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Abstract
Background: Non-long terminal repeat (non-LTR) retrotransposons are mobile genetic elements
that propagate themselves by reverse transcription of an RNA intermediate. Non-LTR
retrotransposons are known to evolve mainly via vertical transmission and random loss. Horizontal
transmission is believed to be a very rare event in non-LTR retrotransposons. Our knowledge of
distribution and diversity of insect non-LTR retrotransposons is limited to a few species – mainly
model organisms such as dipteran genera Drosophila, Anopheles, and Aedes. However, diversity of
non-LTR retroelements in arthropods seems to be much richer. The present study extends the
analysis of non-LTR retroelements to CR1 clade from four butterfly species of genus Maculinea
(Lepidoptera: Lycaenidae).

The lycaenid genus Maculinea, the object of interest for evolutionary biologists and also a model
group for European biodiversity studies, possesses a unique, specialized myrmecophilous lifestyle
at larval stage. Their caterpillars, after three weeks of phytophagous life on specific food plants drop
to the ground where they are adopted to the ant nest by Myrmica foraging workers.

Results: We found that the genome of Maculinea butterflies contains multiple CR1 lineages of non-
LTR retrotransposons, including those from MacCR1A, MacCR1B and T1Q families. A comparative
analysis of RT nucleotide sequences demonstrated an extremely high similarity among elements
both in interspecific and intraspecific comparisons. CR1A-like elements were found only in family
Lycaenidae. In contrast, MacCR1B lineage clones were extremely similar to CR1B non-LTR
retrotransposons from Bombycidae moths: silkworm Bombyx mori and Oberthueria caeca.

Conclusion: The degree of coding sequence similarity of the studied elements, their discontinuous
distribution, and results of divergence-versus-age analysis make it highly unlikely that these
sequences diverged at the same time as their host taxa. The only reasonable alternative explanation
is horizontal transfer. In addition, phylogenetic markers for population analysis of Maculinea could
be developed based on the described non-LTR retrotransposons.
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Background
Non-long terminal repeat (non-LTR) retrotransposons are
mobile genetic elements that propagate by reverse tran-
scription of an RNA intermediate. These elements lack ter-
minal repeats and utilize a simplified target-primed
reverse transcription (TPRT) mechanism for their retro-
transposition. During TPRT, the element-encoded endo-
nuclease cleaves the genomic DNA, and reverse
transcriptase (RT) uses this break to prime reverse tran-
scription from the element's RNA. Resulting cDNA copy is
then integrated into the target site [1,2].

Based on their structure, non-LTR retrotransposons can be
classified into two groups. The first group has a single
open reading frame (ORF) that encodes RT in the middle
and a restriction enzyme-like endonuclease (RLE) near its
C-terminus. The second group of non-LTR retrotrans-
posons has two ORFs: ORF1 and ORF2; the latter encodes
two domains responsible for retrotransposition: apurinic/
apyrimidinic endonuclease (APE)-like endonuclease
domain at the N-terminus and RT domain in the middle.

The RT domain has been used to classify non-LTR retro-
transposons into phylogenetic groups, or clades [3]. Orig-
inally, 11 clades were distinguished among non-LTR
retrotransposons. Later, the total number of clades
increased to 16, with the addition of Genie [4], NeSL-1
[5], Ingi, Rex1 [6], and L2 clades [7]. This number is likely
to increase further since almost every detailed study of
non-LTR retrotransposons brings additional information
about their phylogeny and diversity [8-10]. For example,
a new family encoding both RLE and APE endonucleases
was described recently [10].

Non-LTR retrotransposons represent a large fraction of
known retroelements in insects. At the same time, most of
our knowledge on distribution and diversity of non-LTR
retrotransposons from insects is limited to model organ-
isms such as dipteran genera Drosophila, Anopheles, and
Aedes [8,11,12]. Almost nothing is known about many
other insect groups. Several studies attempted to test a
wide range of arthropods for the presence of particular
clades, e.g. distribution of R1 and R2 clades has been
explored in detail in different arthropods [13].

Our recent study of scorpions (Arachnida) revealed an
unexpected diversity of non-LTR retrotransposons within
several clades in this ancient arthropod group, with at
least three distant clusters in CR1 clade [14]. Previously,
only one family, T1Q-like elements, was described inside
this clade from arthropods [3,8,11]. Studies of non-LTR
retrotransposon diversity can provide a valuable contribu-
tion into understanding of evolution and spreading of
mobile elements in arthropods.

The mode of retrotransposition and phylogenetic studies
suggested that evolution of non-LTR retrotransposons
proceeds mainly via vertical transmission and random
loss of elements from a population [3]. Horizontal trans-
mission is believed to be a very rare event for this class of
retrotransposons. Nevertheless, at least one well-docu-
mented case of horizontal transmission is known. Hori-
zontal transmission of Bov-B elements from an ancestral
snake lineage (Boidae) to the ancestor of ruminants has
been confirmed on the basis of discontinuous distribu-
tion, extreme nucleotide sequence conservation, and phy-
logenetic analysis [15].

In the present study, we examined the diversity of CR1
clade of non-LTR retrotransposons in lycaenid butterflies
of the genus Maculinea. Molecular systematic studies con-
firmed the existence of seven Maculinea species, most of
them with several subspecies [16]. Maculinea arion L., M.
alcon (Denis et Schiffermüller), and M. teleius (Berg-
strässer) are widely distributed from western Europe to
East Asia, while M. nausithous (Bergsträsser) ranges from
West Europe to Central Asia. M. cyanecula (Eversmann) is
restricted to Central Asia, while M. arionides (Staudinger)
and M. kurenzovi (Sibatani, Saigusa et Hirowatari) are
found in East Asia [16-18]. In Europe, Maculinea are an
object of interest of evolutionary biologists and model
species for biodiversity studies since they are considered
vulnerable or threatened [19-21] and also because of their
fascinating biology. All Maculinea species are character-
ized by a specialized myrmecophilous lifestyle at larval
stage. Their caterpillars, after three weeks of phytophagous
life on specific food plants drop to the ground where they
are adopted to the ant nest by Myrmica foraging workers.
Larvae remain within the nest for a period of approxi-
mately 10 or 22 months, during which time they increase
their body mass almost 100 times without moulting [22-
24]. Three Maculinea species, M. teleius, M. nausithous and
M. arion, are obligatory predators of the ant larvae. How-
ever, M. alcon, so-called "cuckoo" species, is a fully inte-
grated social parasite and is fed by workers by trophic eggs
and regurgitation [25].

Their unusual life history traits, such as parasitic life style,
differentiated feeding strategies, exceptions to normal
insect growth rules as an adaptation to long starvation
period [26] and one or two-year mode of caterpillar's
growth, make genus Maculinea a very interesting model
for evolutionary studies, including studies of non-LTR ret-
rotransposons diversity and evolution. Moreover, non-
LTR retrotransposons could be very useful as molecular
markers in intraspecific phylogeography of Maculinea.

We implemented broad analysis for CR1 group in an
attempt to cover the diversity of CR1-like elements from
Maculinea butterflies and evaluate the possibilities for
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development of phylogenetic markers. Distinct evolution-
ary lineages of the CR1-like non-LTR retrotransposons
were identified, showing significant variation among CR1
clade elements.

Surprisingly, retroelements highly similar to one of the
detected CR1 families have been recently identified in
silkworm Bombyx mori. We reconstructed the complete
element BmCR1B from B. mori using the genomic frag-
ments available in databases. Extremely high similarity of
B. mori and Maculinea elements was intriguing since these
lepidopteran species are not closely related. We per-
formed additional PCR screening of butterflies from dis-
tinct groups (suborder Ditrysia) to evaluate distribution
of newly isolated families from CR1 clade. CR1A-like ele-
ments were found only in family Lycaenidae. In contrast,
CR1B-like non-LTR retrotransposons were detected in
Bombycidae moths: silkworm Bombyx mori and Oberthue-
ria caeca. The degree of coding sequence similarity of the
studied elements, their discontinuous distribution and
results of divergence-versus-age analysis make it highly
unlikely that these sequences diverged at the same time as
their host taxa. Thus, new evidence was obtained for hor-
izontal transmission of non-LTR retrotransposons.

Results and discussion
Multiple lineages of CR1-like retroelements represent in 
Maculinea
No retrotransposable elements from Maculinea have been
previously described. The degenerate oligonucleotide
primers used in our study were designed based on
sequences of known non-LTR retrotransposons from CR1
clade. Four species of Maculinea were screened by PCR
using these degenerate primers (Table 1), and the PCR
products were cloned.

In total, 52 clones were obtained for CR1 clade and
sequenced (Table 1). After preliminary identification of
RT fragments by comparison with sequences in the Gen-
Bank database, we found that 49 clones showed clear sim-
ilarity with RT domain of non-LTR retrotransposons,
while three sequences revealed no presence of RT. The
total number of clones with RT for each species is listed in
Table 1.

The BLAST search showed a strong similarity of transla-
tion products of those clones that contained RT to the ele-
ments described from CR1 clade. In general, the designed
PCR primers for CR1 proved to be suitable for isolation of
an RT domain from Maculinea. However, two sequences
unexpectedly showed clear similarity to the elements
belonging not to CR1 but to R1 clade of non-LTR retro-
transposons. These sequences were named MnaR1 (Macu-
linea nausithous R1 element) [GenBank:DQ836391] and
MalR1 (Maculinea alcon R1 element) [Gen-

Bank:DQ836392]. Representatives of R1 clade appear to
play a very important role in telomere maintenance in
insects [27,28]. For example, TRAS1 and SART1 elements
from Bombyx mori are site-specific for telomeric repeats
[29]. Two isolated Maculinea elements shared more than
57 % homology in amino acid sequence and were highly
similar to R1-like elements from other insects. Similarity
between amino acid sequences of MnaR1 and RT1 ele-
ment from Anopheles gambiae [30] was 51 %. Amplifica-
tion of R1 elements using CR1 pair of primers could
possibly be a result of primer degeneracy.

The majority of detected CR1-like elements revealed
defective translated products (29 clones). In total, 18 ele-
ments represented putatively intact RT sequences. Of 29
defective clones, 15 has a single stop mutation and no
frameshifts, while 14 clones contained variable-length
indels and resulted in frameshifts.

We conducted both intra- and interspecific comparative
analysis of RT nucleotide sequences. Presence of several
distinct groups was detected (data not shown). The phyl-
ogeny was constructed based on nucleotide sequences of
all 49 isolated clones. Neighbor-joining (NJ) analysis
demonstrated presence of three clear lineages (Figure 1).
Two most commonly found types of CR1-like elements in
Maculinea were designated Lineage A (MacCR1A) and Lin-
eage B (MacCR1B) (see Figure 1; Additional file 1).

Lineage A of CR1-like elements from Maculinea – 
MacCR1A family
In total, 29 clones from all four studied species formed
this lineage in NJ analysis based on nucleotide sequences
of RT domain (Figure 1). Comparative analysis of RT
nucleotide sequences showed an extremely high similarity
among elements both within and between species. Aver-
age intraspecific sequence similarity ranged from 98.6 %
in M. alcon to 99.5 % in M. teleius. Less than 2 % of
intraspecific divergence was detected in M. nausithous.
Three of eight clones isolated from M. alcon appeared to
be absolutely identical (clones MalCR1-4, 5, and 7 - Mac-
ulinea alcon CR1 clones 4, 5, and 7).

The potential translation products of the sequences were
determined. Eleven clones contained intact RT sequences
and could represent the master sequences of elements
with RT activity. Eight of isolated elements had stop muta-
tions but no frameshifts. The remaining ten clones con-
tained indels in comparison with the consensus sequence.
Indels resulted in frame-shifts in five elements. All indels
seems to be unique for a specific element copy since single
copies were detected for each case of insertion or deletion.

Kimura-corrected distances were calculated within and
between species using 14 selected copies (only one copy
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was used for the identical MalCR1-4, 5, and 7). The aver-
age distance was 3.1% within M. teleius, 2.7% within M.
nauthitous, and 3.6% within M. alcon. Interspecific dis-
tances ranged from 3.1% between M. teleius and M.
nausithous to 3.6% between M. teleius and M. alcon. These

low Kimura-corrected distances indicate relatively recent
retrotransposition events for Lineage A elements.

Phylogeny of Maculinea based on nucleotide sequences of
CR-1-like elements was not congruent with the known

Table 1: Maculinea species used in this study, lineages detected in CR1 clade, and GenBank accession numbers of isolated clones.

genus species lineage No. of clones with RT Accession numbers

Maculinea teleius 15
lineage A 7 [GenBank:DQ823008],

[GenBank:DQ823009],
[GenBank:DQ823010],
[GenBank:DQ823011],
[GenBank:DQ823016],
[GenBank:DQ823017],
[GenBank:DQ823018]

lineage B 6 [GenBank:DQ823029];
[GenBank:DQ823030];
[GenBank:DQ823035],
[GenBank:DQ823036],
[GenBank:DQ823037],
[GenBank:DQ823038]

lineage C 2 [GenBank:DQ836363];
[GenBank:DQ836364]

Maculinea nausithous 13 (+1)*
lineage A 8 [GenBank:DQ823012],

[GenBank:DQ823013],
[GenBank:DQ823014],
[GenBank:DQ823019],
[GenBank:DQ823020],
[GenBank:DQ823021],
[GenBank:DQ823022],
[GenBank:DQ823023]

lineage B 3 [GenBank:DQ823031];
[GenBank:DQ823032];
[GenBank:DQ823039]

lineage C 2 [GenBank:DQ836365];
[GenBank:DQ836366]

Maculinea alcon 10 (+1)*
lineage A 8 [GenBank:DQ823012];

[GenBank:DQ823024],
[GenBank:DQ823025],
[GenBank:DQ823026],
[GenBank:DQ823027],
[GenBank:DQ823028]

lineage B 2 [GenBank:DQ823033];
[GenBank:DQ823034]

Maculinea arion 9
lineage A 6 [GenBank:DQ994657],

[GenBank:DQ994658],
[GenBank:DQ994659],
[GenBank:DQ994660],
[GenBank:DQ994661],
[GenBank:DQ994662]

lineage B 3 [GenBank:DQ994663],
[GenBank:DQ994664],
[GenBank:DQ994665]

* single clones appeared to be R1 elements
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NJ phylogeny based on partial RT domain nucleotide sequences of newly isolated retrotransposons from four species of Macu-lineaFigure 1
NJ phylogeny based on partial RT domain nucleotide sequences of newly isolated retrotransposons from four 
species of Maculinea. Statistical support was evaluated by bootstrapping (1000 replications); nodes with bootstrap values 
over 50% are indicated. CR1 elements can be divided into three distinct lineages: MacCR1A, MacCR1B and MacCR1C.
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phylogeny of host species (Figure 1). Moreover, no rela-
tionships could be reconstructed within Lineage A ele-
ments. Altogether, 100 variable sites per 553 bp were
detected among aligned nucleotide sequences, and 49 var-
iable amino acid residues per 184 sites of amino acid
sequence alignment. However, only six variable sites were
parsimoniously informative at DNA level, and only two,
at amino acid level. Other variable sites were represented
by singletons and were non-informative for phylogenetic
analysis.

Lineage B of CR1-like elements from Maculinea – 
MacCR1B family
Lineage B of CR1-like elements from Maculinea butterflies
was represented by 14 clones. The phylogenetic tree based
on NJ analysis of nucleotide sequences showed a strong
support for separation of this lineage from elements of the
Lineage A (bootstrap 100 %). However, the topology
within Lineage B was not supported.

A comparative analysis of nucleotide and amino acid
sequences within the Lineage B demonstrated high simi-
larity both within and among species. Two clones from M.
teleius (MteCR1-12 and MteCR1-16) appeared to be iden-
tical; both carried 11 bp insertion and 40 bp deletion.
One more clone MteCR1-7 contained 17 bp insertion and
32 bp deletion. The remaining sequences had no indels;
however, two of them (MteCR1-17 and MnaCR1-11) rep-
resented interrupted translated products. Six sequences
seemed to be the copies of putatively intact retrotrans-
posons, with the average genetic distance less than 2 %.
The most distant copy (MteCR1-6) showed nucleotide
sequence divergence 4.1 %.

For phylogenetic analysis, we selected eight copies with-
out compensatory frameshift mutations. Nucleotide and
amino acid sequences were aligned. Variable and parsi-
moniously informative sites were determined for both
alignments. As in MacCR1A lineage, number of parsimo-
niously informative sites was very low. Among 66 variable
sites per 547 bp of sequence only eight were informative
for phylogenetic analysis while 58 substitutions were
copy-specific. Number of sites with variable amino acid
residues was less than in the Lineage A, only 36 sites per
182 amino acid residues. Four parsimoniously informa-
tive sites were detected, compared to two in lineage A;
such low number of informative sites does not allow
meaningful phylogeny reconstruction among lineage B.
Low Kimura-corrected distances within and among spe-
cies (average 3.3% in lineage B) suggest a relatively recent
retrotransposon activity.

MacCR1A and MacCR1B elements were only 73.5 % sim-
ilar at DNA level but 88.5 % similar at amino acid level.

Lineage C – T1Q-like non-LTR retroelements from 
Maculinea
Only four retroelements from lineage C were isolated
from two species: M. teleius and M. nausithous (Figure 1).
MnaCR1-6 and MnaCR1-7 showed 100 % similarity,
whereas MteCR1-1 and MteCR1-2 differ in length and
contain two substitutions per 411 bp of common
sequence. MteCR1-1 sequence is 546 bp long; MteCR1-2
is truncated at 5' portion and 411 bp long. Translated
products of MteCR1-2 and MteCR1-1 contain no stop
mutations or frameshifts and seem to be putatively intact.
MnaCR1-6 and MnaCR1-7 clones contained not only stop
codons but also frameshifts. We reconstructed the reading
frame for MnaCR1-6/7 element. Comparison of amino
acid sequences showed 66.3 % similarity between
MteCR1-1 and reconstructed MnaCR1-6/7, but only 55.9
% similarity was found at the DNA level.

Elements from MacCR1C lineage share high similarity
with T1 and Q elements and seem to belong to the T1Q
lineage [3,31,32]. The amino acid sequence similarity
ranged from 53.3 % between MnaCR1-6/7 and Q element
to 54.7 % between MteCR1-1 and Q element; the isolated
elements were less than 50% similar to the CR1 retro-
transposon from chicken Gallus gallus [33]. The T1Q line-
age was detected from genomes of two out of four studied
species of Maculinea. One element was isolated from M.
nausithous, and two closely related copies, from M. teleius.
Small fraction of T1Q-like elements among isolated
clones could be due to a very low copy numbers of this
lineage in the studied species. It could be also a conse-
quence of high divergence among the elements in the
sequences annealing to PCR primers.

BmCR1B element from B. mori
The nucleotide and amino acid sequences of MacCR1A
and MacCR1B elements were used as queries in BLAST
search against databases for arthropods. No species
among those available in databases gave the positive
match except of silkworm Bombyx mori. MacCR1B was
found to be present in B. mori genome. Surprisingly, CR1B
elements from Maculinea and B. mori showed extremely
high sequence similarity.

Based on BLAST results, we reconstructed non-LTR retro-
transposon from B. mori, named BmCR1B (Bombyx mori
CR1 element family B). We did not find any genomic frag-
ments containing the entire sequence of BmCR1B ele-
ment. However, partial BmCR1B sequences from different
genomic fragments showed high similarity to each other
and the entire sequence of the element could be assem-
bled based on several contigs (Figure 2).

BmCR1B element could be almost completely recon-
structed by fusion of two contigs: Ctg011054 [Gen-
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Bank:AADK01011054] and Ctg006777
[GenBank:AADK01006777]. The fragment Ctg011054
lacks approximately 400 bp of element at the 3' end. The
second contig, Ctg00677, represents almost entire ele-
ment BmCR1B but lacks 400 bp at 5' end. Other contigs
contain incomplete sequences of BmCR1B retroelement
to a greater extent, either due to their position at a contig
border (Ctg034636; Ctg022133; Ctg011753; Ctg028411;
Ctg016714) or to insertion of sequences of an unknown
origin (Ctg010781 and Ctg004626).

The 3' end of the BmCR1B element was identified easily
since it was terminated by polyA track. For reconstruction
of the 5' end of element we performed additional BLAST
search using as a query that sequence, which was homol-
ogous to Ctg011054, Ctg022133 and Ctg011753 in their
5' parts. Analysis of the 5' part of the BmCR1B from differ-
ent contigs allowed to identify clearly the 5' end of the ele-
ment (Figure 3). We expected that the full-length
retroelement will be at least 5 Kb in length and will con-
tain two ORFs. However, reconstructed BmCR1B ele-
ments are approximately 3550 bp in length and contain a
single putative ORF, which encodes a polyprotein with
APE and RT domains. PolyA tail with various lengths was
detected at the 3' end of these elements (Figure 3). The
putative 5' untranslated region (5' UTR) is 312 bp long.
The putative 3' UTR is very short, only 53 bp.

The fragments of BmCR1B element detected in different
contigs are highly similar to each other as well as to
MacCR1B elements. Sequence similarity between recon-
structed BmCR1B and consensus MacCR1B was 96.1 % at
DNA level and 95 % at amino acid level. Similarity
between BmCR1B element and consensus MacCR1A was
73.5 % at DNA level and 89 % at amino acid level (Figure
4).

Distribution of CR1B and CR1A families in other butterflies
We designed specific PCR primers for both discovered
families (MacCR1A and MacCR1B) and screened a selec-
tion of species from other related groups of Lepidoptera.
Primers were based on sequences isolated from Maculinea
spp. and BmCR1B element (Figure 4) and tested by PCR
and sequencing in all four species of Maculinea. The prim-
ers annealed specifically either to MacCR1A or to
MacCR1B template.

Nine superfamilies and 13 families of Lepidoptera were
selected based on known phylogeny of suborder Ditrysia
including superfamily Bombycoidea (Table 2; Figure 5).
Eight species from superfamily Papilionoidea were also
studied. We included in our analysis three additional spe-
cies of Lycaenidae since we expected to detect either both
families or one of them in the genera closely related to
Maculinea. Moreover, representatives of three other fami-
lies from Papilionoidea were screened. We also chose one
member of the Saturniidae, a bombycoid family closely
related to the Bombycidae. As an outgroup served the
meal moth Pyralis farinalis (superfamily Pyraloidea), the
most ancient taxon among studied Lepidoptera according
to the commonly accepted phylogeny [34]. Oberthueria
caeca was included as additional species from family Bom-
bycidae.

In total, 17 species were used in the further PCR screening
in addition to Maculinea spp. (Table 2). We also per-
formed PCR with original degenerate CR1 primers (CR1-
S and CR1-A) to demonstrate presence of CR1 clade in all
studied species. All specimens gave us the positive signals
with the original CR1 primers (Figure 5). The products
with the expected size, 550 bp in length, were detected by
electrophoresis in all reactions. Thus, we can assume that
all studied species contain CR1 clade elements in their
genomes.

PCR screening with specific primers demonstrated pres-
ence of the CR1A family in all Lycaenidae but its lack in
all other studied species. PCR products of the expected
size were detected in Scolitantides orion, Shijimaeoides
divina, and Plebejus argus. The genera Scolitantides and Shi-
jimaeoides are the closest relatives of Maculinea. It appears
that CR1A family is found in Lycaenidae, but is absent
from other butterflies even in closely related families

The structural organization of BmCR1B retroelement from B. mori reconstructed based on genomic fragments available in databasesFigure 2
The structural organization of BmCR1B retroele-
ment from B. mori reconstructed based on genomic 
fragments available in databases. The numbers of 
respective contigs are given. Single open reading frame (ORF) 
was found which codes protein carried reverse transcriptase 
(RT) and endonuclease (APE) domains. BmCR1B element has 
5'- and 3'- untranslated terminal regions (5' and 3' UTR) and 
polyadenine tract (polyA) at the 3' end.
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Pieridae (Pieris napi), Nymphalidae (Araschnia levana and
Melitaea phoebe), and Satyridae (Erebia theano). On the
other hand, CR1A-like elements could further diverge in
other species to the extent that designed primers would be
not appropriate for their detection.

The CR1A PCR products were cloned and sequenced for
all three species in which CR1A was detected additionally
to Maculinea spp. Elements of CR1A family from S. orion
(SoriCR1A), Sh. divina (ShdivCR1A), and P. argus
(PargCR1A) share high similarity with MacCR1A ele-
ments. Average similarity of the amino acid sequences was
94.2 % among CR1A-like elements from all investigated
Lycaenidae. The newly identified CR1A elements from
Lycaenidae butterflies showed 3.5 % (PargCR1A versus
MacCR1A) and 2.3 % (SoriCR1A versus MacCR1A) value
of divergence (Table 3).

Positive results in PCR reaction with CR1B primers were
observed for Maculinea and representatives of the family
Bombycidae: O. caeca and B. mori (Figure 5). The CR1B
products were cloned and sequenced. Surprisingly, the
CR1B elements from closely related O. caeca (OcaCR1B)
and B. mori (BmCR1B) showed higher level of amino acid
sequence divergence than CR1B retrotransposons from

Maculinea and B. mori (Table 3). Taxa which are most
closely related to Maculinea, S. orion and Sh. divina, did not
demonstrate a presence of this family in PCR screening
(Figure 5). The discontinuous distribution, high sequence
similarity between MacCR1B and BmCR1B elements from
divergent species and lower similarity between BmCR1B
and OcaCR1B elements from closely related species could
be the evidences for horizontal transmission for non-LTR
retrotransposons from CR1B family.

Evidence of horizontal transmission
Most examples of horizontal gene transfer in eukaryotes
involve transposable elements [35,36]. Such transfers are
usually recognized by the presence of very closely related
elements in distantly related host taxa. Evolutionary
dynamics of transposable elements could sufficiently dif-
fer even in closely related taxa. As a result, phylogenetic
studies of mobile elements often show incongruence with
host species phylogenies. First, transposable elements are
multicopy components of genomes. Thus, comparisons
of paralogous copies of these elements instead of
orthologs along with varying rates of sequence evolution
of mobile elements copies are the main sources for phyl-
ogenetic incongruence, which could be misidentified as
horizontal transmission. Second, random loss of trans-

Reconstruction of BmCR1B retroelement from Bombyx moriFigure 3
Reconstruction of BmCR1B retroelement from Bombyx mori. Putative sequences of (A) 5' untranslated terminal 
region (UTR) and (B) 3' untranslated terminal region based on sequences of several genomic fragments. Polyadenine tract 
(polyA) is also shown.
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posable elements from a few taxa, ancestral polymor-
phism and independent assortment of copies into
descendant species, and unequal DNA substitution rates
in different species all can lead to incongruence in phylo-
genetic reconstruction.

Traditionally, horizontal transfer has been implied when
highly similar transposable elements have been found in
distantly related taxa accompanied by their discontinuous
distribution, and such phenomenon could not be
explained in terms of vertical inheritance [37-39].

We found that CR1B family of retrotransposons has dis-
continuous distribution in butterflies. It was detected in
Maculinea spp. and two representatives of family Bomby-
cidae: O caeca and silkworm B. mori. No CR1B-like ele-
ments were found in the taxa closely related to Maculinea.

To extend the analysis, we designed several pairs of prim-
ers to cover almost the entire BmCR1B element in PCR
amplification. These primer pairs were used to screen M.
teleius DNA. Products with appropriate size were obtained
for all used primer pairs (Figure 6). This is an indirect evi-
dence of high similarity of elements from B. mori and M.
teleius not only in the known sequence of isolated RT frag-
ment but in the entire sequence of BmCR1B and
MacCR1B.

By comparing the amino acid sequence divergence for
host genes and transposable elements evolving under pre-
sumably similar selective pressure the case of horizontal
transmission could be detected if divergence among
mobile elements is significantly lower than that observed
for the proteins encoded by host genes. We compared the
partial amino acid and nucleotide sequences of the elon-

Alignment of partial MacCR1A, MacCR1B and BmCR1B nucleotide sequencesFigure 4
Alignment of partial MacCR1A, MacCR1B and BmCR1B nucleotide sequences. Location of primers specific for 
CR1A (CR1A-S and CR1A-A) and CR1B (CR1B-S and CR1B-A) families are shown.
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gation factor 1 alpha (EF-1α) gene from Maculinea spp.
and B. mori since only this nuclear gene from Maculinea
was available in databases. It is necessary to note that EF-
1α gene is highly conserved in amino acid sequence and
is usually used for reconstruction of high-level phyloge-
nies, especially in insects [40-42].

The EF-1α gene comparisons demonstrated almost the
same level of amino acid divergence as the mobile ele-
ments from CR1B family, 2.8% for EF-1a genes and 2.7%
for CR1B elements (Table 3). The nucleotide sequences of
EF-1α gene had much lower similarity to each other. Only
83% similarity was detected for EF-1α gene whereas more
than 96% similarity showed BmCR1B and MacCR1B non-
LTR retrotransposons at DNA level. It seems unlikely that
96% nucleotide and 98.3% amino acid sequence similar-

ity could be selectively or otherwise maintained in retro-
transposons that diverged from a common ancestor.

The amino acid sequences of mitochondrial cytochrome
oxidase subunit I (COI) and subunit II (COII) genes also
were compared among studied species. It seems that RT of
CR1B elements is considerably more conserved than com-
pared mitochondrial proteins. We found 14.4% and
15.3% divergence at the amino acid level in COI and COII
genes, respectively and only 2.7% average divergence
between RT BmCR1B and MacCR1B elements (Table 3).

Since the last common ancestor (LCA) of lepidopteran
superfamilies Papilionoidea and Bombycoidea has been
estimated to exist 140 million years ago (Mya) [43], it is
very difficult to explain the extreme nucleotide and amino

Table 3: Amino acid divergences of genes and CR1 non-LTR retrotransposons from B. mori and M. teleius.

Gene Length Amino Acid Divergence (%)

EF-1a 322 aa
Bombyx versus Maculinea 2.8

COI 368 aa
Bombyx versus Maculinea 14.4

COII 207 aa
Bombyx versus Maculinea 15.3

CR1 RT non-LTR retrotransposons
BmCR1B Bombyx versus CR1B Maculinea 180 aa 2.7
BmCR1B Bombyx versus CR1A Maculinea 180 aa 19.9
BmCR1B Bombyx versus OcaCR1B Oberthueria 151 aa 4.6
OcaCR1B Oberthueria versus CR1B Maculinea 151 aa 4.6
OcaCR1B Oberthueria versus CR1A Maculinea 151 aa 19.6
PargCR1A Plebejus versus CR1A Maculinea 171 aa 3.5
SoriCR1A Scolitantides versus CR1A Maculinea 171 aa 2.3
ShdivCR1A Shijimaeoides versus CR1A Maculinea 171 aa 2.3

Table 2: List of Lepidoptera species used in present study in addition to Maculinea spp. Results of PCR screening with degenerate 
primers for CR1 clade, and specific primers for CR1A and CR1B families.

superfamily family species CR1 CR1A CR1B

Papilionoidea Lycaenidae Scolitantides orion + + -
Shijimaeoides divina + + -
Plebejus argus + + -

Pieridae Pieris napi + - -
Nymphalidae Araschnia levana + - -

Melitaea phoebe + - -
Satyridae Erebia theano + - -

Hesperioidea Hesperiidae Heteropterus morpheus + - -
Geometroidea Geometridae Scopula ornata + - -
Drepanoidea Drepanidae Drepana sp. + - -
Calliduloidea Callidulidae Callidula sp. + - -
Noctuoidea Lymantriidae Lymantria dispar + - -
Bombycoidea Saturniidae Aglia tau + - -

Bombycidae Bombyx mori + - +
Oberthueria caeca + - +

Lasiocampoidea Lasiocampidae Lasiocampa quercus + - -
Pyraloidea Pyralidae Pyralis farinalis + - -
Page 10 of 19
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:93 http://www.biomedcentral.com/1471-2148/7/93

Page 11 of 19
(page number not for citation purposes)

Distribution of CR1B and CR1A families in Lepidoptera based on PCR amplificationFigure 5
Distribution of CR1B and CR1A families in Lepidoptera based on PCR amplification. Phylogeny of studied super-
families and families of butterfly suborder Ditrysia according to [34], with modifications (A). Families within Papilionoidea and 
Bombycoidea are shown since these superfamilies were analyzed in more detail. (B) PCR amplification of lepidopteran species 
with the primer pairs CR1-S/CR1-A (expected amplicon length 550 bp), CR1A-S/CR1A-A (expected amplicon length 520 bp) 
and CR1B-S/CR1B-A (expected amplicon length 520 bp) resolved in 1.3% agarose gel and stained with ethidium bromide. Lane 
"-", negative control; lane M, 100 bp DNA ladder.
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acid conservation, together with the discontinuous distri-
bution, without invoking the horizontal transfer of CR1B
elements. We also compared the sequences of other insect
non-LTR retrotransposons from CR1 and closely related
clades for which strong vertical inheritance was suggested
(Table 4). Even closely related Jockey elements from Dro-
sophila melanogaster and D. funebris (LCA estimated at 40
Mya) were more than 24% divergent. The value of amino
acid sequence divergence between MacCR1B and
BmCR1B was comparable with those among CR1A ele-
ments from Lycaenidae butterflies and between CR1B ele-
ments from closely related O. caeca and B. mori (Table 4).

Overall, our data clearly indicate that the high degree of
similarity we observed between the Bombyx mori BmCR1B
and Maculinea CR1B is not due to selection. The only rea-
sonable alternative explanation is horizontal transfer.

Horizontal transmission in non-LTR retrotransposons
Horizontal transfer can be defined as the process by which
genes can move between reproductively isolated species.
It is not surprising that many examples of horizontal
transfer of transposons have been identified in eukaryo-
tes. There are several features of transposon behavior that
make them particularly prone to horizontal transfer.
Transposable elements have the capacity to insert them-
selves into the chromosomes of possible vectors and, sub-
sequently, into host chromosomes. Subsequent to
transfer, they can spread rapidly throughout a given spe-
cies, as is evidenced by the rapid spread of P elements in
D. melanogaster [37]. Most studied cases of horizontal
transmission involve DNA transposons [38,39].

Among retrotransposons, several examples of horizontal
transfer have been documented between closely related
species (mostly among Drosophila) for LTR retrotrans-
posons such as copia [44,45] and gypsy [46]. The possible
mechanism of horizontal transfer of LTR retrotransposons
could be their ability to ride along on cross-species viral
infections. The presence of envelope-like coding
sequences makes some of the LTR retrotransposons capa-
ble of virus-like particle formation.

In contrast, non-LTR retrotransposons are believed to be
inherited exclusively vertically. Extensive phylogenetic
and comparative studies dismissed majority of putative
horizontal transfer reports for non-LTR retrotransposons
[3]. Nevertheless, strong evidence of horizontal transmis-
sion that cannot be neglected, were provided by Zupunski
et al. (2001) [15] for Bov-B retroelements which have
been relatively recently transferred from the ancestral
snake lineage (Boidae) to the ancestor of ruminant mam-
mals [15,47]. Thus, one should not exclude a possibility
of occasional horizontal transmission events in non-LTR
retrotransposons.

The compared Bov-B elements from Squamata and Rumi-
nantia (LCA 310 Mya) showed the same divergence at the
amino acid level as that between Mus and Rattus L1 ele-
ments (LCA 15 Mya). The divergence rate in Squamata
versus Ruminantia Bov-B was found to be very low in
comparison with other elements from the same clade
[15].

The slowdown effect on evolutionary rates was also
observed in our study. We estimated sequence divergence
rates for non-LTR retrotransposons from insects, includ-
ing those for CR1 and Jockey clades (Table 4). The diver-
gence rates appeared to be almost the same in all
comparisons with exception of drosophilid Jockey ele-
ments and CR1B elements from butterflies. However,
while in the case of Jockey elements from Drosophila mel-
anogaster and D. funebris the rate was much higher in com-
parison with other pairs, CR1B retrotransposons from B.
mori and Maculinea spp. showed significantly low rate of
divergence. It was much lower than for the elements from
closely related species: SoriCR1A from Scolitantides and
CR1A from Maculinea; BmCR1B from Bombyx and
OcaCR1B from Oberthueria (Table 4).

The actual mechanisms of horizontal transfer are still
unknown for mobile elements from eukaryotes since it is
not possible experimentally to show how the horizontal
transmission can occur. Parasites, symbionts, bacteria, or
viruses all could be suggested as potential vectors for hor-
izontal transmission. However, only those putative vec-
tors could be under consideration, which have wide host
range and access to germ line cells [48]. Since horizontal
transfer detected in present study occurred within butter-
flies and moths, all viruses and parasites common for Lep-
idoptera could be suspect as possible vectors.

The direction of CR1B retroelements horizontal transfer is
also under question. Since it is unlikely that horizontal
transfer could occur simultaneously and independently to
two distantly related taxa, those elements could hardly be
transmitted recently to B. mori and genus Maculinea from
an unknown species. On the other hand CR1B elements
were detected not only in B. mori, but also in other repre-
sentative of Bombycidae family – O. caeca. It is highly pos-
sible that one of the moths from family Bombycidae was
a source of the CR1B elements for a common ancestor of
Maculinea species.

CR1A and CR1B as potential molecular markers
Insertion events of retrotransposable elements have been
recently demonstrated to be powerful tools in phylogenet-
ics and population genetics studies in various organisms
[49-51]. Integration of a non-LTR retrotransposon to a
new place is an irreversible event. Non-LTR retrotrans-
posons, once inserted in chromosomal DNA, appear to be
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fixed. Since retrotransposition is thought to be more or
less random with respect to the region of insertion, inser-
tions at exactly the same location appear to be unlikely.
The most popular transposon-based marker method is the
Sequence-Specific Amplification Polymorphism
approach (S-SAP), also called "transposon display" [52].
The S-SAP markers were developed for wide range of taxa,
in particular in plants [52,53], insects [50], and fungi [54].

CR1A and CR1B non-LTR retrotransposons from Macu-
linea species showed very high homogeneity among stud-

ied species, and thus cannot be used for inferring
interspecific phylogenies; however, these elements could
be used as markers in population genetics studies.

Conclusion
Our results demonstrated that lycaenid butterflies from
the genus Maculinea, a model group in the European bio-
diversity studies, have multiple lineages of elements from
CR1 clade. Three families of CR1-like elements coexist in
the genomes of Maculinea spp. T1Q lineage showed very
low similarity to two other lineages, MacCR1A and

Scheme of the BmCR1B retroelement and the relative position and size of the fragments amplified by PCR primers in Maculinea teleiusFigure 6
Scheme of the BmCR1B retroelement and the relative position and size of the fragments amplified by PCR 
primers in Maculinea teleius. Product verified on 1.3% agarose gel and stained with ethidium bromide. Lane M1, 100 bp 
DNA ladder; lane M2, 1 kbp DNA ladder; number of other lanes correspond to numbers of fragments indicated above.
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MacCR1B, whereas MacCR1A and MacCR1B are highly
similar to each other and formed a common branch (Fig-
ure 7).

Sequences with extremely high similarity to Maculinea
were identified in genome of silkworm Bombyx mori. A
non-LTR retrotransposon BmCR1B belonging to CR1B
lineage was reconstructed based on short fragments avail-
able in databases. The distribution of CR1A and CR1B
families was studied among 17 species of Lepidoptera
from nine superfamilies. Only representatives of the fam-
ily Lycaenidae gave positive signal in PCR amplification
for the CR1A lineage. None of the studied species showed
presence of CR1B family, except Maculinea and two moths
from family Bombycidae: Oberthueria caeca and Bombyx
mori.

The studied MacCR1B and BmCR1B elements are consid-
erably more conserved than the mitochondrial proteins
and have the same level of conservation as EF-1α protein,
one of the most conserved proteins in eukaryotes. In sum-
mary, the data are consistent with horizontal transfer of
CR1B elements between species of Lepidoptera at some
point well after the divergence of Bombycoidea and Papil-
ionoidea. The degree of similarity of coding sequences in
these elements, their discontinuous distribution, and the
results of divergence-versus-age analysis, make it highly
unlikely that these sequences diverged at the same time as
their host taxa. A presence of the CR1B family in two
closely related species from family Bombycidea (Oberthue-
ria caeca and Bombyx mori) allowed us to suppose that hor-
izontal transmission occurred from Bombycidae to the
common ancestor of Maculinea species. This study
presents a new example of horizontal transmission of
non-LTR retrotransposons from CR1 clade.

Methods
Species collection and total DNA isolation
Table 1 lists Maculinea species used in the present study.
M. teleius, M. nausithous, and M. arion specimens origi-
nated from southern Poland. M. alcon specimens origi-
nated from western Siberia (Novosibirsk, Russia).
Taxonomy is given after Als et al. (2004) [16] and Bereczki
et al. (2005) [55]. Live Maculinea larvae were collected in
nature and preserved in 96 % ethanol. Species identifica-
tion of larval stages was performed using the morphology
key by Śliwińska et al. (2006) [56]. Total DNA was iso-
lated from several larvae.

Table 2 lists Lepidoptera species from suborder Ditrysia
used in present study and their taxonomy. All material
was kindly provided by Dr. Oleg Kosterin (Institute of
Cytology and Genetics, Novosibirsk) and Dr. Vladimir
Dubatolov (Institute of Animal Systematics and Ecology,
Novosibirsk). All listed Lepidoptera, except Maculinea
spp. and Bombyx mori, were collected in nature and stored
at -40°C. Detailed label data are available from the
authors. Genomic DNA was isolated from the thorax and
head of two to four individuals for all species except Ple-
bejus argus, Calidula sp. and Oberthueria caeca. Total DNA
extraction and PCR amplification have been done accord-
ing to standard techniques [57]. For B. mori, the DNA of
strain Dazao was used in present study.

CR1 clade PCR amplification and sequencing
Degenerate PCR primers for CR1 clade of non-LTR retro-
transposons were designed by inspection of conserved
amino acid sequences in the reverse transcriptase (RT)
domains of different published non-LTR retroelements.
Primer sequences were: CR1-S= 5'-TATCTTCTTCTCC-
nggnccngaygg-3' and CR1-A= 5'-CAAAAACACTGCCyt-

Table 4: Amino acid divergences and evolutionary rates in the CR1 and Jockey clades.

Non-LTR retrotransposons LCA (divergence time in MYA) Amino Acid Divergence (%) Evolutionary rate (10-9)

CR1 clade
Q Anopheles versus worf Drosophila 260 68.2 1.70
T1 Anopheles versus worf Drosophila 260 66.3 1.52
BmCR1B Bombyx versus CR1B Maculinea 140 2.7 0.061
SoriCR1A Scolitantides versus CR1A Maculinea 10 2.3 1.2
BmCR1B Bombyx versus OcaCR1B Oberthueria 10 4.6 1.7
MteQ M. teleius versus Q Anopheles 350 60.0 1.29

Jockey clade
Jockey D. melanogaster versus Jockey D. funebris 40 24.7 3.55
AMY B. mori versus Helena D. mauritiana 350 52.4 1.00
JuanA Aedes versus Jockey D. melanogaster ~250 60.5 1.79
NLR1Cth Chironomus versus Jockey D. melanogaster ~250 56 1.59
NLR1Cth Chironomus versus AMY B. mori 350 67.4 1.22
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gnggnacncc-3', where Y = C + T, and N = A + G + C + T. The
designed pair of primers flanked the sequence between
conserved regions 0 and 4 of RT domain [3,58]. The
length of expected PCR products was about 550 bp.

PCR amplification with degenerate primers was per-
formed using 0.1 μg of genomic DNA in 10-μl volume of
10 mM Tris-HCl (pH 8.9), 1 mM (NH4)2SO4, 4 mM
MgCl2, 200 μM each of four dNTPs, 0.5 μM primers, and
2.5 units of Taq polymerase. After an initial denaturation
step for 3 min at 94°C, the PCR reactions were subjected
to 30 cycles of amplification consisting of 30 sec denatur-
ation at 94°C, 42 sec annealing at 52°C, and 1 min exten-
sion at 72°C. PCR results were assayed by agarose gel
electrophoresis.

The resulting PCR products were directly ligated into a
pGEM vector using a pGEM-T-easy cloning kit (Promega)
for sequence determination. Clones were amplified by
PCR with M13 primers, and 40 ng of the product was used
in a 10 μl cycle sequencing reaction with the ABI BigDye
Terminator Kit on an ABI 377 DNA sequencer. Sequences
were deposited to GenBank under accession numbers
[GenBank:DQ822995-DQ823039], [Gen-
Bank:DQ836362 - DQ836391] and [Gen-
Bank:DQ994657 - DQ994665] (Table 1).

BmCR1B retrotransposon reconstruction
Nucleotide and protein sequence searches of the GenBank
databases with MacCR1A and MacCR1B were performed
with BLAST [59] search programs of the NCBI [60]. The
following sequence databases were searched at NCBI:
nonredundant (NR) and Bombyx mori WGS database for
Dazao [61] and p50T strains [62]. BmCR1B element
sequence was reconstructed by assembling of partial
sequences from different contigs (Figure 2). The sequence
of the entire BmCR1B element could be found in Supple-
mentary Material (Additional file 2), as well as the list of
contigs used for reconstruction (Additional file 3).

Based on the sequence of reconstructed BmCR1B element,
we designed PCR primers with the following sequences:
BmCR1B-S1 5'-CCCTTTCCTTCCCCACCCC; BmCR1B-S2
5'-TAGCACCTGCGCTGACTCGG; BmCR1B-S3 5'-GGT-
TCATTGGCATATTCCGC; BmCR1B-S4 5'-GCGGAACG-
GAGAGTTAAAGTCG; BmCR1B-A1 5'-
TCTTCCACATCCGGCACACG; BmCR1B-A2 5'-GTCCA-
GAGTCGAGTTTCCCGC; BmCR1B-A3 5'-CGCAGT-
GCCAAAGGATCTAGC; BmCR1B-A4 5'-
GAGGCAAACGAGCAAGACGGG.

PCR amplification with designed pairs of primers was per-
formed using 0.1 μg of M. teleius genomic DNA in 10-μl
volume of 10 mM Tris-HCl (pH 8.9), 1 mM (NH4)2SO4, 2
mM MgCl2, 200 μM each of four dNTPs, 0.5 μM primers,

and 2.5 units of Taq polymerase. After an initial denatur-
ation step for 3 min at 94°C, the PCR reactions were sub-
jected to 30 cycles of amplification consisting of 30 sec
denaturation at 94°C, 42 sec annealing at 54°C, and 1
min extension at 72°C. PCR results were assayed by agar-
ose gel electrophoresis (Figure 6).

CR1A and CR1B families PCR screening
Based on newly isolated MacCR1A, MacCR1B and
BmCR1B elements, specific primers for PCR were
designed for each family. The location of primers is shown
on Figure 4. Sequences of primers were: for MacCR1A
CR1A-S 5'-TCTTTTCGGTTCTCCTACTC and CR1A-A 5'-
GCATCAACAGACTGAGTTTCCGAG; for MacCR1B CR1B-
S 5'-CTTATTCAGACACTCTTATGTCC and CR1B-A 5'-
GAGCATGAGCCGTCTACGA PCR amplification with
CR1A and CR1B pairs of primers was performed using 0.1
μg of genomic DNA in 10-μl volume of 10 mM Tris-HCl
(pH 8.9), 1 mM (NH4)2SO4, 1.5 mM MgCl2, 200 μM each
of four dNTPs, 0.5 μM primers, and 2.5 units of Taq
polymerase. After an initial denaturation step for 3 min at
94°C, the PCR reactions were subjected to 30 cycles of
amplification consisting of 30 sec denaturation at 94°C,
42 sec annealing at 52°C, and 1 min extension at 72°C.
PCR results were assayed by agarose gel electrophoresis.

The resulting PCR products were directly ligated into a
pGEM vector using a pGEM-T-easy cloning kit (Promega)
for sequence determination. Clones were amplified by
PCR with M13 primers, and 40 ng of the product was used
in a 10 μl cycle sequencing reaction with the ABI BigDye
Terminator Kit on an ABI 377 DNA sequencer. Sequences
were deposited to GenBank under accession numbers
[GenBank:EF591634], [GenBank:EF592105], [Gen-
Bank:EF592106], [GenBank:EF592107 ], [Gen-
Bank:EF592108].

Sequence and phylogenetic analysis
Multiple DNA sequence alignment was performed by
ClustalW [63] and used for phylogenetic tree construction
based on the neighbor-joining (NJ) method, imple-
mented in MEGA 3.0 [65]. Pairwise distances were esti-
mated under Kimura's two parameter model by MEGA
3.0. The amino acid sequences of newly identified RT and
RT from GenBank were aligned using ClustalW [63] and
edited manually. Phylogenetic analysis was carried out
using the NJ method in MEGA 3.0 program [65] and Max-
imum Likelihood (ML) optimality criteria in PHYML
algorithm [66]. For the ML analysis, the appropriate sub-
stitution model was calculated using ProTest program,
version 1.3 [67]. The best evolutionary models for the
analyzed amino-acids data set were rtREV based on the
Akaike Information Criterion (AIC) [68] and Blosum62
based on Bayesian Information Criterion (BIC) [69]. Sta-
tistical support for the trees was evaluated by bootstrap-
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Neighbour-joining (NJ) phylogeny of RT domains of non-LTR retrotransposons including newly described elementsFigure 7
Neighbour-joining (NJ) phylogeny of RT domains of non-LTR retrotransposons including newly described ele-
ments. The consensus tree is represented. Two bootstrap values correspond to the NJ tree (1000 replications) and maximum 
likelihood (ML) tree (100 replications). The name of the host species and GenBank accession number is indicated for each non-
LTR element.
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ping: 1000 replications for NJ and 100 replications for the
ML [70].

Evolutionary rates were estimated by standard methods
[71]. Poisson correction distances (d) were estimated
from the equation d = -ln(1 - p), where p represents the
proportion of different amino acids. The rate of amino
acid substitution (r) was estimated by the standard equa-
tion r = d/2T, where T is the divergence time of the last
common ancestor (LCA) of the compared species. Amino
acid distances used in divergence-versus-age analysis were
calculated from sequences of the partial RT domain (~300
aa) using MEGA 3.0 [65].
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