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Abstract

Background: RNA editing and alternative splicing play an important role in expanding protein
diversity and this is well illustrated in studies of nicotinic acetylcholine receptors (nAChRs).

Results: Here, we compare the RNA editing and alternative splicing of the nAChR alphaé subunit
genes from different insects spanning ~300 million years of evolution— Drosophila melanogaster,
Anopheles gambiae, Bombyx mori, Tribolium castaneum and Apis mellifera. The conserved and species-
specific A-to-] RNA editing occurred across all species except A. gambiae, which displayed
extraordinarily short flanking intronic sequences. Interestingly, some A-to-l editing sites were a
genomically encoded G in other species. A combination of the experimental data and
computational analysis of orthologous alphaé genes from different species indicated that RNA
editing and alternative splicing predated at least the radiation of insect orders spanning ~300 million
years of evolution; however, they might have been lost in some species during subsequent
evolution. The occurrence of alternative splicing was found to be regulated in distinct modes and,
in some cases, even correlated with RNA editing.

Conclusion: On the basis of comparative analysis of orthologous nAChR alphaé genes from
different insects spanning ~300 million years of evolution, we have documented the existence,
evolutionary conservation and divergence, and also regulation of RNA editing and alternative
splicing. Phylogenetic analysis of RNA editing and alternative splicing, which can create a multitude
of functionally distinct protein isoforms, might have a crucial role in the evolution of complex
organisms beyond nucleotide and protein sequences.

Background ual adenosine bases to inosine in RNA by ADAR enzymes
RNA editing is a process that results in the synthesis of  (adenosine deaminases acting on RNA) [1,2]. Because
proteins that are not directly encoded in the genome. One  inosine acts as guanosine during translation, A-to-I con-
type of RNA editing involves the modification of individ-  version in coding sequences leads to amino acid changes
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and often entails changes in protein function [2-4]. A-to-I
RNA editing is common in animals and is associated with
various neurological functions [3,4]|. Caenorhabditis ele-
gans, Drosophila melanogaster and Mus musculus mutants
lacking ADAR enzymes display predominantly distinct
neurological phenotypes [5-8]. In addition to amino acid
changes, the editing and subsequent destabilization of the
RNA duplex present in the 5' or 3'-untranslated regions
(UTRs) could alter the stability, transport or translation of
the mRNA [2,9]. Moreover, RNA editing may influence
alternative splicing decisions [10].

Alternative splicing is a major contributor to transcrip-
tomic and proteomic complexity, disease, and develop-
ment. Alternative splicing may affect the protein sequence
in two ways: (i) by deleting or inserting a sequence and
creating long and short isoforms, or (ii) by substituting
one segment of the amino acid sequence for another [11].
An indication for the first pathway is that truncated iso-
forms often act as dominant-negative regulators of the
full-length isoform's activities [12,13]. In contrast, the sec-
ond mode is capable of creating, from mutually exclusive
alternative sequences, a multitude of functionally distinct
protein isoforms and thus might have a crucial role in the
evolution of complex organisms [11]. As both RNA edit-
ing and alternative splicing can lead to the inclusion of
alternative amino acid sequences into proteins, function-
ally distinct isoforms are likely to be generated [14].
Therefore, editing and alternative splicing provide a pow-
erful posttranscriptional means for fine-tuning of gene
expression at the cellular and organismal levels.

Nicotinic acetylcholine receptors (nAChRs) mediate the
fast actions of the neurotransmitter acetylcholine (ACh)
in both vertebrates and invertebrates [15]. An extraordi-
nary feature of the insect nAChR genes is that they can
potentially create many different mRNAs by RNA editing
and alternative splicing. More than 30,000 alpha6 nAChR
isoforms are theoretically possible through RNA editing
and alternative splicing, without considering any linkage
between these events [16]. The alternatively spliced exons
are organized into two clusters. The exon 3 and 8 clusters
contain 2 and 3 alternative versions, respectively [16].
Seven adenosines could be modified in D. melanogaster
alpha6, four of which are also edited in the alpha6
ortholog in the tobacco budworm Heliothis virescens.
However, although these RNA A-to-I editing sites are con-
served between D. melanogaster and H. virescens, they are
not shared with the equivalent nAChR subunit of Anophe-
les, which is considered to be an example of convergent
evolution [17]. It is possible that different alpha6 iso-
forms may interact with distinct sets of receptor guidance
cues. RNA editing and alternative splicing of the nAChR
alpha6 pre-mRNA may therefore be central to the mecha-
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nisms specifying transmitter affinity, channel conduct-
ance and ion selectivity.

The recently sequenced genomes of 12 Drosophila species
[18], the mosquito A. gambiae [19], the silkworm B. mori
[20], the honeybee A. mellifera [21], and T. castaneum [18]
have renewed interest in molecular and functional diver-
sity in the insect nAChR alpha6 gene. Recent analysis
reveals bees and wasps (Hymenoptera) are at the base of
the radiation of Holometabolous insects [22,23]. Here,
we compare the RNA editing and alternative splicing of
the nAChR alpha6 gene from these insects spanning ~300
million years of evolution. These sequence comparisons
provide insight into the evolution of the nAChR alpha6
gene and indicate that many isoforms have arisen by RNA
editing and alternative splicing events. These findings also
suggest that expressing a diverse nAChR alpha6 repertoire
is more important than the actual sequence of each iso-
form. In this article, we describe the A-to-I RNA editing
and alternative splicing found in insect nAChR alpha6
genes, as well as their evolutionary conservation and
divergence, and regulation. In addition, we provide an
example of a strong correlation between RNA editing and
alternative splicing.

Results

Comparison of the nAChR subunit alphaé genes from
different insect species

To obtain insight into the functional diversity, the regula-
tion of expression, and the evolution of nAChR alphaé,
we have compared the sequence of the nAChR alpha6
genes in Drosophila to other species. The organisms ana-
lyzed consisted of 13 Dipteran species, including 12 Dro-
sophila species (D. melanogaster, D. simulans, D. sechellia,
D. yakuba, D. erecta, D. ananassae, D. pseudoobscura, D. per-
similis, D. willistoni, D. mojavensis, D. virilis and D. grim-
shawi) and one mosquito (A. gambiae), the Lepidopteran
B. mori (silkworm), the Coleopteran T. castaneum (red
flour beetle) and the Hymenopteran A. mellifera (honey-
bee). The sequences from these species allowed us to ana-
lyze the evolution of the nAChR alpha6 gene over at least
300 million years and across phylogenetic orders. The
overall organization of the nAChR alpha6 genes of these
insect species is quite similar, but there are a few subtle
differences. The nAChR alpha6 genes possess two versions
for exon 3 in most species, while no such tandem duplica-
tion of coding exon 3 can be found in the A. mellifera
genome. Although nAChR alpha6 genes have three ver-
sions for exon 8 in most species, only two alternatives for
the equivalent exon are observed in the A. gambiae and B.
mori genomes.

We next analyzed the evolutionary relationship of the
alternative exons from D. melanogaster, A. gambiae, B.
mori, T. castaneum and A. mellifera nAChR alpha6 genes.
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For these analyses we used D. melanogaster as the repre-
sentative Drosophila species. Phylogenetic analyses indi-
cated that A. mellifera did not contain an ortholog to the
second alternative exon 3 while B. mori and A. gambiae
lacked an ortholog to the first alternative exon 8[17,24]
(Figure 1). The orthologs to the second alternative exon 8
were very highly conserved, with all amino acid sequences
identical (Figure 1), although they are not highly con-
served at the nucleotide level. The hierarchy of amino acid
conservation of the alternative exons 8 of nAChR subunit
alphat genes was exon 8b > exon 8a > exon 8c. Phyloge-
netic analysis of the protein products of equivalent dupli-
cated exons showed that members of a duplicated pair
were more similar to each other than to the exons from
other genes (Figure 1). This evidence suggests that exon
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Multiple alignments and phylogenetic analysis of duplicated
exon nucleotide sequences. (A, B) Multiple alignments of
amino acid sequences of duplicated exon 3 (A) and exon 8
(B) sequences and their counterparts from orthologs in
other species, respectively. The alternative exons are labeled
'a'and 'b' or 'c'. (C, D) Cladogram of insect duplicated exon
DNA sequences and vertebrate orthologous constitutive
exons corresponding to the alignments shown in (A, B). For
each cluster, the amino acid sequences of each alternative
exon from each species were aligned using the Clustal W
program and phylogenetic trees generated. The branches
contained the vertebrate constitutive exons (CSE), inverte-
brate alternative exons 8a or exons 3a, alternative exons 8b
or exons 3b and alternative exons 8c, respectively. Abbrevia-
tions: Hsa, H. sapiens (NM_000746.3); Dre, D. rerio
(NP_957513.1); Mmu, M. musculus (NP_031416.2); Gga, G.
gallus (NP_989512.1); Tru, T. rubripes (CAG03274.1); Dme,
D. melanogaster (CG4128) [16]; Aga, A. gambiae [17]; Bmo, B.
mori (CH379590); Tca, T. castaneum (CM000280); Ame, A.
mellifera [21].
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duplication predated at least the radiation of insect orders
spanning ~300 million years of evolution.

We next analyzed the evolutionary relationship of the
alternative exons within the Drosophila species. All three
exon 8 variants had orthologs in each species. All three
exon 8 orthologs were very highly conserved in these spe-
cies, and were identical at the amino acid level. Surpris-
ingly, the orthologs to the alternative exon 8b were
identical even at the nucleotide level. We determined a
similar hierarchy of nucleotide conservation of the alter-
native exons 8 of nAChR subunit alpha6 genes within the
Drosophila species, namely exon 8b > exon 8a > exon 8c.

Conservation and divergence of alternative splicing

We were interested in understanding the alternative splic-
ing of the nAChR alpha6 transcripts and in particular
whether this is regulated. We first analyzed how the alter-
native exons 3 were regulated. The vast majority of tan-
demly duplicated exons (99.4%) are likely to be involved
in mutually exclusive alternative splicing events [14]. The
Reverse Transcription Polymerase Chain Reaction (RT-
PCR) showed a very clear band in D. melanogaster and T.
castaneum adult cDNA, as in A. mellifera with constitutive
exon 3 (Figure 2A). Direct sequencing of these amplifica-
tion products confirmed that these duplicated exons were
alternatively spliced (Figure 2B). Sequence analysis of 30
c¢DNAs also showed that no duplicated exons were spliced
together. These results indicated that the vast majority of
exons were likely to be involved in mutually exclusive
alternative splicing, which was consistent with EST and
cDNA data analysis, although a duplicate of exon 3 was
even found in cDNA [16].

The RT-PCR showed a distinct pattern in B. mori (Figure
2A), not seen in D. melanogaster and T. castaneum. Total
silkworm RNA harvested from silkworms at various stages
of development was used as a template for RT-PCR with
primers surrounding the exon 3 (Figure 3A). At the
embryo stage, only one band could be amplified, and
direct sequencing indicated a mixed sequence signal of
two nucleotides, confirming the existence of alternative
splicing of exon 3. The existence of alternative splicing in
the embryonic transcripts was further confirmed by inde-
pendent sequencing of cloned cDNAs of RT-PCR prod-
ucts. This band, which resulted from type I and type II
alternative splicing, decreased slightly during develop-
ment, exhibiting a very low level in the pupal and adult
stages (Figure 3B). However, another slightly larger band
appeared during development, displaying a very low level
in the larvae but increasing rapidly during the stages from
pupa to adult (Figure 3B). Sequencing of cloned cDNAs of
this product indicated the existence of splice type III alter-
native splicing, which included both alternative exons,
and retained the opening frame of the spliced RNA.
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Species-specific alternative splicing patterns. (A) Analysis of
species-specific alternative splicing patterns using an RT-
PCR-based strategy. |: D. melanogaster; 2: A. mellifera; 3:B.
mori; 4: T. castaneum. Primers used for amplification of splice
products were DmDa-5-1 and DmDa-3-1 for D. mela-
nogaster, AmDa-5-3 and AmDa-3-1| for A. mellifera, BmDa-5-4
and BmDa-3-1 for B. mori, TcDa-5-1 and TcDa-3-1 for T. cas-
taneum, respectively (Table ). The migration positions of
PCR products corresponding to transcripts with one or two
alternative duplicated exon variants are indicated. Because
the sequence between the specific primers in T. castaneum is
smaller than in other species, its band is smaller. (B) Compar-
ison of the boundary sequences of sites in exon 2 and alter-
native exons 3 among nAChR alphaé orthologs of D.
melanogaster (Dme), B. mori (Bmo), T. castaneum (Tca) and A.
mellifera (Ame). Direct sequencing of these RT-PCR prod-
ucts (A) confirmed that these duplicated exons are alterna-
tively spliced. Different nucleotides in the alternative exons
3a and 3b (in box) showed a mixed signal.

To elucidate how the alternative splicing patterns of exon
3 were developmentally regulated, we designed the spe-
cific primers based on three alternative variant cDNAs
(Figure 3A). Consequently, the expression of splice type I
and II appeared to be tightly regulated in a similar man-
ner, exhibiting an abundant level in the embryo, and
decreasing slightly during the pupal stage to the adult
level. In contrast, the expression of splice type III showed
a distinct mode during development, exhibiting a very
low level in the embryo, and increasing rapidly during the
pupal stage to the adult level (Figure 3B). The expression
analysis using RT-PCR was consistent with the results
derived from RT-PCR clones (Figure 3C). Thus, the alter-
native splicing patterns of exon 3 in silkworm were differ-
ent from the other insect species.

Next, to determine how the alternative exons 8 were regu-
lated developmentally, we first performed RT-PCR on
RNA isolated from silkworm embryos, larvae, pupae and
adults by use of primers flanking exon 8. The identity of
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Editing of B. mori nAChR alphaé splice forms (A) The struc-
ture and alternative splicing patterns of the alphaé gene in
the regions surrounding the alternative exons 3. Three main
variants, depending on the alternative exon 3 versions: type |
(alternative exon 3a), type Il (alternative exon 3b), type IlI
(alternative exons 3a and 3b). Boxes represent exons and the
line represents introns. The black boxes represent constitu-
tive exons and the open boxes represent exons that are
duplicated in tandem. "*" represents the editing sites. The
migration positions of PCR products corresponding to tran-
scripts with one or two alternative duplicated exon variants
are indicated with arrows. Primerl, 2, 3, 4, 5 refer to BmDa-
5-4, BmDa-5-8, BmDa-5-9, BmDa-5-10, and BmDa-3-1,
respectively (Table 1). (B) Analysis of alternative splicing in
silkworm embryo, larvae, pupae, and adult using RT-PCR. I,
2, 3, 4 indicated splice forms amplified using forward primer
(primerl, or 2, or 3, or 4), and reverse primer (primer5),
respectively. (C) Frequency of splice forms in silkworm
embryo, larvae, pupae, and adult. RNA was isolated from
each developmental stage and used for RT-PCR. The RT-
PCR products were cloned and analyzed. 20 cDNA clones
were sequenced for every stage. (D) Comparison of the edit-
ing levels (A/G signal) of sites in exon 4 among distinct splice
forms. cDNA |, 2, 3, 4 indicated splice forms in Figure 3B.
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the PCR product was confirmed by cloning and sequenc-
ing. Sequence analysis of transcripts, derived from differ-
ent staged RNA independent amplification experiments,
indicated that only ¢cDNAs containing exon 8b were
included, but no cDNA containing exon 8c was included.
This suggested that only exon 8b was spliced while exon
8c expression was very low in these developmental stages.
We next tested whether the selection pattern of exon 8
alternative splicing observed in silkworm was conserved
in D. melanogaster, T. castaneum and A. mellifera, where
nAChR subunit alpha6 has three versions for exon 8.
Interestingly, RT-PCR analysis revealed an identical hier-
archy of selection efficiency among D. melanogaster,T. cas-
taneum and A. mellifera: exon 8b > exon 8a > exon 8¢
(Figure 4). Considering the identical trend between selec-
tion efficiency and conservation of alternative exons 8, it
is proposed that expression of alternative exons 8 might
be closely related with its conservation (Figure 4). This
phenomenon might reflect evolutionary trajectories and/
or differential functional constraints.

Evolutionary conservation and divergence of nAChR
alphaé RNA editing

Similar to substitution alternative splicing, RNA editing
causes amino acid changes by substituting individual
nucleotides. Although RNA A-to-I editing occurred in Dro-
sophila transcripts, it was not present in the equivalent
nAChR subunit of Anopheles [16,17]. To determine
whether orthologous nAChR subunits were also RNA-
edited in other insect species, we have subsequently ana-
lyzed the nAChR alpha6 genes from B. mori, T. castaneum
and A. mellifera. Several sites were either determined as
pure G signals, or as mixed sequence signals of G and A,
while the nucleotide in the reference genomic DNA was A
at these positions. We also checked for genetic variation in
these alpha6 regions, using PCR amplification on silk-
worm genomic DNA, applying primers surrounding the
equivalent regions and direct sequencing. As a result, it
was revealed that the nucleotide in genomic DNA was
adenosine at these positions, confirming that post-tran-
scriptional modifications occur in this case. We have iden-
tified a total of ten A-to-I RNA editing sites within
silkworm alphaé transcripts, seven of which are located in
exon 5 (Figure 5A). Sequence analysis of transcripts
showed that six amino acids could be changed by seven
possible A-to-G transitions in exon 5 (Figure 5B).

We have subsequently analyzed the nAChR alpha6 genes
from T. castaneum and A. mellifera. We demonstrated that
editing also occurred in both the alpha6 homolog of T.
castaneum and A. mellifera, with a quite different pattern of
editing (Figure 5, 6). These sites were originally discovered
through sequence analysis of cDNAs that were subse-
quently compared with genomic DNA. In each case, A was
observed in the genomic sequence with G at the corre-
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A similar hierarchy of selection efficiency of alternative exons
8 of nAChR subunit alphaé genes among D. melanogaster
(Dme), B. mori (Bmo), T. castaneum (Tca) and A. mellifera
(Ame): exon 8b > exon 8a > exon 8c. Expression of alterna-
tive exons 8 is identical with its conservation. The diagram
indicates amino acid conservation from multiple alignments
of duplicated exon 8 sequences from orthologs in different
species. 20-30 cDNA clones were sequenced for each spe-
cies. The diagram also indicates nucleotide conservation
from multiple alignments of duplicated exon 8 sequences
from orthologs within Drosophila species.

sponding position in numerous cDNAs. A-to-I RNA edit-
ing occurred across the species except A. gambiae with its
extraordinarily short flanking intronic sequences (Figure
5, 6). There are up to 11 A-to-I RNA editing sites in A. mel-
lifera. During the preparation of this paper, six A-to-I RNA
editing sites were found in A. mellifera [24], which were
identical with 6 of the 11 RNA editing sites in our experi-
ment. The editing sites 5 and 10 in nAChR alpha6 were
conserved among the four orders of insect, represented by
D. melanogaster, B. mori, T. castaneum and A. mellifera (Fig-
ure 5). The RT-PCR clone data revealed that editing was
detectable at site 1 in B. mori and A. mellifera, as in Dro-
sophila, albeit at a very low level. Site 4 was edited at low
levels in D. melanogaster, but almost completely edited in
B. mori, and undetectable in T. castaneum and A. mellifera.
Interestingly, site 3 was specifically edited in A. mellifera
but it constituted a genomically encoded G in other spe-
cies. Sites 7 and 8 were markedly edited in A. mellifera,
while editing was undetectable in other species. In con-
trast, site 6 was edited in D. melanogaster, B. mori and T.
castaneum, but undetectable in A. mellifera (Figure 5).
Overall, editing sites and levels of the alpha6 homolog
differed among species, possessing conserved and species-
specific editing sites in each species. However, this was the
most highly conserved RNA editing event yet reported in
invertebrates.
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Figure 5

The conserved and species-specific A-to-I RNA editing. Alignment of the homologous exon 5 genomic nucleotide (A) and
amino acid (B) sequences of nAChR subunit alphaé genes from D. melanogaster (Dme), A. gambiae (Aga), H. virescens (Hvi), B.
mori (Bmo), T. castaneum (Tca) and A. mellifera (Ame). RNA editing of the nAChR subunit alphaé genes from D. melanogaster, H.
virescens and A. gambiae have been previously described [16, 17]. The editing sites from positions |-14 (A) and amino acids (B)
are shaded in red. Those sites constitutively G (A) and amino acids (B) are shaded in green at the editing sites. RNA editing
sites, which were not evidently detected as a mixed sequence signal G and A, but revealed by sequencing of cDNA clones, are

underlined.

Some A-to-l editing sites were a genomically encoded G in
other species

The nAChR subunit alpha6 genes were subject to RNA
editing in D. melanogaster, B. mori, T. castaneum and A.
mellifera. Interestingly, there were several examples in
which some A-to-l1 editing sites were a genomically
encoded G in some species. For example, the alpha6 site
13 was edited in B. mori and A. mellifera, while the site 13
in the alpha6 ortholog a.7-2 in the tobacco budworm H.
virescens (Lepidoptera) was a genomically encoded G (Fig-
ure 5A). The site 3 was edited in A. mellifera, while the
homologous sites in A. gambiae, H. virescens, B. mori and
T. castaneum were a genomically encoded G (Figure 5A).
Similarly, the alpha6 site 2 was edited in Drosophila [16];
however, the alpha6 homologous sites in other species

were a genomically encoded G (Figure 5A). Although we
did not know how general this phenomenon was, this led
us to consider the possibility that RNA editing might act
as an evolutionary intermediate form between single
nucleotide polymorphism (SNP) sites, maintaining par-
tial conservation at the protein and functional level
despite sequence divergence at the DNA level.

Correlation between RNA editing and alternative splicing

The vast majority of tandemly duplicated exons (99.4%)
are likely to be involved in mutually exclusive alternative
splicing events [14]. The alternative splicing patterns of
the duplicated exon 3 were conserved in the chosen insect
species, except the silkworm. It remained to be deter-
mined whether the alternative splicing pattern of mutu-
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Figure 6

Comparison of the editing levels among four orders. The
editing sites (in red) and their editing levels (A/G signal) of
sites 3—6 and 9-13 among the nAChR alphaé orthologs from
D. melanogaster (Dme), B. mori (Bmo), T. castaneum (Tca) and
A. mellifera (Ame) are shown. RNA editing of the nAChR sub-
unit alphaé genes from D. melanogaster have been previously
described [16]. Some RNA editing sites were not evidently
detected as a mixed sequence signal G and A, but revealed by
sequencing of cDNA clones.

ally exclusive exons was changed because the signal
ensuring the splicing of pairs of alternative exons was dis-
turbed in the silkworm. RT-PCR and direct sequencing of
the cDNAs derived from adult transcripts showed that two
A-to-G substitutions occurred in exon 4 of the silkworm
nAChR subunit alpha6 gene (Figure 3D). However, these
two A-to-G substitutions were undetectable in embryonic
transcripts. Interestingly, sequence analysis of 80 cDNA
clones derived from embryonic, larvae, pupae and adult
transcripts, respectively, revealed two A-to-G substitutions
in exon 4 of the silkworm in splice type III, but not in
splice types I and II. PCR amplification of silkworm
genomic DNA and direct sequencing revealed that adeno-
sine was the nucleotide in the genomic DNA at both posi-
tions, confirming that A-to-I editing occurred in this case.
These results suggest that specific editing in exon 4 and
splice type III of exon 3 might be closely related.

To determine whether coordinated RNA editing and alter-
native splicing were conserved in other insects, we subse-
quently analyzed the nAChR alpha6 genes from D.
melanogaster, T. castaneum and A. mellifera. In contrast to
the silkworm, sequence analysis indicated that no A-to-G
substitutions took place in exon 4 in these species. These
results suggest that RNA-editing sites in exon 4 are species-
specific in B. mori, which correlates with the species-spe-
cific alternative splicing pattern of the duplicated exon 3.
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To discern whether alternative splicing also correlates
with RNA editing in other distant exons in the silkworm,
we analyzed the A-to-I RNA editing sites in exon 5 of the
nAChR subunit alpha6 gene. However, no evidence indi-
cated any relation between alternative splicing patterns of
exon 3 and editing in distant exon 5, suggesting that the
alternative splicing patterns of exon 3 was not regulated
by RNA editing in distant exon 5.

Discussion

Evolutionary implications

Our results indicate a high level of editing events in insect
species spanning ~300 million years of evolution. Inter-
estingly, RT-PCR analysis showed that RNA editing was
absent in A. gambiae, indicating a divergence in molecules
targeted by RNA editing within the Diptera order [17].
Interestingly, enzyme assays measuring conversion of ade-
nosine to inosine in salivary gland homogenates of sev-
eral mosquito species detected adenosine deaminase

e . Upstream Downstream
A Editing  Species Intron (bp) Intron (bp)

Drosophilidae
_{p 1,2 — g'g'?u Dme 6399 1252

Diptera

Cumm_ N Aga 97 94

4458 Bmo 9881 4339
56,1

,10 Tea 1341 2605

5.10

Coleoptera

17745 30656

+1,3,7-
Tymenontera {8,412 — 1,357-14 Ame

Drosophilidae

2E33E8 Dme
B Diptera

cuicidas] Loss Ega | 253268 Aga

Loss E8a l-ZEBQEH Bmo
1E3,3E8

2E3,3E8 Tca

Coleoptera

1E3,3E8 Ame

Hymenoptera

Figure 7

Phylogeny of RNA editing and duplicated exons of nAChR
subunit alphaé gene from D. melanogaster (Dme), A. gambiae
(Aga), B. mori (Bmo), T. castaneum (Tca) and A. mellifera
(Ame). RNA editing and duplicated exons of the nAChR sub-
unit alphaé genes from D. melanogaster and A. gambiae have
been previously described [16,17]. Recent work suggests that
the Hymenoptera are basal to the Coleoptera in the Endop-
terygota [22,23]. (A) Phylogeny of RNA editing and compara-
tive sequence analysis of the flanking intronic sequences.
Dashes indicate no detectable editing. Boxes denoting gener-
ations (+) and disappearances of particular editing events are
indicated by boxes. The editing sites correspond to the
number in Figure 5. (B) Phylogeny of duplicated exons. Boxes
indicate generations (+) and disappearances of particular
duplicated exons during evolution.
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activity in Culex quinquefasciatus and Aedes aegypti, but not
in A. gambiae [17]. However, Syt I is also edited in mosqui-
toes, sharing two editing sites with Drosophila species, and
one mosquito-specific site [25]. This suggests that adeno-
sine deaminase functions in the Anopheles lineage, as in
Drosophila. A comparative sequence analysis of these spe-
cies showed that the exon 5 was highly conserved at both
the nucleotide and amino acid level among these species
(Figure 5), but the flanking intronic sequences were
highly divergent. The downstream intron 5 was extraordi-
narily short in length, 97 bp, in A. gambiae, while it was >
1 kb in Drosophila, > 4 kb in B. mori, > 2 kb T. castaneum,
and > 30 kb in A. mellifera, respectively (Figure 7A). Like-
wise, the upstream intron 4 was also extraordinarily short,
94 bp, in A. gambiae, while it was much more than 1 kb in
the other insect species (Figure 7A). The absence of editing
in Anopheles correlated with the lack of downstream
intronic sequences, which were necessary to direct editing
by forming duplex RNA substrates for ADARs within
larger, energetically stable RNA secondary structures. Sim-
ilarly, sequential decrease and loss of editing in A. gam-
biae, through weakening of the ECS-editing site
interaction to form poorer duplex RNA substrates for
ADARSs, could titrate in the edited form of the protein to
the least advantageous level, or even an undetectable
level.

RNA editing conserved between the orders Diptera and
Lepidoptera for one nAChR gene was previously consid-
ered an example of convergent evolution [17]. However,
our phylogenetic analysis of RNA editing in orthologous
nAChR alpha6 genes from different species revealed a
divergent evolution from a common ancestor. Moreover,
this implies that divergent evolution from a common
ancestor would have been accompanied by editing loss or
gain in paralogous genes. We suggest that the data pre-
sented here comprise a credible phylogeny of RNA editing
for a gene, graphically illustrating descent with modifica-
tion (Figure 7A). RNA editing in insect nAChR subunit
alpha6 genes predates at least the radiation of the Coleop-
teranand Hymenopteran orders, beginning with sites 5
and 10. New editing sites were probably generated and
ancestral editing sites were lost in subsequent evolution
through global intronic variation (Figure 7A). Our evi-
dence suggests that Anopheles lost editing in the nAChR
alpha6 gene during the evolution of the Diptera; such a
loss might be consistent with the phylogenic evolution of
the introns. The nAChR alpha6 genes possess tandem
duplication of coding exons in their genomic sequences in
insect species, which represents alternative spliced exons.
Dating exon duplications through a combination of the
available experimental data on alternative splicing in
orthologous genes from different species and computa-
tional analysis indicated that the exon 3 and 8 duplica-
tions predated at least the radiation of insect orders
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spanning ~300 million years of evolution. Our results dis-
proved the previous hypothesis that a duplication event
gave rise to exon 8b and 8c before the divergence of an
ancestor of Drosophila and Anopheles, whereas after the
divergence a further duplication gave rise to an extra exon
(exon 8a) in the Drosophila lineage [17]. However, our evi-
dence suggests the possibility that divergent evolution
from a common ancestor was accompanied by exon loss
and generation of paralogous genes (Figure 7B). In the
nAChR alpha6 gene, our evidence suggests that recent loss
of copies of duplicated exons has occurred (e.g. exon 8a in
A. gambiae). Moreover, divergent evolution from a com-
mon ancestor would have been accompanied by change
in the alternative splicing pattern of mutually exclusive
exons in paralogous genes (e.g. exon 3 in B. mori)

RNA editing and SNP sites

The nAChR subunits alpha6 are subject to RNA editing in
insect species. Interestingly, there were several examples
where some A-to-l editing sites were a genomically
encoded G in closely- related species. Although we do not
know how general this interesting phenomenon is, this
led us to consider the possibility that mRNA editing might
act to maintain similarity at the protein and functional
level despite sequence divergence at the DNA level. In
plant mitochondria, mRNA editing might act to maintain
similarity at the protein level [26]. Some genetic restora-
tion events in plants and animals are proposed to be the
result of a template-directed process that makes use of an
ancestral RNA-sequence cache [27,28]. Therefore, the
edited RNA-sequence might be taken as a template to syn-
thesize DNA, thus causing changes at the DNA level. In
addition, the most prevalent changes of substitutional
RNA editing in the nucleus of higher eukaryotes are
hydrolytic deaminations where a genomically encoded C
or A is converted to U and I, respectively [29] Interesting,
A/G and C/T(U) substitution were much more prevalent
than other forms of SNP. Given these relations between
RNA editing and SNP, it is pertinent to ask whether RNA
editing might be an evolutionary predecessor to genomi-
cally fixed SNPs.

Regulation of mutually exclusive alternative splicing

RNA editing and alternative splicing play an important
role in expanding protein diversity and are commonly
employed to enlarge the proteome. Since both processes
may require conserved exonic and intronic elements, RNA
editing may influence alternative splicing decisions or vice
versa. There are a few examples of an association between
alternative splicing and editing [30-34]. As RNA editing
usually occurs close to exon/intron boundaries, this is
likely to be a general phenomenon and suggests an impor-
tant and novel role for RNA editing [30]. Moreover, the
ADAR? protein regulates its own synthesis by creating an
alternative splice site that leads to an out-of-frame product
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[30,34]. The auto-editing of ADAR2 intron 4 by the
ADAR? adenosine deaminase is tightly coupled to splic-
ing, as the modification of the dinucleotide AA to Al cre-
ates a new 3' splice site [34]. The editing site and the
affected splice site are usually in close proximity to one
another, and so RNA editing affected alternative splicing
by creating or deleting splice sites [30-34]. Only one
example indicates that the editing efficiency of a Dro-
sophila gene correlates with a distant splice site selection
where alternative splicing occurs downstream of editing.
In contrast, no correlation is seen when editing occurs
downstream of alternative splicing [35]. However, the
result remains to be determined without considering the
fact that RNA editing and alternative splicing are not reg-
ulated by similar developmental patterns.

In this study, RNA editing could affect the alternative
splicing pattern by another mechanism because no new
splice sites were generated or deleted. The vast majority of
tandemly duplicated exons (99.4%) are likely to be
involved in mutually exclusive alternative splicing events
[14], therefore, mechanisms must exist to ensure that the
splicing of pairs of alternative exons is strictly mutually
exclusive, involved in competing base-pairing interactions
[36], the steric hindrance of snRNP binding [37] and the
dual spliceosome mechanisms [14]. If the signal involved
in these mechanisms was disturbed, the alternative splic-
ing pattern of mutually exclusive exons might be changed.
Taken together, a model can be proposed to explain how
editing and alternative splicing of pre-mRNA is coordi-
nated. RNA editing in exon 4 might disrupt a splicing
enhancer signal within exon 4, which can prevent the
exon 3 cluster from splicing together. The disrupted splice
site is now more efficient at splicing out the shorter
intron, leading to the longer product. It is not exactly clear
how an enhancer within this exon would alter the choice
of a distant acceptor site, but there are previous studies
showing that longer introns tend to be flanked by stronger
splice sites [38]. To test whether A-to-1 editing disrupts
exon splicing enhancer (ESE) elements, we analyzed
edited and unedited exon sequences with an ESE-finder
program [39]. A-to-I editing in two sites was predicted by
the ESE-finder to destroy the SF2/ASF (GGAACGA) and
SRp40 (CGTCAAG) ESE motifs, respectively. Taken
together, our results suggest that ESE disruption is the
underlying mechanism of A-to-I editing that results in the
change of the alternative splicing pattern. Conversely, if
RNA editing does not occur, for example, in the silkworm
embryo and in D. melanogaster and T. castaneum, mutually
exclusive alternative splicing of the duplicated exons has
arisen in the majority of transcripts. Alternatively, A-to-I
editing might disrupt the other splice signals within exon
4 in the silkworm nAChR subunit alpha6, which controls
mutually exclusive splicing of the duplicated exons. One
protein has recently been identified that prevents all of the
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duplicated exon variants from being spliced together,
which demonstrates that the duplicated exon variants are
in fact capable of being spliced together but protein fac-
tors exist that repress this reaction [34]. A-to-I editing pos-
sibly relieves the repression on the upstream alternative
duplicated exons, and as a result, the duplicated exon var-
iants might be spliced together.

Conclusion

We have documented the existence, evolutionary conser-
vation, and regulation of RNA editing and alternative
splicing in nAChR alpha6 from five insects spanning ~300
million years of evolution- D. melanogaster, A. gambiae, B.
mori, T. castaneum and A. mellifera. A combination of the
experimental data and computational analysis of ortholo-
gous alpha6 genes from different species indicated that
RNA editing and alternative splicing predated at least the
radiation of insect orders spanning ~300 million years of
evolution; however, they might be lost in some species
during subsequent evolution. The occurrence of alterna-
tive splicing was found to be developmentally regulated,
and even correlated with RNA editing in some cases. Inter-
estingly, some A-to-1 editing sites represented a genomi-
cally encoded G in other species. Phylogenetic analysis of
RNA editing and alternative splicing, which are capable of
creating the multitude of functionally distinct protein iso-
forms, might have a crucial role in the evolution of com-
plex organisms beyond nucleotide and protein sequences.

Methods

Materials

Total RNA was isolated from different developmental
stages of D. melanogaster, B. mori (Qingsong X Haoyue), A.
mellifera (ligustica Spinola) and T. castaneum (the red
flour beetle) using the RNeasy Mini Kit (Qiagen, Ger-
many) according to the manufacturer's protocol.
Genomic DNA was isolated using the Universal Genomic
DNA Extraction Kit (TaKaRa). RNA was stored at -80°C
and genomic DNA was stored at 4°C. Plasmid DNA was
purified using Qiagen plasmid isolation kit.

Gene assemblies and analysis

The sequences of the nAChR subunit alpha6 genes from
D. melanogaster and A. gambige have been previously
described [16,17]. The sequences of the nAChR subunit
alpha6 genes for the other Drosophila species(D. simulans,
D. sechellia, D. yakuba, D. erecta, D. ananassae, D. pseudoo-
bscura, D. persimilis, D. willistoni, D. mojavensis, D. virilis
and D. grimshawi), the silkworm B. mori, the honeybee A.
mellifera and the red flour beetle T. castaneum were assem-
bled from individual raw sequence reads available from
the NCBI trace archives. Vertebrate alpha6 orthologs in
Homo sapiens (human),Danio rerio (zebrafish), Mus muscu-
lus (mouse),Gallus gallus (chicken) and Takifugu rubripes
(pufferfish) were identified by BLAST searches using the
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sequence of the most closely related organisms. The
intron 7 sequence of the silkworm nAChR subunit alpha6
gene was determined using PCR and sequencing.

Generation of full-length cDNA

Full-length ¢cDNA clones were obtained using the 5'/3'
RACE cDNA synthesis kit. First strand cDNA was synthe-
sized from total RNA (0.5 pg) isolated from silkworm
using SuperScript II reverse transcriptase primed with the
oligo(dT)12-18 anchor primer according to the manufac-
turer's instructions (Invitrogen). The 5' and 3' RACE spe-
cific primers were designed according to the DNA
sequence (Table 1). The DNA products were purified by
using the Qiagen PCR purification kit and cloned into the
pGEM-T Easy vector (Promega) according to the manufac-
turer's instructions. Isolation of recombinant clones was
carried out using standard procedures.

Analysis of gene expression by RT-PCR

Silkworm total RNA was reverse transcribed using Super-
Script II RT and the resulting single-stranded cDNA prod-
uct was treated with DNase at 37°C for 30 min. PCR
amplification was carried out using cDNA from 10 ng of
total RNA template in each reaction. The gene-specific
primers for PCR were designed according to the nAChR
alpha6 genomic sequence. Each splice product was ampli-
fied separately from bulk cDNA using a single spliceform-
specific primer and a shared primer. Primerl, 2, 3, 4, 5
refer to BmDa-5-4, BmDa-5-8, BmDa-5-9, BmDa-5-10,
and BmDa-3-1, respectively (Table 1). Amplification con-
ditions were 35 cycles of 94°C for 30 s, 55-65°C for 30 s
and 72°C for 30 s, followed by one cycle of 72°C for 10
min. Silkworm glyceraldehyde-3-phosphate dehydroge-
nase gene (GAPDH) transcripts were amplified as an
external control.

Analysis of alternative splicing forms

Total RNA was reverse transcribed using SuperScript II RT
and the resulting single-stranded ¢DNA product was
treated with DNase at 37°C for 30 min. The gene specific
primers for PCR were designed according to the nAChR
alpha6 genomic sequence (Table 1). PCR amplification
was carried out using cDNA from 10 ng of total RNA tem-
plate in each reaction. The products of RT-PCR were puri-
fied and cloned into the pGEM-T Easy vector (Promega,
USA) and transformed with a JM109 competent cell.
Recombinant clones were identified by restriction
enzymes and PCR. Sequencing of selected clones was
done using automatic DNA sequencer. cDNA sequences
were determined by amplifying portions of the gene and
directly sequencing the PCR product.

Analysis of RNA editing
Analysis of RNA editing was performed using total RNA as
the template for RT-PCR. RT-PCR was performed with the
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Table I: Primers used for the RT-PCR and PCR analysis

Species Experiment  Primer name Primer sequence(5"-3')
B. mori 5'RACE BmDa-3-14 caccttaggttgtagtcattcca
5'RACE BmbDa-3-13  tgttcggtgttatccttaagtect
Editing, AS BmDa-5-1 gtgctgacgagggttttgacggga
Editing, AS BmDa-5-4  acgaaaaacgtctgctgaacgecct
Editing, AS BmDa-5-8 tggctaaacttggaatg
Editing, AS BmDa-5-9 tcatagatgtggacgagaag
Editing, AS BmDa-5-10 gctaaacttggacgag
Editing, AS BmDa-5-11 gtagcgcactgeecgtgteca
Editing, AS BmbDa-5-19  cgatgtagctgcttacgattgggt
Editing, AS BmDa-3-1 ctgattgccatcatatgtccaget
Editing, AS BmDa-3-2 ccagctaccaaacttcatatcac
Editing, AS BmDa-3-3 tcactgcacgatgatatgeggc
Editing, AS BmDa-3-5  ccgagtgtcaatttctccccagaat
Intron7 BmDa-5-6 aggaatgccgggcaaaaagaaca
BmDa-3-18 ttgagtcctattaacaggcgaacaga
GAPDH  BmGAPS5-I ctactgttcatgccacaactgct
GAPDH  BmGAP3-I| tgtacttgatgagatcaatgact
D. Editing, AS DmDa-5-1  agttcggactgacgctgcagcagat
melanogaster
Editing, AS DmDa-5-2  cggatgagggattcgatggcacgt
Editing, AS DmbDa-3-1  gcaagtaccactcgccatttgttat
Editing, AS DmbDa-3-2  gaggcgaccatgaacatgatgcaat
A. mellifera Editing AmDa-5-1 gtgcggatgagggtttcgacggga
Editing, AS AmDa-5-2: gaatgggtggactacaacctccaat
Editing, AS AmbDa-5-3  ggacgtcacgagaaacgtttgttg
Editing AmDa-3-1 ctggttgccgtegtaggtccagga
Editing, AS AmbDa-3-3  tgtacatgagaatgtctggcttcca
Editing, AS AmbDa-3-5 ctgtccaccaccatagcggega
T. castaneum Editing, AS  TcDa-5-1  aggggccgcacgaaaagcggctact
Editing, AS  TcDa-5-2  aacgactataatctcaaatggaacg
Editing, AS  TcDa-5-3 gtgcggatgagggtttcgacg
Editing, AS  TcDa-3-1 cctggttgecgtcataggtccaget
Editing, AS  TcDa-3-2 cataagaacatcaggcttccaca
Editing, AS  TcDa-3-4 gectactgeacgattatgtgegg
Editing, AS  TcDa-3-5 ttgaggcatttcgtggatatcage
Editing, AS TcDa-3-6  caagaccactgacgacgctaccat

AS: Alternative splicing

primer pairs mentioned above for nAChR alpha6 genes in
different species. RT-PCR amplicons were either directly
sequenced after gel purification or subcloned and individ-
ual cDNA-bearing plasmid clones subjected to sequenc-
ing. Primers for the nAChR subunit alpha6 exon 5 were
used to amplify genomic DNA from the same tissues used
for RNA isolation. The genomic PCR amplification prod-
uct was subjected to direct sequencing to demonstrate that
genomic products give a pure A signal at editing sites, rul-
ing out a polymorphism. For subcloning, RT-PCR splice
products were cloned into the pGEM-T Easy vector. Rela-
tive A-to-G abundance was determined by sequencing
individual clones with plasmids containing appropriately
sized inserts.
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nAChR subunit alphaé sequences

The GenBank accession numbers of the nAChR alpha6
subunit genes are as follows: alpha6 cDNAs of B. mori var-
iants are EF127797, EF127798, EF127799; alpha6 cDNAs
of T. castaneum variants are from EF127806 to EF127810;
alpha6 cDNAs of A. mellifera variants are from EF127800
to EF127805.
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ADAR - adenosine deaminase acting on RNA

UTRs - untranslated regions

Ach - acetylcholine

RT-PCR - reverse transcription-polymerase chain reaction
EST - expressed sequence tag

SNP - single nucleotide polymorphism

ECS - editing site complementary sequence

ESE - exon splicing enhancer

GAPDH - glyceraldehyde-3-phosphate dehydrogenase
CSE - constitutive exons

AS - alternative splicing

Dme - Drosophila melanogaster

Bmo - Bombyx mori

Tca - Tribolium castaneum

Ame - Apis mellifera

Aga - Anopheles gambiae

Authors' contributions

Y.J conceived and designed the experiments. N.T, ].C, J.L
and Z.Y performed the experimental analysis in B. mori,
D. melanogaster, A. mellifera and T. castaneum, respectively.
J. L performed the sequence analysis and RNA secondary
structure predictions. Y.J, N.T and J.C co-wrote this paper.

All authors read and approved the final manuscript.

Acknowledgements

This work was partly supported by research grants from the National Nat-
ural Science Foundation of China (90508007 and 30277056), and 863 Pro-
gram (2006AA10A119) and the Program for New Century Excellent
Talents in University (NCET-04-0531).

http://www.biomedcentral.com/1471-2148/7/98

References

I. Bass BL: RNA editing by adenosine deaminases that act on
RNA. Annu Rev Biochem 2002, 71:817-846.

2. Maas S, Rich A, Nishikura K: A-to-l RNA editing: Recent news and
residual mysteries. | Biol Chem 2003, 278:1391-1394.

3. Seeburg PH, Higuchi M, Sprengel R: RNA editing of brain gluta-
mate receptor channels: Mechanism and physiology. Brain Res
Rev 1998, 26:217-229.

4. Schmauss C, Howe JR: RNA editing of neurotransmitter recep-
tors in the mammalian brain. Sci STKE 2002, 133:26.

5. Higuchi M, Maas S, Single FN, Hartner |, Rozov A, Burnashev N, Feld-
meyer D, Sprengel R, Seeburg PH: Point mutation in an AMPA
receptor gene rescues lethality in mice deficient in the RNA-
editing enzyme ADAR2. Nature 2000, 406:78-81.

6.  Palladino M), Keegan LP, O'Connell MA, Reenan RA: A-to-l pre-
mRNA editing in Drosophila is primarily involved in adult
nervous system function and integrity. Cell 2000, 102:437-449.

7. Tonkin LA, Saccomannol L, Morse DP, Brodigan T, Krause M, Bass BL:
RNA editing by ADARs is important for normal behavior in
Caenorhabditis elegans. EMBO | 2002, 21:6025-6035.

8.  Wang Q, Khillan J, Gadue P, Nishikura K: Requirement of the RNA
editing deaminase ADARI gene for embryonic erythropoiesis.
Science 2000, 290:1765-1768.

9. Morse DP, Aruscavage PJ, Bass BL: RNA hairpins in noncoding
regions of human brain and Caenorhabditis elegans mRNA are
edited by adenosine deaminases that act on RNA. Proc Natl
Acad Sci USA 2002, 99:7906-791 I.

10. Rueter SM, Dawson TR, Emeson RB: Regulation of alternative
splicing by RNA editing. Nature 1999, 399:75-80.

I'l. Kondrashov FA, Koonin EV: Origin of alternative splicing by tan-
dem exon duplication. Hum Mol Genet 2001, 10:2661-2669.

12, Stasiv Y, Kuzin B, Regulski M, Tully T, Enikolopov G: Regulation of
multimers via truncated isoforms: a novel mechanism to con-
trol nitric-oxide signaling. Genes Dev 2004, 18:1812-1823.

13. ShinJ, Park B, Lee S, Kim Y, Biegalke BJ, Kang S, Ahn K: A short iso-
form of human cytomegalovirus US3 functions as a dominant
negative inhibitor of the full-length form. | Virol 2006,
80:397-404.

14.  Letunic |, Copley RR, Bork P: Common exon duplication in ani-
mals and its role in alternative splicing. Hum Mol Genet 2002,
13:1561-1567.

I5.  Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC:
Edit, cut and paste in the nicotinic acetylcholine receptor gene
family of Drosophila melanogaster. Bioessays 2005, 27:366-376.

16.  Grauso M, Reenan RA, Culetto E, Satelle DB: Novel putative nico-
tinic acetylcholine receptor subunit genes, Da5, Da6é and Da7,
in Drosophila melanogaster identify a new and highly conserved
target of adenosine deaminase acting on RNA-mediated A-to-
I pre-mRNA editing. Genetics 2002, 160:1519-1533.

17. Jones AK, Grauso M, Sattelle DB: The nicotinic acetylcholine
receptor gene family of the malaria mosquito, Anopheles gam-
biae. Genetics 2005, 85:176-187.

18. FlyBase [http:/flybase.bio.indiana.edu/blast/]

19.  Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nussk-
ern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus
B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anth-
ouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Bald-
win D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M,
Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA,
Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew |, Evans CA,
Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo
R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover }, Jaillon O,
Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic |, Levitsky A, Liang Y, Lin
J), Lobo NF, Lopez |R, Malek JA, McIntosh TC, Meister S, Miller J,
Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R,
Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty |,
Smith TJ, Strong R, Sun ], Thomasova D, TonL Q, Topalis P, Tu Z,
Unger MF, Walenz B, Wang A, Wang |, Wang M, Wang X, Woodford
KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao
S, Zhu SC, Zhimulev |, Coluzzi M, dellTorre A, Roth CW, Louis C,
Kalush F, Mural R}, Myers EW, Adams MD, Smith HO, Broder S, Gard-
ner M|, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach
J, Kafatos FC, Collins FH, Hoffman SL: The genome sequence of the
malaria mosquito. Anopheles gambiae Science 2002, 298:129-149.

20. Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T,
Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li
C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M,
Shen W, Wu D, Xiang Z, Yu ], Wang, Li R, Shi J, Li H, Li G, Su J, Wang
X, Li G, Zhang Z, Wu Q, Li }, Zhang Q, Wei N, Xu J, Sun H, Dong L,
Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li
D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang
X, Wang Z,LiW, Cao Y, Yu Y, YuH, Li}, Ye ], Chen H, Zhou Y, Liu B,
Wang J, Ye ], Ji H, Li S, Ni P, Zhang ], Zhang Y, Zheng H, Mao B, Wang

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12446659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12446659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9651532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9651532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10894545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10894545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10894545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10966106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10966106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10966106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12426375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12048240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12048240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15770687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11973307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11973307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11973307
http://flybase.bio.indiana.edu/blast/

BMC Evolutionary Biology 2007, 7:98

21.

22.

23.

24.

25.
26.
27.

28.

29.
30.
31

32.

33.
34.

35.

36.

37.

38.

39.

W, Ye C, Li S, Wang |, Wong GK, Yang H, Biology Analysis Group: A
draft sequence for the genome of the domesticated silkworm
(Bombyx mori). Science 2004, 306:1937-1940.

Honeybee Genome Sequencing Consortium: Insights into social
insects from the genome of the honeybee Apis mellifera.
Nature 2006, 443:93 |-49.

Savard ), Tautz D, Richards S, Weinstock GM, Gibbs RA, Werren JH,
Tettelin H, Lercher M): Phylogenomic analysis reveals bees and
wasps (Hymenoptera) at the base of the radiation of Holome-
tabolous insects. Genome Res 2006, 16:1334-1338.

Zdobnov EM, Bork P: Quantification of insect genome diver-
gence. Trends Genet 2007, 23:16-20.

Jones AK, Raymond DV, Thany SH, Gauthier M, Sattelle DB: The nic-
otinic acetylcholine receptor gene family of the honey bee,
Apis mellifera. Genome Research 2006, 16:1422-1430.

Reenan RA: Molecular determinants and guided evolution of
species-specific RNA editing. Nature 2005, 434:409-413.

Covello PS, Gray MW: RNA editing in plant mitochondria. Nature
1989, 341:662-666.

Susan JL, Jennifer LV, Jessica M, Young JM, Robert EP: Genome-wide
non-mendelian inheritance of extra-genomic information in
Arabidopsis. Nature 2005, 434:505-509.

Minoo R, Valérie G, Pierre G, Stéphane V, Isabelle G, Frangois C: RNA-
mediated non-mendelian inheritance of an epigenetic change
in the mouse. Nature 2006, 441:469-474.

Brennicke A, Marchfelder A, Binder S: RNA editing. FEMS Microbiol-
ogy Reviews 1999, 23:297-316.

Rueter SM, Dawson TR, Emeson RB: Regulation of alternative
splicing by RNA editing. Nature 1999, 399:75-80.

Maas S, Patt S, Schrey M, Rich A: Underediting of glutamate recep-
tor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci 2001,
98:14687-14692.

Flomen R, Knight ], Sham P, Kerwin R, Makoff A: Evidence that RNA
editing modulates splice site selection in the 5-HT2C receptor
gene. Nucleic Acids Res 2004, 32:2113-2122.

Bratt E, Ohman M: Coordination of editing and splicing of gluta-
mate receptor pre-mRNA. RNA 2003, 9:309-318.

Laurencikiene J, Kallman AM, Fong N, Bentley DL, Ohman M: RNA
editing and alternative splicing: the importance of co-tran-
scriptional coordination. EMBO Rep 2006, 7:303-307.

Agrawal R, Stormo GD: Editing efficiency of a Drosophila gene
correlates with a distant splice site selection. RNA 2005,
11:563-566.

Graveley B: Mutually exclusive splicing of the insect Dscam pre-
mRNA directed by competing intronic RNA secondary struc-
tures. Cell 2005, 123:65-73.

Southby C, Gooding C, Smith CW: Polypyrimidine tract binding
protein functions as a repressor to regulate alternative splic-
ing of o-actinin mutually exclusive exons. Mol Cell Biol 1999,
19:2699-2711.

Clark F, Thanaraj TA: Categorization and characterization of
transcript-confirmed constitutively and alternatively spliced
introns and exons from human. Hum Mol Genet 2002, | 1:451-464.
Cartegni L, WangJ, Zhu Z, Zhang MQ, Krainer AR: ESE finder: a web
resource to identify exonic splicing enhancers. Nucleic Acid
Research 2003, 13:3568-3571.

http://www.biomedcentral.com/1471-2148/7/98

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15591204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17073008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17073008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17065606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17065606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17065606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17097187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17097187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17065616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2552326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15785770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16724059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16724059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16724059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10371035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10331393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11717408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11717408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15087490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15087490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15087490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12592005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12592005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16440002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16440002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16440002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16213213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16213213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16213213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10082536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11854178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11854178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11854178
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Comparison of the nAChR subunit alpha6 genes from different insect species
	Conservation and divergence of alternative splicing
	Evolutionary conservation and divergence of nAChR alpha6 RNA editing
	Some A-to-I editing sites were a genomically encoded G in other species
	Correlation between RNA editing and alternative splicing

	Discussion
	Evolutionary implications
	RNA editing and SNP sites
	Regulation of mutually exclusive alternative splicing

	Conclusion
	Methods
	Materials
	Gene assemblies and analysis
	Generation of full-length cDNA
	Analysis of gene expression by RT-PCR
	Analysis of alternative splicing forms
	Analysis of RNA editing
	nAChR subunit alpha6 sequences

	Abbreviations
	Authors' contributions
	Acknowledgements
	References

