-
stitution of tyrosine and serine for the hydrophobic phe-
nylalanine and valine, respectively resulting in a pocket
that would presumably be more accommodating for
charged or polar residues.

The S2' subsite shows a greater spectrum of properties,
from being predominantly charged, as in human nepri-
lysin, to being predominantly polar as in D. melanogaster
NEP2, to being almost entirely hydrophobic as in Ap. mel-

Utilisation of residues by ligand binding subsites of M13 peptidasesFigure 3
Utilisation of residues by ligand binding subsites of 
M13 peptidases. The utilisation of the twenty amino acids 
in both the S1' and S2' subsites was examined. The percent-
age contribution of each amino acid to either binding site was 
calculated and residues were placed in the order of descend-
ing frequency for the S1' subsite.
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lifera Ame4. Interestingly, the S2' subsite of PHEX is
highly polar, which is consistent with PHEX's strong P2'
preference for polar residues [12]. The conservation of a
hydrophobic S1' subsite provides a likely explanation why
M13 peptidases from distantly related organisms retain
the ability to cleave similar substrates, whereas the range
of side chains found at the S2' subsite might determine
the different peptide bond preferences seen between
enzymes [2,4,25,30]. Variation in the properties of the S2'
subsite may be particularly informative about evolution-
ary pressures on diversifying the physiological substrates
of these peptidases [4,45].

The 541VNAFY545 motif of human neprilysin is important
for the orientation of the peptide bond between the P1
and P1' positions of the substrate [34]. This motif is con-
served, although there is some variation which is fre-
quently associated with specific functional classes. The
ECE subgroup of enzymes have VNAYY rather than the
VNAFY motif [25,46], which is important for determining
the specificity of ECE-1 for big-endothelin [6]. Interest-
ingly, the ECE-like group of enzymes (ECEL-1, DINE, etc),
for which there are no known physiological substrates, are
unique in that all have a LNAYY motif, which may influ-
ence substrate specificity. The VNAYY motif is present in a
number of other sequences including the Kell proteins as
well as various insect M13 peptidases. Both DmeNEP3
and DmeNEP4 contain the VNAYY motif, whereas
DmeNEP1 and DmeNEP2 contain the neprilysin-like
VNAFY. All the sequences that cluster with DmeNEP5,
apart from Ame6, contain a unique version of the VNAFY
motif that has a histidine in place of the tyrosine. The tyro-
sine in the VNAFY motif of human neprilysin is part of a
hydrogen bonding network, which is conserved in other
M13 peptidases [46,47]. It is not clear what effect this sub-
stitution or some of the other substitutions described here
would have; however it is likely that structural changes
occur, with possible knock-on effects on the properties of
the enzymes.

The GENIAD motif contains the zinc-co-ordinating gluta-
mate and is generally conserved amongst the M13 pepti-
dases (Figure 1). In some of the more divergent sequences
significant variation is seen in this motif and will probably
indicate a loss of activity, as residues in this sequence have
been shown to be critical for endopeptidase activity [35].
However, some sequences show small changes which may
not disrupt peptidase activity. For example, the majority
of F. rubripes genes contain a glycine to alanine substitu-
tion producing an AENIAD consensus. Interestingly the
Kell proteins have a distinct motif (LENAAD) that is con-
served across all Kell proteins examined. All substitutions
in this motif are conservative, with similar overall side
chain properties.

The analysis presented here highlights the functional
diversity and complicated evolutionary relationships of
M13 peptidases. The phylogenetic analysis successfully
resolved vertebrate M13 peptidases into seven classes, one
of which appears to be specific to mammals, and insect
genes into five functional classes and a series of expan-
sions, which may include inactive peptidases. Nematode
genes primarily resolved into groups containing no other
taxa, bar the two nematode genes associated with
DmeNEP1 and DmeNEP4. This analysis reconstructed
only one relationship between chordate and invertebrate
clusters, that of the ECE sub-group and the DmeNEP3
related genes. This may be because sequences have
diverged so far that reconstructing an evolutionary rela-
tionship is impossible. Evolution of these classes could be
quite cryptic due to the high rate of evolution and gene
loss in the invertebrates [48-51]. If this is the case then it
is possible that these proteins are also no longer function-
ally similar. However, as the S1' and S2' subsites are the
main factors in defining M13 substrate specificity, active
site analysis may still give insights into functional similar-
ities.

Conclusion
Our analysis shows the M13 family of peptidases to have
diversified extensively in all species examined, indicating
wide ranging roles in numerous physiological processes.
It is predicted that differences in the S2' subsite are funda-
mental to determining the substrate specificities that facil-
itate this functional diversity. The work presented here
provides the most thorough and sophisticated analysis to
date of the phylogenetic relationships of these peptidases
and will provide a strong framework for the study of these
genes across model systems and in humans.

Methods
In silico identification of M13 genes
M13 gene sequences were identified by probing sequence
repositories using the BLASTP program [52]. Human
neprilysin [NP_009220] was used as the query sequence.
Protein sequences from: Drosophila melanogaster,
Caenorhabditis briggsae, C. elegans, Anopheles gambiae,
Ciona intestinalis, Fugu rubripes, Mus musculus, and Rattus
norvegicus were obtained from NCBI, ENSEMBL and spe-
cies specific databases (Additional file 1) [53-58]. Human
and all other mammalian sequences were identified by
the BLASTP program from the sequence data at NCBI. Rat
Kell was produced by concatenating the two partial
sequences found in the R. norvegicus genome. M13 genes
from D. pseudoobscura and Ap. mellifera were identified
from raw genomic data using the SHARKhunt program
[31]. SHARKhunt uses a search protocol that combines
PSI-BLAST with profile Hidden Markov Model (HMM)
techniques. The gene model employed was generated
from fifteen M13 protein sequences from across the taxa
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examined here (Additional file 1). Some Apis mellifera
sequences were also obtained from annotated entries in
NCBI (Additional file 1).

Phylogenetic reconstruction of M13 genes
Protein sequences determined using the methods
described above, were aligned using the program MUS-
CLE with default settings [32,33]. To facilitate analysis,
this alignment was edited using BioEdit software [59] to
remove gaps and uninformative insertions. Three meth-
ods were used to reconstruct phylogenetic relationships of
111 NEP-like proteins. These were: neighbour-joining,
maximum parsimony and maximum likelihood. Neigh-
bour-joining [60] analysis was performed on the align-
ment described above using PAUP 4.0 [61] and was set to
bootstrap the tree 1000 times (Additional file 4). Maxi-
mum parsimony analysis was performed using PAUP 4.0
[61]. Trees were generated by the random addition (ten
replicates) of sequences from the alignment described
above. After completion of trees, branches were swapped
using the "tree-bisection and reconnection" method and
the most parsimonious trees were saved. From this a con-
sensus tree was generated and bootstrapped 1000 times
(Additional file 5). Maximum likelihood analysis was car-
ried out using the PROML function of PHYLIP [62]. Trees
were generated using the PAM250 substitution score
matrix and a gamma distribution of 1.78 as determined
using ProtTest [63]. This model was used to generate 100
bootstrap replicates from which a consensus tree was gen-
erated. This tree was re-rooted using NOTUNG [64] to
produce a tree that more closely resembled distance and
parsimony trees (Additional file 6). These trees were used
to generate a majority consensus tree using the consense
function of PHYLIP [62]. For clarity an unrooted circular
tree omitting bootstrap values (Figure 2) was produced
using CTree and a rectangular cladogram incorporating
bootstrap values was also produced (Additional file 3)
[65].

Site-specific analysis of M13 sequences
Specific sites in M13 protein sequences were compared
using the multiple sequence alignment described above.
Sites of interest comprised residues previously identified
as being important for catalysis and substrate binding by
site-directed mutagenesis studies and from the crystal
structure of human neprilysin [34,35]. In the absence of
structural data, only residues directly aligned with catalyt-
ically important regions of human neprilysin were consid-
ered and not adjacent residues that may form portions of
binding sites in other enzymes.
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