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Abstract
Background: Metallothionein (mt) transcription is elevated in heavy metal tolerant field
populations of Orchesella cincta (Collembola). This suggests that natural selection acts on
transcriptional regulation of mt in springtails at sites where cadmium (Cd) levels in soil reach toxic
values This study investigates the nature and the evolutionary origin of polymorphisms in the
metallothionein promoter (pmt) and their functional significance for mt expression.

Results: We sequenced approximately 1600 bp upstream the mt coding region by genome walking.
Nine pmt alleles were discovered in NW-European populations. They differ in the number of some
indels, consensus transcription factor binding sites and core promoter elements. Extensive
recombination events between some of the alleles can be inferred from the alignment. A deviation
from neutral expectations was detected in a cadmium tolerant population, pointing towards
balancing selection on some promoter stretches. Luciferase constructs were made from the most
abundant alleles, and responses to Cd, paraquat (oxidative stress inducer) and moulting hormone
were studied in cell lines. By using paraquat we were able to dissect the effect of oxidative stress
from the Cd specific effect, and extensive differences in mt induction levels between these two
stressors were observed.

Conclusion: The pmt alleles evolved by a number of recombination events, and exhibited
differential inducibilities by Cd, paraquat and molting hormone. In a tolerant population from a
metal contaminated site, promoter allele frequencies differed significantly from a reference site and
nucleotide polymorphisms in some promoter stretches deviated from neutral expectations,
revealing a signature of balancing selection. Our results suggest that the structural differences in
the Orchesella cincta metallothionein promoter alleles contribute to the metallothionein -over-
expresser phenotype in cadmium tolerant populations.
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Background
Transcriptional regulation plays an important role in the
evolution of many phenotypes, especially when the phe-
notype correlates with expression level of a particular key
gene. Transcriptional regulation is mostly controlled at
the level of transcriptional initiation, i.e. the recruitment
of transcription factors which determine the stability of
the RNA polymerase II holoenzyme complex and hence
the frequency of transcription initiation. Due to the mod-
ularity of transcription factor binding site clusters and the
lack of reading frame constraint, promoters are more
evolvable than coding regions [1,2]. A few point muta-
tions in a cis-regulatory region can already confer func-
tionally different phenotypes, even when the pattern does
not deviate from neutral expectations[3,4]. Some exam-
ples of variation in regulatory loci conferring adaptive
phenotypes are: the LdhB promoter of Fundulus heteroclitus
[4-7], the hsp70Ba promoter of Drosophila melanogaster
[8,9] the chalcone synthase promoter of Arabidopsis thal-
iana [3] and the Cyp6g1 promoter of Drosophila mela-
nogaster [10]. In this paper we focus on transcriptional
regulation of the Orchesella cincta metallothionein gene
(mt), which is assumed to be involved in heavy metal tol-
erance.

Metallothioneins are low molecular weight metal-binding
proteins with a high content of conserved cysteines within
certain phylogenetic lineages and a lack of aromatic
amino acids and histidine [11,12], although some inver-
tebrate metallothioneins deviate from this pattern [13-
15]. Metallothioneins are involved in essential metal
homeostasis, metal detoxification, free radical scavenging,
cell proliferation and apoptosis processes [16]. They are
induced by several chemical and physical stresses [17],
including free metal ions, altered redox status, oxidative
stress and heat shock. The Orchesella cincta metal-
lothionein (MT) [18] has a molecular weight of 7 kDa and
consists of 77 amino acids. Almost all of the body burden
of Cd is located in the gut epithelium and a major part of
it is bound to MT [19,20]. It is suggested that the excretion
of Cd from the animal occurs by a molting cycle regulated
apoptotic process, by which the Cd-loaded midgut epithe-
lium is shed [21,22]. Higher constitutive [23] and cad-
mium inducible [24]mt mRNA levels have been observed
in populations from heavy metal contaminated sites,
compared to populations from reference sites. Parent-off-
spring comparisons showed that Cd-induced expression
of mt (h2 = 0.48) is a heritable trait. Differences between
expression level classes were linked to RFLP patterns of the
pmt locus [25]. Although certain alleles of the mt coding
sequence are linked to heavy metal pollution of the soil
[26], it is rather unlikely that the heavy metal tolerance
can be attributed to a single gene [27,28].

Inherited heavy metal tolerance has been associated with
duplication events [29] and polymorphisms in the metal-
lothionein coding sequence [26,30] The regulation of MT
biosynthesis is mainly transcriptional and depends for the
most part on cis-acting regulatory elements, such as the
metal responsive element (MRE) which binds metal
responsive transcription factor-1 (MTF-1), a Zn-finger
protein, and the anti-oxidant responsive element (ARE)
which recruits the nuclear erythroid derived related factor-
2 (Nrf-2), a protein of the b-zip leucine zipper family
[16,31]. However, this situation can not be generalized for
all invertebrate phyla [32,33] Therefore, the induction of
metallothionein can be considered as a concerted action
of general, metal-specific and oxidative stress specific tran-
scription factors.

In the past decades several studies on metallothionein
promoters of invertebrates have been performed [34-42],
although most mechanistic studies have been done on
vertebrate model organisms, reviewed by [16,31,43]. One
way to study the functionality of promoters is to fuse them
to a quantitative reporter gene and analyze the induction
in vitro in a host cell line. The comparison of allelic poly-
morphism in promoters by reporter assays has mainly
been applied in medical biology, e.g. [44,45]. Only few
studies in evolutionary ecology have compared alleles in
this functional approach [5-7,46] and only one study
compared the metal inducibility of metallothionein pro-
moter alleles [47].

In the present study natural occurring allelic variation of
the Orchesella cincta metallothionein promoter (pmt
locus) is described. Following discovery of extensive vari-
ation in promoter sequence we formulated the following
research question: "Are the pmt alleles observed in natural
populations differentially induced by Cd, paraquat and
20-hydroxyecdysone (molting hormone) and can their
induction be related to their different architecture?" Luci-
ferase constructs were made and tested in an arthropod
cell line for dose-dependent inducibilities. Paraquat is
included in the experiment, because it generates reactive
oxygen species in the electron transport chain [48] causing
oxidative stress. This approach allows us to discriminate
between the effects of Cd and oxidative stress separately.
Finally, we tested if the pmt allele frequency distribution,
based on nucleotide diversity measures, deviated from
neutrality in a tolerant and sensitive population.

Results
General architecture of the pmt locus
Nine different alleles were identified in an alignment of
32 1500 bp promoter sequences (see additional files 1, 2,
3, 4, 5, 6, 7, 8, 9, 10). The consensus sequences of the
respective alleles and the O. villosa were submitted to Gen-
bank (DQ523588 to DQ523596, DQ641512, DQ523587
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and EF106974). The general architecture of the nine pro-
moter alleles is shown in Fig. 1, which also indicates posi-
tions of putative core promoter elements and
transcription factor binding sites [16,31,49-51]. The
number of the putative TFBS is summarized in Table 1 for
each allele. The basal promoter consists of an initiator
(Inr) consensus with an overlap of a 20-hydroxyecdysone
responsive element (HERE). The pmtA allele contains two
extra putative initiators. All the alleles, except pmtC, have
a downstream promoter element (DPE) consensus down-
stream of their Inr. All pmt alleles contain MREs, which are
all orientated in the sense direction. The proximal pro-
moter, about 300 bp 5' from the Inr, contains most of the
MREs. The alleles pmtA1, pmtA2, pmtB, pmtD1, pmtD2 and
pmtBAL have five MREs in this region, named MRE-a to

MRE-e. A number of indels in this MRE-rich region make
this region variable. The MRE-a was apparently lost from
the pmtC allele by a 13 bp deletion. A 19 bp deletion 5' of
the MRE-b, relative to pmtC, pmtD1, pmtD2 and pmtBAL,
characterizes pmtA, pmtB, pmtE and pmtF. This deletion
affects the spatial position of the MREs. The pmtC and
pmtF alleles have a point mutation which disrupts the con-
sensus MRE sequence of MRE-d and MRE-e respectively.
The pmtD1 and pmtD2 alleles share a HERE between MRE-
a and MRE-b, by one point mutation. An AP-1 binding
site consensus was only retrieved in the forward PCR
primer D1-36F, and is not further discussed. This primer
was developed after genome walking resulting in a clone
that was apparently pmtA1. All alleles, except pmtC share a
DNA replication-related element (DRE) [50].

Architecture of the nine respective metallothionein promoter alleles (pmt)Figure 1
Architecture of the nine respective metallothionein promoter alleles (pmt). The respective putative transcription factor binding 
sites are represented as in the legend. Indels are indicated with black triangles. MRE, metal responsive element; ARE, anti-oxi-
dant responsive element; DRE, DNA replication-related element; HERE, 20-hydroxyecdysone responsive element; Inr, initia-
tor; DPE, downstream promoter element; C/EBP, CCAAT enhancer binding protein. The full sequence alignment is given in 
Additional File , 10.
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A putative enhancer, ± 850 bp upstream from the Inr
(when the 1269 bp insertion of pmtBAL is not taken into
account), contains another MRE (MRE-f) and an anti-oxi-
dant responsive element (ARE). Within this enhancer and
towards the proximal promoter a number of HEREs and
C/EBP (CCAAT enhancer binding protein binding site)
binding sites are found scattered, which differ in number
and position between the respective alleles. The 1269 bp
indel in the pmtBAL allele is delineated at its edges (rela-
tive to the other alleles in the alignment) by two C/EBP
binding sites. Furthermore this insertion contains 1 ARE,
3 HEREs and another C/EBP binding site.

Similarities among pmt alleles and recombinant analyses
The phi test for recombination in the Splitstree4 program
[52] found statistically significant evidence for recombi-
nation (p = 1.09 × 10-13). A bootstrap confidence network
[52,53] based on a split decomposition analysis was
developed representing the inferred recombination events
in the pmt locus (Fig. 2). Split decomposition analysis
addresses the problem of conflicting phylogenetic signals
due to recombination which is not necessarily a branch-
ing or tree-like process. Parallel edges in the network rep-
resent evolutionary lineages of conflicting bifurcating
trees. The parallel edges are presented in different colors in
order to relate the events to results of the analysis below.
The 1269 bp indel from the pmtBAL allele was omitted
from these analyses. The evolution of the apparently
ancestral alleles, pmtBAL, pmtC and pmtF, can be inter-
preted in a bifurcating pattern, whereas the more recent
alleles pmtE, pmtD2, pmtD1, pmtB, pmtA2 and pmtA1 are
consistent with a reticulate origin. The recombination
analysis is presented in Fig. 3. Data below a bootscan
threshold of 70% were omitted from the graphs. Break-
points with their respective p-values from the Recco anal-
ysis, are plotted in the same graphs as a matter of
convenience.

The pmtA1 and pmtA2 alleles consists of a ± 500 bp
upstream block shared with pmtD1 and a ± 400 bp block
shared with pmtB confirmed by very high bootstrap val-
ues. In between a slight similarity with pmtE was found.
Recco confirmed this bootscan analysis and found a
recombination breakpoint between the two dominant
blocks. Allele pmtB contains a ± 150 bp upstream block
related to pmtC and the ± 400 bp downstream block
shared with pmtA as mentioned before. Both regions had
recombination breakpoints at their respective 3' and 5'
edges. The central part of the pmtB allele shares limited
similarity with pmtD2. The pmtC allele has the shared ±
150 bp block with pmtB and a block shared with pmtE at
the outer 3' end of the locus (the second exon of the mt
gene), both confirmed by the Recco method, although not
visible in the reticulate network. In between the two
blocks bootscan analysis identified similarity with pmt-
BAL. Numerous recombination breakpoints were detected
in this region, suggesting that this allele contains a recom-
bination hotspot. The pmtD1 situation is very clearcut.
This allele contains the ± 500 bp block shared with pmtA
and a ± 400 bp 3' block shared with pmtD2, confirmed by
the Recco method. Both regions have numerous putative
recombination breakpoints at their edges. The pmtD2
allele shares a ± 500 bp upstream block with pmtE and the
downstream block with pmtD1 mentioned before, con-
firmed by the Recco method. In between the respective
blocks a smaller ± 100 bp block similar to pmtB, sur-
rounded by recombination breakpoints, was found. The
pmtF allele has a ± 100 bp upstream block shared with
pmtBAL immediately followed by a very small block
shared with pmtB. Only the former block was confirmed
by Recco. The pmtBAL situation was rather contradictory,
although some recombination breakpoints provided by
Recco confirmed the bootscan similarity profile with
pmtF. The limited similarity with pmtC was not supported
by Recco. pmtE consists of the clear cut upstream ± 500 bp

Table 1: Summary of the occurrence of the respective putative transcription factor binding sites. a: The number of MREs is given as 
one in the enhancer region (in the vicinity of the ARE) plus the number in the proximal promoter. b: The number of HEREs is 
represented as the number in the region upstream of the initiator plus the one overlapping the initiator.

Inr DPE MRE a ARE C/EBP DRE HERE b

Consensus TCAKTY
[49, 84]

RGWYV
[84]

TGCRCNC
[31]

TGA CNNNGC
[31]

CCAAT
[31]

TATCGATA
[50]

KNTCANTNNMM
[51]

pmtA 3 1 1+5 1 2 1 3+1
pmtB 1 1 1+5 1 2 1 3+1
pmtC 1 0 1+3 1 3 1 2+1
pmtD1 1 1 1+5 1 2 1 4+1
pmtD2 1 1 1+5 1 2 1 5+1
pmtE 1 1 1+5 1 2 1 4+1
pmtF 1 1 1+4 1 2 1 4+1
pmtBAL 1 1 1+5 2 5 1 9+1
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block shared with pmtD2 and the shared second exon with
pmtC. On the other hand, the central part showed some
above threshold similarity with pmtA1. Again numerous
putative recombination breakpoints, at the edges of some
shared blocks, were detected by Recco.

The deep trenches in the respective recombined blocks
represent conserved modules, e.g. the one at position ±
400 bp is the region containing the ARE and the distant
MRE.

Functional analysis
The functional significance of pmt variation was assessed
by evaluating the effect of the different promoters on gene
expression. Luciferase reporter assays of pGL3-pmt con-
structs were performed in Drosophila S2 cell line. No
induction of the empty vector pGL3Basic neither the nor-
malization vector pAc5.1/V5-His/lacZ was observed (data
not shown), implying that the observed induction of the
pGL3-pmt constructs are exclusively due to the interaction
of the transcription factors from the host cells with the mt

95% confidence reticulate network of the eight described Orchesella cinca pmt alleles with the Orchesella villosa pmt clone as an out-group, following 1000 replicate bootstraps in Splitstree v4 (uncorrected p for nucleotide substitution, NeighborNet to cal-culate the distance and Reticulate to calculate the splits)Figure 2
95% confidence reticulate network of the eight described Orchesella cinca pmt alleles with the Orchesella villosa pmt clone as an 
out-group, following 1000 replicate bootstraps in Splitstree v4 (uncorrected p for nucleotide substitution, NeighborNet to cal-
culate the distance and Reticulate to calculate the splits). The colored parallel edges refer to the colors in the recombination 
analysis.
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Recombination analysis of Orchesella cincta metallothionein promoter allelesFigure 3
Recombination analysis of Orchesella cincta metallothionein promoter alleles. Bootscanning analysis representing the percentage 
of permutated trees (left axis) that did coincide between the respective pmt alleles in a sliding window approach (200 bp width, 
20 bp step size, Kimura 2-parameter for nucleotide substitution) relative to the sequence position. Only the relationships 
which trespass the 70% threshold of the permutated trees are presented. On the right axis the p-values of the respective 
breakpoints are indicated. The colours refer to the parallel edges in the reticulate network (Fig. 2).
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promoters in the luciferase constructs. As a positive con-
trol for ecdysone treatment the 20-E exposure was also
performed on cells transfected with the construct pEcRh-
spluc [54], a highly 20-E inducible luciferase construct
(results not shown). Indeed, a high induction level was
observed, comparable to Poels et al (2004) [45].

Basal luciferase expression data are presented in Fig. 4.
Highly significant differences in basal expression were
detected between the luciferase constructs from the differ-
ent alleles, following a One Way ANOVA test, with the
Tukey HSD post-hoc test. The basal expression from the
pmtCluc construct hardly deviated from the empty vector
pGL3Basic (data not shown) and was an order of magni-
tude lower than the basal expression values of the other
constructs. The pmtD1luc had a higher basal expression
than the pmtA1, pmtF and the pmtC constructs.

The dose response graphs from the Cd, paraquat and 20-
E exposures and their estimated parameters are given in
Figs. 5, 6, 7 and 8 respectively (see Additional File , 11 for
a numerical summary of the curve fit data). It appeared
that all constructs were susceptible to Cd. The RLUmax esti-
mates of pmtD2luc and pmtFluc Cd exposures did not dif-
fer and were the highest observed. Exposure of the other
constructs to Cd resulted in significantly different RLUmax
values. The pmtCluc constructs, with the lowest RLUmax
were the least inducible. The slope of pmtD2luc in the Cd

exposure was steeper than pmtBluc and pmtFluc, implying
a quicker inducibility. The most sensitive construct to
induction by Cd, represented by the lowest EC50, was
pmtA1luc. It differed significantly from the least sensitive
constructs pmtBluc, pmtD2luc and pmtFluc.

The pmtCluc construct did not show a significant Pearson
correlation with paraquat concentration (p > 0.05) and no
model fit was possible. No significant differences in the
estimated parameters of the paraquat exposure were
found in the responses of the inducible constructs. The
20-E exposure data revealed an inhibition of every con-
struct. The estimated values for the parameters were aban-
doned, because of the wide associated 95% confidence
intervals, therefore only the estimates for the RLUmin
value are represented. It appeared that the pmtBluc con-
struct was the least inhibited at the maximum exposure
concentrations of 0.1 mM 20-E, compared to the other
constructs.

At the lower range of the 20-E exposure a slight induction
was observed in all constructs. We tested the RLU esti-
mated from the inducing concentration range relativeto
the unexposed control in a One Way ANOVA approach
(see Table 2). The pmtBluc and pmtD2luc constructs were
both significantly induced at respectively 0.1 nM and 1
nM 20-E exposure.

Allele frequencies in field populations
The occurrence of the pmt alleles was assessed in O. cincta
populations from a clean reference site (Roggebotzand)
and a metal-polluted site (Plombières). These data are
summarized in Table 3, together with information on soil
metal concentrations and several indices of Cd tolerance
in the two populations obtained from earlier work (Cd
excretion, growth reduction and mt expression). The insert
of the pmtBAL allele is omitted from this analysis.

Pollution by heavy metals in the abandoned Pb-Zn mine
of Plombières dates back to the Middle Ages and has pro-
ceeded until the beginning of the 20th century [55]. This is
reflected by the almost 200-fold higher total Cd content of
this soil compared to the clean site in Roggebotzand. This
latter site is located on reclaimed land, which fell dry in
1968. A G-test for differences of allele frequencies
between both populations was highly significant (p <
0.001). The frequencies of pmtA1 and pmtA2 are relatively
low in the population from the mining site Plombières,
while the pmtC, pmtB and pmtD2 alleles are more repre-
sented compared to the situation in the reference Rogge-
botzand population. In addition, a higher nucleotide,
haplotype and nucleotide diversity was observed in the
Plombières population. When calculating the Tajima's D
test, no deviation from neutral expectations was observed.
The Fu and Li's tests, on the other hand, did show a signif-

Boxplot representing the log transformed basal expression RLU valuesFigure 4
Boxplot representing the log transformed basal expression 
RLU values. One Way ANOVA; F = 71.337 and p = 0.000. A 
Tukey post-hoc test revealed significance groups, repre-
sented by letters.
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icant departure from neutrality in the Plombières popula-
tion, both with and without taking the out-group into
account (D and D* respectively). Positive values of D and
D* suggest the presence of an excess of intermediate fre-
quency variants in the sample, which means that balanc-
ing selection is acting. When we calculated the Fu and Li's
D in a sliding window approach, the promoter stretches
on which balancing selection is taking place can be iden-
tified (see Fig 9). The spectrum of Fu and Li's D is aligned
to a graph of the general architecture of the pmt locus.
Non-significant, but negative D values are observed in the
vicinity of the putative enhancer. This suggests that this
stretch is under positive selection. Truly significant devia-
tions from neutrality, with positive D values, are detected
in the region between the two C/EBP binding sites,
upstream from the DRE and in the vicinity of the MRE-d
and MRE-e.

Discussion
From our data we have very good evidence that allelic
diversity at the pmt locus has evolved by extensive recom-
bination events, although we do not have knowledge
about the genetic mechanism, e.g. crossing-over or gene
conversion. The patterns in the splits decomposition net-
work could somehow be linked to the results of the
recombination analysis. The most important recombina-
tion blocks, which became evident in the bootscanning
and Recco methods, were visible in the network. Espe-
cially the more recent alleles, pmtA1, pmtB, pmtD1, pmtD2
and pmtE revealed clear-cut signals of recombination
among each other. Recombination between the older alle-
les, pmtBAL, pmtF and pmtC, were not detected at all in the
Recco and the Splitstree method Reasons for this could be
that the parental alleles were not sampled or that former
recombination events could be hidden behind the muta-
tional load. Because the Recco method takes the minimi-
zation of recombination and mutation costs into account,

Dose response relationships of the six luciferase constructsFigure 5
Dose response relationships of the six luciferase constructs. On the Y-axis the β-galactosidase normalized relative luciferase 
units (RLU) are presented. On the X-axis the exposure concentrations of cadmium (Cd) are indicated.
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instead of the tree-like model in the bootscanning
approach, it detects recombination false positives to a
lesser extent [56]. The absence of reticulations in the edges
of these alleles in the 95% confidence reticulate network,
points towards less conflicting bifurcations (Fig. 2). These
may be caused by the accumulation of mutations follow-
ing past recombination events.

The numerous recombination breakpoints at the pmt
locus can be explained by the fact that transcriptionally
active chromatin with recruited transcription factors is
hypersensitive to recombination initiation [57]. Not tran-
scription in se but the recruitment of recombination
machinery by environmentally activated transcription fac-
tors following chromatin remodeling causes recombina-
tion events. For example, in fission yeast,
phosphorylation by the stress-activated protein kinase

from the MAPK pathway increases the affinity of the tran-
scription factor ATF1. PCR1 for a cAMP-responsive ele-
ment-like (CRE-like) DNA sequence and remodels the
chromatin [58]. This process and the respective CRE-like
sequence are associated with a recombination hotspot in
fission yeast [59]. In every pmt allele two CRE core
sequences, CGTCA [60] were found. Because of the
importance of the composition of the flanking sequences
of the CRE core sequence and the large number of CREB
proteins, these data are not further discussed, although it
may be of importance for transcriptional regulation and
initiation of recombination at the Orchesella cincta pmt
locus.

The 1269 bp insertion in the pmtBAL allele, which does
contain some relevant putative transcription factor bind-
ing sites, is suggested to be a possibly recombined or

Dose response relationships of the six luciferase constructsFigure 6
Dose response relationships of the six luciferase constructs. On the Y-axis the β-galactosidase normalized relative luciferase 
units (RLU) are presented. On the X-axis the exposure concentrations of paraquat are indicated.
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duplicated region from another promoter. Similar events,
where promoter regions were swapped between loci, have
been described before [46].

The number of MREs in stress gene promoters in general
[61] and metallothionein promoters in particular varies
extensively. The same applies to their sequence and their
spatial context. However, three MRE's (MRE-b, MRE_c
and MRE-e) were conserved in sequence (TGCACAC)
between O. cincta and the out-group species O. villosa. Pre-
vious studies revealed that the proximal MRE cluster in
metal-responsive promoters is necessary [62] and MREs in
the proximal promoter region need to work cooperatively
for the full inductive capacity [36,43,63]. The most proxi-
mal MRE to the transcription start (MRE-a), has been
shown to be most contributing to induction by Zn and Cd
of the human hmt-IIA promoter [64] and cooperates with

more upstream MREs for the complete heavy metal induc-
tion [65].

The induction by paraquat was several orders of magni-
tude lower than the induction by Cd, which possibly
reflects that not all the MREs are involved. In a study by
[66] three different oxidative stressors elicited a twofold
response of the rainbow trout MT-B promoter luciferase
constructs, comparable to our study with paraquat. Beside
the ARE and the MRE-a it was suggested that ARE half-sites
(TGAC) are as well responsible for oxidative stress induc-
ibility [66].

The reporter assays show that allele C is hardly inducible
by Cd and oxidative stress (Fig. 5) and shows no basal
transcription level above background (data not shown).
This may be explained by the deletion of the MRE-a in this
allele as follows. During exposure to Cd and paraquat,

Dose response relationships of the six luciferase constructsFigure 7
Dose response relationships of the six luciferase constructs. On the Y-axis the β-galactosidase normalized relative luciferase 
units (RLU) are presented. On the X-axis the exposure concentrations of 20-hydroxyecdysone (20-E) are indicated.
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Table 2: One Way ANOVA test comparing the measured RLU values at the control and at the putative inducing 20-E concentration. 
F-ratios and p-values are given.

Construct [20-E] (nM) F-ratio p-value

pmtAluc 0.1 0.121 0.739
pmtBluc 0.1 10.320 0.009
pmtCluc 1 1.783 0.211
pmtD1luc 0.1 0.256 0.624
pmtD2luc 1 7.812 0.019
pmtFluc 0.01 4.598 0.058

A: RLUmax estimates from the cadmium (Cd) exposure data, B: Slope estimates from the Cd exposure data, C: EC50 estimates from the Cd exposure data D: RLUmin from the 20-E exposure dataFigure 8
A: RLUmax estimates from the cadmium (Cd) exposure data, B: Slope estimates from the Cd exposure data, C: EC50 estimates 
from the Cd exposure data D: RLUmin from the 20-E exposure data.
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trans-activation in non-mammalian metallothionein pro-
moters can occur by interaction of an enhancer (contain-
ing MREs and/or ARE) with the MRE-a and other proximal
MREs [43,63,66-69]. The induction of pmtC by Cd is low
and completely abolished by paraquat possibly due to the
incapability of trans-activation between the MRE-a (lack-
ing in the C allele) and the distal enhancer, directly or in
combination with CCAAT/enhancer binding proteins
[70,71]. Binding sites for CCAAT/enhancer binding pro-
teins were detected in all alleles of the pmt locus. Also, the
MRE-a is often important in determining basal expression
levels [43,64-66]. Deletion of MRE-a in pmt C can there-
fore explain the low basal expression of this allele. Finally
the importance of MRE-a is reflected in the highly con-
served core sequence: O. cincta MRE-a has the same core
sequence as Onchorhynchus mykiss, Strongylocentrotus pur-
puratus and Drosophila metallothionein promoters.

There may be an alternative explanation for the very low
basal expression levels of pmtC as well as low stress induc-
tion, related to the absence of DRE. The DRE [50] is an ele-
ment found in DNA replication related genes, as well as in
stress responsive genes (a.o. glutathione-S-transferase, cat-
alase). This element coordinates the cell cycle specific
expression of metallothionein. Since pmtC lacks this ele-
ment (disruption of the consensus by a point mutation) it

may contribute to the low inducibility and basal expres-
sion.

We realize that we tested O. cincta derived promoters in a
Drosophila genetic background. Thus, the observed levels
may not reflect the levels in vivo due to absence of O. cincta
specific transcription factors or altered binding specificity
of Drosophila transcription factors to O. cincta specific
transcription factor binding sites. Reporter assays are
sometimes unable to generate the tissue, temporal and
species specific transcriptional regulation [72-75]. For
instance, aberrant expression levels have been observed
when expression levels of 12 orthologous genes of human
and chimpanzee were compared in cell lines from differ-
ent human tissue origin [76] when compared to their in
vivo expression levels. In contrast with that, Crawford et al
[7] obtained consistent results using two unrelated fish
cell lines (rainbow trout hepatoma cells and salmon car-
diac cells) to study transcriptional activity of killifish lac-
tate dehydrogenase-B promoters.

The general pattern of 20-E exposure is the inhibition of
the metallothionein promoter. This probably occurs
because of the overlapping HERE and Inr. The moderate
inducibility of pmtB and pmtD2, at respectively 0.1 and 1
nM 20-E, can not be explained straightforward, although
pmtD2 has a larger number of HEREs (5+1, See Table 1).

Table 3: Background information of the sampled populations and summary of the molecular evolutionary analysis in DnaSP.

Plombières Roggebotzand

[Cd]tot soil (mg/kg) (Janssens, unpublished) 30.45 ± 14.82 0.17 ± 0.05
Allele frequencies per population (%) (Janssens, unpublished) pmtA1 32.9 47.0

pmtA2 7.6 15.7
pmtB 24.7 10.4
pmtC 11.4 2.2
pmtD1 10.1 13.4
pmtD2 8.9 1.5
pmtE 0.6 6.0
pmtF 1.9 2.9
pmtBAL 1.9 0.7
N 79 67

Sample size (number of alleles) 158 (9) 134 (9)
S (ç) 201(214) 201 (214)
Hd 0.798 ± 0.017 0.726 ± 0.032
π 0.02634 ± 0.00159 0.01491 ± 0.00162
Tajima's D 0.17187 NS -1.3781, NS
Fu and Li's D 2.88149, p < 0.02** -0.75998, NS
Fu and Li's D* 2.77359, p < 0.02 ** -2.13596, NS
Average constitutive mt expression. MNE relative to β-actin (Roelofs, unpublished) 0.52 ± 0.18 0.04 ± 0.00
Induced (1 µmole Cd/g food) mt expression. MNE relative to β-actin (Roelofs, unpublished) 2.63 ± 0.57 1.18 ± 0.66
Mean Cd excretion efficiency per moult (Posthuma 1993) 45% 38%

Total cadmium (Cd) content of the soil; allele frequencies of the pmt alleles; S, total number of variable (segregating) sites; η, total number of 
mutations; Hd, haplotype diversity ± SD; π, nucleotide diversity per site ± SD; Tajima's D, Fu and Li's D and Fu and Li's D*, mean normalized 
expression, p-value of the G-test performed on the reconstituted dataset (df = 8), MNE, mean normalized expression at mRNA level; Cd excretion 
efficiency; percentage of Cd-induced growth reduction.
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The spatial and sequence context could be the reason for
their inducibility. In the firebrat Thermobia domestica 20-E
equivalents peak to 5 µM during apolysis [77] falling back
to the basal concentration of 80 nM, indicating that the
order of magnitude of our exposure range was well within
the physiologically relevant range. These data suggest that
the metallothionein expression is switched off during
ecdysone-induced apoptosis of the gut epithelium, when
the onset of new cuticle formation is set.

Our small-scale population genetic comparison between
populations from the clean site in Roggebotzand and the
polluted one in Plombières reflected a positive sign of bal-
ancing selection at Plombières, because of the significant
positive Fu and Li's D values, higher nucleotide diversity
per site, and higher haplotype diversity in the latter popu-
lation. A study by Timmermans et al. [26] revealed selec-
tion on certain alleles of the O. cincta mt coding sequence
by heavy metal content in the soil. However, no signatures
of any selection were detected in the amino acid sequence
(dn/ds, Fisher's exact test) or in the nucleotide composi-
tion (Tajima's D). The population at Plombières is charac-
terized by relatively high frequencies of pmtD2 and pmtB,

which is in accordance with their greater inducibility com-
pared to the most common pmtA1 allele. This suggests a
fitness advantage to phenotypes with high metal-
lothionein expression at polluted sites [23]. On the other
hand, the Plombières population also has a relatively high
frequency of the less responsive pmtC allele, This is con-
sistent with the signature of balancing selection detected
by Fu and Li's D values and can be understood if there are
not only advantages in terms of metal tolerance but also
fitness costs associated with high mt expression. Further
work is necessary to elucidate the precise relationship
between fitness and pmt genotype.

Conclusion
The Orchesella cincta metallothionein promoter contains a
high degree of polymorphism, reflected in the different
number and spacing of consensus transcription factor
binding sites involved in relevant regulatory processes,
such as heavy metal, oxidative stress induction and the
regulation by the molting cycle.

In general, the evolution of transcriptional regulation can
occur by stabilizing selection by which erosive mutations

Sliding window analysis of the Fu and Li's D statistic on the reconstituted dataset of the Plombières populationFigure 9
Sliding window analysis of the Fu and Li's D statistic on the reconstituted dataset of the Plombières population. A step size of 
10 bp and a window length of 100 bp were applied. Significant deviations from neutral expectations are represented with ●  
and ●  for p-values < 0.05 and 0.02 respectively. A cartoon of the general architecture of the pmt locus is provided with the 
putative transcription factor binding sites.
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in TFBS and the emergence of new ones are compensating
each other. Evolution due to transcriptional regulation
has been reported in macro-evolutionary processes, e.g.
the even-skipped-2 enhancer of Drosophila species [78-
80]. Alternatively, micro-evolutionary processes rather
occur by point mutations in (putative) TFBS [3,6,7]. Here,
we provide evidence of extensive recombination, reshuf-
fling the nucleotide variation of insertion, deletions and
point mutations in the micro-evolution of a regulatory
locus.

Since induction of metallothionein is suggested to be
associated with a metal-tolerant phenotype [24,25] the
difference in inducibility between the pmt alleles provides
a scope for natural selection in field populations. The
deviations from neutral expectations in the cadmium tol-
erant population from Plombières support this sugges-
tion. Future approaches will be the detection of DNA-
binding activity of selected transcription factors, measure
the in vivo transcription by real-time Q-PCR, and screen
field populations for their respective pmt allele frequen-
cies.

Methods
DNA purification
DNA of individual animals was purified by the SV
genomic DNA purification system (Promega Corpora-
tion). The maxiprep used for the genome walking proce-
dure was done by a modified CTAB extraction method
[81] on 100 adult individuals.

Genome Walking and PCR
Different aliquots of 10 µg of genomic DNA of Orchesella
cincta (laboratory culture) and Orchesella villosa (Belcaro,
Italy) were digested overnight with 5 to 10 U different
blunt cutting restriction enzymes, DraI, EcoRV, HincII,
HpaI, ScaI, SmaI and StuI. These digests were cleaned up
by phenol chloroform extraction, followed by ethanol
precipitation and consequently ligated overnight at 4°C
to the adapter originating from the hybridized adapters 1
and 1A (see Additional File , 12).

Based on the sequences resulting from the Universal fast
walking method [82] on the metallothionein promoter,
(Mariën and Roelofs, unpubl.), a nested reverse primer
pair, (R34 and R130, see Additional File , 12) in the prox-
imal promoter was designed. A nested gradient PCR
approach was conducted with above mentioned primers
to each of the differentially digested aliquots. The same
approach was done in two steps for the O. villosa promoter
with respectively the primer pairs (Ovimt210R and
Ovimt233R) (Spinsanti, unpubl.) and the resulting
primer pair (Ovipmt and Ovipmtnested).

In the resulting sequences for O. cincta and O. villosa, the
respective primers, D1-36F and OvipmtfarF were devel-
oped on the 5' end. The metallothionein promoter was
amplified by PCR (Tann = 55°C) with the primer combina-
tion D1-36F and MT-265R [25] and OvipmtfarF and
Ovimt233R for O. cincta and O. villosa respectively. The
reverse primer hybridizes in the second exon of the mt
gene, and consequently allows the alignment of the previ-
ously described Orchesella cincta mt sequences (Timmer-
mans et al. in press) [25]) to the resulting Orchesella cincta
pmt sequences.

DNA-Sequencing
32 pmt fragments, originating from various populations
(see Additional File , 13), with previously known proxi-
mal promoter SSCP genotype or with deviating RFLP pat-
terns (Janssens, unpublished) were amplified with the
D1-36F an MT265R primer pair. Resulting PCR fragments
were ligated in the pGEM-T vector (Promega Corpora-
tion) and cloned in JM109 or XL1-Blue competent cells by
respectively heat-shock or electroporation procedures.
Plasmid purification was executed with the SV Minipep
System (Promega Corporation). The clones were
sequenced with Big Dye V 1.1 (ABI) on a ABI 3100 capil-
lary sequencer, analyzed with Vector NTI Software 10.0.1
(Invitrogen) and aligned to the mt alleles previously
described by Timmermans et al. (pers. comm.). The align-
ments served to make a consensus for every allele, and are
provided as Additional Files 2, 3, 4, 5, 6, 7, 8, 9. One sin-
gle O. villosa pmt sequence (Zelzate, Belgium) was cloned
and sequenced to serve as out-group in phylogenetic anal-
ysis.

Transcription Factor Binding Site Analysis
Because of the lack of functional studies on this promoter,
the descriptive work of the observed sequence variation
was restricted to the identification of consensus binding
sites available in the literature by using the program
Genepalette 1.2 [83]. The core promoter structure was
analyzed by using consensus sequences from the literature
[49,83,84]. Consensus binding sites for transcription fac-
tors known from metallothionein induction [16,31] cell
cycle regulated and stress genes [50] and molting cycle
regulated transcription processes [51] were included in
the analysis.

Luciferase reporter assay
From six of the O. cincta pmt alleles a luciferase reporter
construct was made by PCR on the respective minipreps
with the primers, D136-FKpnI and MT-73RXhoI, contain-
ing restriction sites for these respective enzymes. The
clones on which these luciferase reporter constructs were
made are summarized in Additional File , 13 section. The
fragments were ligated in KpnI and XhoI double-digested
pGL3Basic luciferase vector (Promega Corporation) and
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cloned in XL1-Blue by electroporation. As an internal con-
trol for transfection efficiency and number of cells, a β-
galactosidase reporter plasmid with a constituve actin pro-
moter of Drosophila melanogaster (pAc5.1/V5-His/lacZ
(Invitrogen), was used. Purification of transfection grade
and endotoxin-free plasmid was done with the Nucle-
obond PC 500 EF kit (Macherey-Nagel)

Drosophila S2 cells (Gibco) were grown at 28°C in Schnei-
ders Drosophila Medium (revised) (Gibco) containing
15% fetal calf serum (Gibco). On the first day cells were
plated out in 96 wells plates at approximately 25000 cells/
150 µl and grown for 24 hours at 28°C. The second day
every well was transfected using a calcium phosphate pre-
cipitation method [85] with 0.72 µg of DNA in 15 µl. The
DNA used for transfection was a 1/1 ratio of the respective
luciferase constructs with the pAc5.1/V5-His/lacZ. Fol-
lowing overnight incubation the medium was removed
and replaced by spiked exposure media. Exposure ranges
for Cd, paraquat and 20-hydroxyecdysone (20-E) were 0–
30 µM, 0–1800 µM and 0–100 µM respectively. Every
exposure was executed in six wells. The basal expression
was measured in hexaplicate in four independent experi-
ments.

Thousand fold stock solutions of the respective exposure
concentrations were filter sterilized (0.2 µm) and stored at
4°C. Cadmium and paraquat were dissolved in water
whereas 20-E was dissolved in DMSO. The 20-E stock in
DMSO was not filter sterilized. Schneider's Drosophila
Medium (revised) (Gibco), containing 5% fetal calf serum
(Gibco), was spiked with the respective stock solution to
achieve the required final concentrations.

The exposure with Cd and 20-E was performed during 24
hours and the paraquat exposure was limited to 6 hours
due to cytotoxicity. After the exposure period the cells
were lysed in 100 µl lysis buffer containing (25 mM Tris,
2 mM dithiothreitol, 2 mM trans-1,2-diaminocyclohex-
ane-N,N,N9,N9-tetraacetic acid monohydrate, 10% glyc-
erol, and 1% Triton® X-100 [Sigma-Aldrich, Steinheim,
Germany] in demineralized water, pH 7.8 overall buffer).

A 50 µl aliquot was used to measure luciferase activity
using 100 µl glowmix, (20 mM tricine, 1.07 mM
C4H2Mg5O14, 2.6 mM MgSO4, 0.1 mM ethylenedi-
amine-N,N,N9,N9-tetraacetic acid, 33.3 mM dithiothrei-
tol, 0.27 mM coenzyme A, 0.46 mM luciferine, and 0.53
mM adenosine-59-triphosphate in demineralized water),
on a LucyII luminometer (Anthos Labtec instruments).
Beta-galactosidase activity was measured in a 50 µl lysis
aliquot, diluted in 100 µl lysis buffer and 90 µl of ONPG-
mix. The ONPG mix consisted of 24 µl of 10xZ buffer (60
mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl and 2 mM
MgSO4), 66 µl water, 0.1 µl β-mercaptoethanol and 0.16

mg 2-nitrophenyl β-D-galactopyranoside (ONPG). The
reactions were incubated during one hour at 28°C and
subsequently the absorbance at 420 nm was measured on
a Spectramax 340pc (Molecular Devices) spectrophotom-
eter.

Firstly, luciferase signals in each well were normalized
with an internal luciferase standard, in order to standard-
ize the readings between different plates. Secondly, the
normalizations for the number of cells, and the transfec-
tion efficiency, were done by dividing the latter values by
A420 values from the ONPG measurement. The basal
expression values of the constructs and the pGL3Basic vec-
tor were measured in four replicate experiments, six wells
per experiment.

Data analysis
DNA sequences were processed and aligned in Vector NTI
version 10.0.1 (Invitrogen). Recombination events, which
took place at this locus, make the construction of a bifur-
cating tree less relevant. Therefore, the Splitstree4 software
[52] was used to construct a reticulate network to repre-
sent evolutionary relationships between the respective
alleles. The assumptions under which the network was
constructed are: uncorrected P for nucleotide substitution,
NeighborNet to calculate the distances and the reticulate
method to treat the splits. Gaps, constant and non-parsi-
monous positions were omitted from the analysis. Boot-
strap analysis was performed on one thousand replicates
and subsequently a 95% confidence network was con-
structed.

Recombination sites were detected by using two methods.
The first method we used relies on the bootscan method
implemented in the program Simplot [86]. It constructs
replicate trees in a sliding window approach. The general
accepted threshold level for the detection of a recombina-
tion is a clustering in 70% of the permutated trees in a cer-
tain window. Thousand replicate neighbor-joining trees
were made by using the following parameters, window
size 200 bp, step size 20 bp and the Kimura 2-parameter
as a model to estimate nucleotide substitution. Alterna-
tively, a non-phylogenetic method, applying dynamic
programming that minimizes the mutation and recombi-
nation cost between sequences was used. This method is
implemented in the software Recco [56]. The parameter α,
representing the ratio of mutation cost to recombination
cost was set to 0.2, the methods to calculate mutation and
recombination costs were respectively Hamming and
Delta Dirac.

The population genetic data were achieved by RFLP anal-
ysis of the amplified pmt fragments by PCR (Janssens
unpublished). A reconstituted dataset was made by past-
ing the consensus for every allele the number of times it
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was observed in the sample, according to Timmmermans
et al., in press These datasets were aligned with each other
and an alignment with the out-group Orchesella villosa pmt
sequence was provided. Molecular diversity indices and
deviations from the neutral theory (Tajima's D, Fu and Li's
D and D*) were calculated using DnaSP v4.10 [87].

The basal expression RLU data were log(x+1) transformed
to approach normality of the data, A One Way ANOVA
with p < 0.05 was executed. The LSD post-hoc test was per-
formed to discriminate significance groups.

Initial curve-fitting was done in Kaleidagraph v 3.5 for a
rough estimate of the parameters, and the curve plotting.
Fine tuning of the curve fitting was done in SPSS v 12.0.1.

The dose-responses of the Cd and paraquat exposures on
the RLU of every construct were compared by estimating
the RLUmax, EC50 and the slope by fitting a curve with the
following formula, from which RLUmax by summing RLU0
(the average RLU at unexposed conditions) and RLUe.

The 20-E exposure data were fitted with the following for-
mula and RLUmin, slope and EC50 were estimated.

The RLU values from 20-E exposure concentrations at
which a putative induction was observed were tested by a
One Way ANOVA (p < 0.05) to test for induction.
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Additional file 2
Alignment per allele. These alignments show the variation between the 
clones from which the consensus sequence for every allele was extracted.
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clones from which the consensus sequence for every allele was extracted.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-88-S6.msf]

Additional file 7
Alignment per allele. These alignments show the variation between the 
clones from which the consensus sequence for every allele was extracted.
Click here for file
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Additional file 8
Alignment per allele. These alignments show the variation between the 
clones from which the consensus sequence for every allele was extracted.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-88-S8.msf]

Additional file 9
Alignment per allele. These alignments show the variation between the 
clones from which the consensus sequence for every allele was extracted.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Alignment of the pmt alleles with Orchesella villosa pmt as an out-
group. These data were used in the phylogenetic and recombinational 
analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-88-S10.msf]

Additional file 11
Curve fit estimates of the luciferase reporter assay. Overview of the curve 
fit estimates for the exposure of every luciferase construct to Cd, paraquat 
and 20-E.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-88-S11.doc]

Additional file 12
Primer Table. In this table the name and sequence of the used primers are 
given.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-88-S12.doc]

Additional file 13
Sequence strategy Table. In this table the number and origin of the clones 
sequenced per allele are given.
Click here for file
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