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Abstract
Background: Microorganisms and plants are able to produce tryptophan. Enzymes catalysing the
last seven steps of tryptophan biosynthesis are encoded in the canonical trp operon. Among the trp
genes are most frequently trpA and trpB, which code for the alpha and beta subunit of tryptophan
synthase. In several prokaryotic genomes, two variants of trpB (named trpB1 or trpB2) occur in
different combinations. The evolutionary history of these trpB genes is under debate.

Results: In order to study the evolution of trp genes, completely sequenced archaeal and bacterial
genomes containing trpB were analysed. Phylogenetic trees indicated that TrpB sequences
constitute four distinct groups; their composition is in agreement with the location of respective
genes. The first group consisted exclusively of trpB1 genes most of which belonged to trp operons.
Groups two to four contained trpB2 genes. The largest group (trpB2_o) contained trpB2 genes all
located outside of operons. Most of these genes originated from species possessing an operon-
based trpB1 in addition. Groups three and four pertain to trpB2 genes of those genomes containing
exclusively one or two trpB2 genes, but no trpB1. One group (trpB2_i) consisted of trpB2 genes
located inside, the other (trpB2_a) of trpB2 genes located outside the trp operon. TrpA and TrpB
form a heterodimer and cooperate biochemically. In order to characterise trpB variants and stages
of TrpA/TrpB cooperation in silico, several approaches were combined. Phylogenetic trees were
constructed for all trp genes; their structure was assessed via bootstrapping. Alternative models of
trpB evolution were evaluated with parsimony arguments. The four groups of trpB variants were
correlated with archaeal speciation. Several stages of TrpA/TrpB cooperation were identified and
trpB variants were characterised. Most plausibly, trpB2 represents the predecessor of the modern
trpB gene, and trpB1 evolved in an ancestral bacterium.

Conclusion: In archaeal genomes, several stages of trpB evolution, TrpA/TrpB cooperation, and
operon formation can be observed. Thus, archaeal trp genes may serve as a model system for
studying the evolution of protein-protein interactions and operon formation.

Background
The synthesis of tryptophan is a common metabolic capa-
bility of microorganisms and higher plants, which is not
provided by mammals. The prokaryotic trp operon
encodes the enzymes catalysing the final and pathway-

specific steps from chorismate to L-tryptophan. For more
than 40 years, the enterobacterial operon has now been
the classical model system for studying the evolutionary
relation of genes and enzymes (see [1,2] and references
therein) as well as gene regulation. Considering gene reg-

Published: 10 April 2007

BMC Evolutionary Biology 2007, 7:59 doi:10.1186/1471-2148-7-59

Received: 13 February 2007
Accepted: 10 April 2007

This article is available from: http://www.biomedcentral.com/1471-2148/7/59

© 2007 Merkl; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 20
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17425797
http://www.biomedcentral.com/1471-2148/7/59
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Evolutionary Biology 2007, 7:59 http://www.biomedcentral.com/1471-2148/7/59
ulation, several, conceptually quite different mechanisms
have been described for the trp operon. Most of them were
elucidated in bacterial species (see e.g. [3-5], and refer-
ences therein). However, regulation of trp operon expres-
sion has also been shown for the archaea
Methanothermobacter thermoautotrophicus [6,7] and Ther-
mococcus kodakaraensis [8]. The reason for an elaborated
regulation may be the fact that tryptophan is one of the
amino acids, whose biochemical synthesis is very expen-
sive [9]. Besides regulation, other features of tryptophan
biosynthesis have been studied extensively. The composi-
tion of the operon and several aspects of its evolution
have been analysed [10], and for each enzyme, at least one
3D-structure has been determined. Taken together, the trp
operon is besides the ribosomal protein operons one of
the best-characterised gene clusters occurring in microor-
ganisms. Its investigation has provided fundamental
insights into many aspects of bacterial genetics and enzy-
mology; see [2].

The canonical trp operon encodes seven enzymes respon-
sible for the synthesis of L-tryptophan from chorismate.
The first reaction is catalysed by the anthranilate synthase,
a glutamine amidotransferase, which is a complex consist-
ing of the larger synthase (TrpE) and a smaller glutami-
nase (TrpG) subunit. The anthranilate phosphoribosyl
transferase (TrpD) provides the glutamine amidotrans-
ferase function that allows glutamine to serve as the
amino donor in anthranilate formation. The two subse-
quent enzymes, TrpF and TrpC, catalyse the isomerisation
of phosphoribosylanthranilate and the synthesis of
indole-3-glycerol phosphate, respectively.

TrpA and TrpB constitute the αββα tryptophan synthase
complex which catalyses the final reaction from indole-3-
glycerole phosphate + L-serine to L-tryptophan + H2O.
The α subunit (TrpA) cleaves indoleglycerol-3-phosphate
to glyceraldehyde-3-phosphate and indole. The latter is
transported through a hydrophobic tunnel to the associ-
ated β subunit (TrpB), where it is condensed with L-serine
to yield L-tryptophan [11]. A sophisticated mechanism of
allostery links the α and β monomers of the synthase; see
e.g. [12].

Several Trp enzymes represent paradigmatically larger
classes of proteins having similar function or protein
architecture: TrpG is similar to HisH (an enzyme involved
in histidine biosynthesis) and other glutaminases of type
I glutamine amidotransferases [13]. TrpF, TrpC and TrpA
are all (βα)8 barrels possessing similar phosphate binding
sites [14]. The basic (βα)8 barrel is the most common
enzyme fold in the PDB database of known protein struc-
tures [15].

For the bacterial trp genes, the following order was deter-
mined: large anthranilate synthase subunit (trpE), small
anthranilate synthase subunit (trpG), anthranilate phos-
phoribosyl transferase (trpD), indole-3-glycerol phos-
phate synthase (trpC), phosphoribosyl anthranilate
isomerase (trpF), tryptophan synthase β subunit (trpB)
and tryptophan synthase α subunit (trpA), or abbreviated
trpEGDCFBA [16]. The gene-fusions trpGD and trpEG have
been observed in several species; moreover, in other
genomes, the operon is broken up into several gene clus-
ters. In archaeal genomes, order of trp genes is highly var-
iable. In Sulfolobus solfataricus, an intact operon
trpBADFEGC is observed. In Haloferax volcanii, the trp
operon is divided into two isolated clusters, trpCBA and
trpDFEG, separated by more than 1200 kb. In the genome
of Natronomonas pharaonis, there exist three homologs of
trpD and two homologs of trpB, trpE and trpG each. Pyro-
coccus horikoshii completely lacks the genes for tryptophan
synthesis (and for other aromatic amino acids).

The genes trpB, trpA and trpE, trpG are frequently in the
same order and in close proximity, i.e. they comprise the
linkage groups trpBA and trpEG. In both cases, the gene
products constitute a bienzyme complex, whose active
centres interact with each other. Because they occur in
both bacterial and archaeal genomes, these linkage groups
have been identified as ancestral [16]. A reconstruction of
the tentative ancestral trp operon is hampered by the
observation that trp genes are poor phylogenetic reporters.
Different rates of evolution, multiple gene duplications
and convergent evolution, as a consequence of specific
adaptation to environmental demands, may be the reason
for inconsistencies seen in comparisons of phylogenies
deduced from trp genes or rRNA [16]. Therefore, the evo-
lution of each element of the trp operon has to be exam-
ined separately.

For evolutionary studies, tryptophan synthase is an espe-
cially interesting candidate. This enzyme has been ana-
lysed for decades in order to understand the structural
basis and functional consequences of protein-protein
interactions [17]. The isolated TrpA and TrpB proteins
form stable, however poorly active α monomers and ββ
homodimers, respectively [18,19]. Their assembly to the
native αββα complex induces conformational changes in
both subunit types, as shown by X-ray crystallography for
the Pyrococcus furiosus synthase [18]. The result of this
communication between the α and β subunits is a recip-
rocal activation by one to two orders of magnitude [20].
Conformational changes crucial for the allosteric commu-
nication between the active sites of the α– and β-subunits
have been analysed in detail for the Salmonella typhimu-
rium tryptophan synthase; see e.g. [21-24].
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The role of the β-subunit is of particular importance for
the evolution of Trp synthase. For archaea and bacteria, it
is known that two variants of trpB genes occur, which can
clearly be distinguished by their protein sequences [25].
The major group, harbouring proteins of type TrpB1
includes the enzymes of enterobacteria and Bacillus subti-
lis. The minor group (denoted TrpB2) contains many
archaeal proteins. Most prokaryotes like E. coli possess a
single trpB1 gene. However, in several bacterial and
archaeal genomes, a combination of one trpB1 and one
trpB2 gene occurs. In addition, some species exist, which
have only one or two trpB2, but no trpB1 gene. This variety
prompted us to characterise the evolution of TrpB and its
interaction with TrpA in detail, both biochemically and in
silico.

Based on biochemical findings, a model for the evolution
of the tryptophan synthase complex has recently been
introduced [26]. This model assumes the existence of an
ancient and non operon-based trpB2. After duplication,
only one trpB2 gene presumably has been integrated into
the trp operon. Differences in evolutionary pressure may
have been responsible for the divergence of non operon-
and operon-based trpB genes. The coevolution with trpA
may have led to a better adapted trpB1. The data on com-
plex formation and subunit activation led us consider
existing trpB variants as representatives of evolutionary
steps in the postulated model.

In this study, I have assessed this model by phylogenetic
methods. Two basic questions have been addressed: i)
What is the evolutionary relationship of trpB1 and trpB2?
ii) How did extant archaeal trp operons evolve? Extending
previous work [25], I will discuss novel hypotheses con-
cerning the properties of TrpB2 and operon formation.
Based on the content of 26 completely sequenced archaeal
genomes, comparative analyses of trp sequences, and their
locations in genomes will be reported in order to recon-
struct the evolution of TrpB-type subunits and of the coev-
olution of TrpA/TrpB. It will be shown that TrpB2 variants
represent different stages of TrpA/TrpB cooperation and
that TrpB2 is favoured over TrpB1 in certain environ-
ments. Moreover, TrpB2 has features of a more ancient
TrpB variant.

Results and Discussion
Assessing the composition of trp gene clusters
In order to describe the composition of trp regulons in a
quantitative manner and to compare their content in
archaeal and bacterial genomes, AMIGOS [27] was used.
By comparing genomes, this program identifies gene clus-
ters and rates each individual cluster element with a con-
sCL-score. The consCL-score of an individual gene depends
on i) the occurrence of this gene in a given gene cluster
and ii) the global similarity of the genomes harbouring

these clusters. Thus, individual scores assess both the
relatedness of genomes and the frequency with which
individual genes are members of a cluster. The higher a
score, the more pronounced is the occurrence of an indi-
vidual gene in a given gene cluster. Table 1 lists consCL-
scores for elements of archaeal and bacterial trp operons.
The numbers indicate that in bacteria the clustering of
trpA and trpB1 was stronger than that of all other trp genes.
In archaeal genomes, the clustering of trpE and trpG was
most prominent. A reason for the lower score of trpB in
archaeal trp operons was the occurrence of two trpB vari-
ants (trpB1 and trpB2) in these species. The scores sig-
nalled that trpB1 was more frequently part of an trp
operon than trpB2. Moreover, the score for trpA was lower
than that of trpE or trpG. It follows for archaea that trpA
and trpB are less strictly integrated into trp operons than in
bacteria. This suggests that either evolutionary pressure
responsible for operon formation is less pronounced or
that additional selective forces disfavour the integration of
trpA and trpB into certain archaeal trp operons.

It has been hypothesised that TrpB2 possesses a second
function and acts as a serine deaminase [25]. This predic-
tion has been deduced from the analysis of phyletic pat-
terns, i.e. the absence of an encoded serine deaminase
function in certain genomes. However, it has been shown
that TrpB1 of Thermotoga maritima and TrpB2_o proteins
of Sulfolobus solfataricus and T. maritima have poor serine
deaminase activities [26]. An alternative method of non-
homologous gene annotation is the exploitation of gene
neighbourhoods [28], as e.g. implemented with AMIGOS.
For trpB2, AMIGOS did not detect a second conserved
gene neighbourhood besides the one constituting trp
operons. Thus, no clues for an additional function besides
tryptophan synthesis have been deduced for trpB2 by this
approach.

A naming code for trpB genes
The two variants of trpB occur in various genomes in dif-
ferent combinations [25]. In order to facilitate the analysis
of phylogenetic trees, a naming scheme was introduced.
Names of genes and gene products were generated accord-
ing to the scheme SPECIES_LOC|TYPE|TAX. Here, SPE-
CIES is an abbreviation of the species name (see
Materials). LOC indicates the position of the specific trpB
gene relative to a putative trp operon (more precisely: rel-
ative to a trpA gene). If two trpB genes occur in a genome,
they were labelled _i (if the gene was located inside the trp
operon) or _o (if located outside the operon). If only a
single trpB gene occurred in the genome, it was labelled _s,
if the gene was linked to trpA, and it was labelled _S, if it
was separate from trpA. TYPE indicates the gene type. It is
1 for trpB1 and 2 for trpB2. Finally, TAX gives the taxo-
nomical classification. It is C for Crenarchaeota, E for Eur-
yarchaeota and B for Bacteria. The following examples
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explain how to resolve sequence names: Aperni_o2C was
used to name a trpB gene in the genome of Aeropyrum per-
nix (Aperni), which occurred outside the trp operon (_o)
and was of type trpB2 (2). As A. pernix is a Crenarchaeota,
the name ends with a C. The _o notation indicates that a
second trpB gene exists in A. pernix. This gene was conse-
quently named Aperni_i2C, as it is a trpB2 gene inside the
trp operon. Note that also pairs like Tmarit_i1B and
Tmarit_o2B exist indicating the occurrence of a trpB1 gene
inside and a trpB2 gene outside the trp operon.
Sacido_s2C is the designation of a trpB2 gene located
inside the trp operon. As Sulfolobus acidocaldarius possesses
only one trpB gene, it was labelled with a _s. Since Thermo-
plasma volcanium possesses only one trpB gene, which is
non operon-based and of type trpB2, this gene was named
Tvolc_S2E. Designations of the encoded proteins were
assigned in a corresponding way.

Determining the occurrence of trpB genes
In order to determine the distribution of trpB variants, the
COG [29] and the STRING database [30] were used. For
all completely sequenced archaeal and bacterial genomes,
their occurrence was determined and their location was
identified. Depending on the occurrence of trpB variants,
archaeal species were grouped into five categories, named
species-types in the following. Note that these species-
types characterise the content of genomes. Links to the
above naming scheme for genes are gene location and
type.

As Table 2 shows, there were six archaeal genomes pos-
sessing a single trpB gene of class trpB1 (s1 or S1 species),
four genomes with a single trpB gene of class trpB2 (s2 or
S2 species), five genomes harbouring one operon-based
and one additional, non operon-based trpB2 each (i2_o2
species), ten species of type i1_o2 (one operon-based
trpB1 and one additional trpB2 gene) and one species pos-
sessing one operon-based and at least one non operon-

based trpB1 gene (i1_o1 species). The most frequent com-
bination (10 out of 26) was an operon-based trpB1 and a
non operon-based trpB2 gene (i1_o2 species). N. pharaonis
was the only archaeal species of type i1_o1. All five com-
pletely sequenced Crenarchaeota possess exclusively genes
of class trpB2.

Bacterial species did not contribute species-types noticea-
bly different from those observed among archaea (data
not shown). Both Geobacter species represent special cases
most plausibly explained by ongoing genomic rearrange-
ments: Gsulfu_i2B is an operon-based trpB2 gene of type
TrpB2_o. The trp operon of G. sulfurreducens harbours
both a trpB1 and a trpB2 gene. According to the annota-
tion, the trpB1 gene (Locus tag GSU2375) contains a
frameshift and is annotated as a pseudogene [31]. A direct
neighbour of trpB1 in G. metallireducens is a transposase,
making a recent transfer of this gene plausible. In compar-
ison to archaea, the occurrence of trpB2 was less frequent
in bacterial genomes and none contained exclusively
trpB2 genes.

Assessing phylogenetic relationship of trp genes
Sequences originating from all archaea and several repre-
sentative bacteria were selected for a phylogenetic classifi-
cation of trp genes. Multiple sequence alignments were
created by using M-Coffee [32], and trees were con-
structed and evaluated using SplitsTrees [33]. Figures 1, 2,
3, 4 are plots of unrooted trees generated for protein
sequences of TrpA, TrpB, TrpD, TrpE, and TrpG. In order
to assess the statistical strength of individual edges, boot-
strap resampling was used. For relevant edges, bootstrap
values were plotted; see Figures 1, 2, 3, 4. The trees were
analysed in detail, as follows.

TrpB
In agreement with previous findings [25], TrpB1 and
TrpB2 clearly fall into two distinct groups. This distinction

Table 1: conscl scores for trp genes

consCl – values Protein COG # Function

Archaea Bacteria

2.0 2.8 TrpE COG0147 anthranilate/para-aminobenzoate synthases comp. I
2.1 2.7 TrpG COG0512 anthranilate/para-aminobenzoate synthases comp. II
1.8 2.3 TrpF COG0135 phosphoribosylanthranilate isomerase
1.8 2.9 TrpC COG0134 indole-3-glycerol phosphate synthase
1.9 3.0 TrpA COG0159 tryptophan synthase alpha chain
1.4 3.0 TrpB1 COG0133 tryptophan synthase beta chain
0.6 - TrpB2 COG1350 paralogue of TrpB
1.9 2.6 TrpD COG0547 anthranilate phosphoribosyltransferase

Note: The first two columns list score values deduced from representative sets of archaeal and bacterial genomes. Columns three and four list 
protein names, COG numbers, and protein function. The conscl-scores were determined by using AMIGOS [27]. COG numbers indicate 
orthologous gene clusters as defined in the COG database [29].
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was supported by a high bootstrap value; see Figure 1.
Moreover, among TrpB2 sequences a finer sub-clustering
could be deduced, which was in agreement with the loca-
tion of the genes. One group (labelled TrpB2_o) consisted
of products of trpB2 genes not located in operons. 14 out
of 16 elements were TrpB2 sequences originating from
i1_o2 species, i.e. species possessing besides an isolated
lying trpB2 an additional, operon-based trpB1. The genes
Paerip_o2C and Aperni_o2C of the two i2_o2 species Pyro-
baculum aerophilum and A. pernix belonged to this group
too. These two species possess a trp operon containing a
trpB2 gene. Bacterial TrpB2_o sequences, which originated
from the i1_o2 species T. maritima and G. metallireducens
did not form an isolated subtree. This finding argues for a
common origin of bacterial and archaeal trpB2_o genes.

The other two subgroups of TrpB2 variants were clearly
distinct from the TrpB2_o cluster. The sequences of these
clusters originated from archaeal S2 (Thermoplasmata-
ceae), s2 or i2_o2 species (Sulfolobaceae, Picrophilus torridus,
A. pernix, P. aerophilum), i.e. species possessing exclusively
one or two trpB2 genes. These sequences formed two
clearly separated sets. The first set, named TrpB2_i, sub-
sumes operon-based trpB2 genes, and harboured
Stokod_i2C, Sacido_s2C, Ssolfa_i2C, Ptorri_i2E,
Apern_i2C, and Paerop_i2C. The second set, named
TrpB2_a, consisted of Ptorri_o2E, Stokod_o2C,
Ssolfo_o2C, Tacido_S2E, and Tvolca_S2E, and subsumed
trpB2 genes located outside trp operons. For Thermoplasma
volcanium and Thermoplasma acidophilum, these trpB2

genes were the only trpB genes, for S. solfataricus, S. toko-
daii and P. torridus, a second, however distinguishable
trpB2 gene of type trpB2_i was part of the trp operon. Pro-
teins of type TrpB2_i formed two finer subgroups: Those
of P. torridus and the Sulfolobaceae resembled more
sequences of TrpB2_a. Those of A. pernix and P. aer-
ophilum, which possess a non operon-based trpB2_o gene,
were different both from TrpB2_a and from TrpB2_o
sequences; see Figure 1. All relevant edges separating these
groups are due to their high bootstrap value statistically
highly significant.

As a single exception, the genome of P. horikoshii did not
follow the general classification scheme. It possesses a sin-
gle trpB2 gene, which is of type trpB2_o and not – as
expected – of type trpB2_a. However, this genome lacks all
the other trp genes, which has been previously interpreted
as reductive evolution [10]. The occurrence of a trpB2_o
gene might be due to the loss of the complete trp operon
after speciation of trpB2_i and trpB2_o. The fact that the P.
horikoshii trpB2_o gene was not affected by the reduction
has been considered as an argument for assigning to it an
other selective function [25], which has not been identi-
fied yet. As noted above, the two bacterial Geobacter spe-
cies represent special cases associated with the
presumptive rearrangement of trp genes. Briefly, the trpB
variants can be characterised as follows: trpB1 genes occur
exclusively in trp operons. trpB2_o variants represent genes
occurring outside operons in those species that have an
operon-based trpB1. Several archaeal species possess

Table 2: Classifying known archaeal genomes according to the occurrence of trpB genes

S2 (3), s2 (1) i2_o2 (5) i1_o2 (10) i1_o1 (1) S1 (1), s1 (5)

S. acidocaldarius, s2C 3, TA
T. volcanium, S2E 3, TA
T. acidophilum, S2E 3, TA
P. horikoshii, S2E 2, HT

A. pernix, i2C 4, o2C 2, HT
P. aerophilum, i2C 3, o2C 4, 
HT
P. torridus, i2E 2, o2E 2, TA
S. solfataricus, i2C 3, o2C 3, 
TA
S. tokodaii, i2C 3, o2C 4, 
TA

A. fulgidus, i1E 2, o2E 6, HT
M. acetivorans, i1E 1, o2E 5, 
MS
M. barkeri, i1E 1, o2E 4, MS
M. burtonii, i1E 1, o2E 4, MS
M. hungatei, i1E 1, o2E 4, 
MS
M. mazei, i1E 1, o2E 5, MS
M. thermoautotrophicus, i1E 
1, o2E 3, TP
P. abyssi, i1E 3, o2E 2, HT
P. furiosus, i1E 3, o2E 2, HT
T. kodakaraensis, i1E 2, o2E 
2, HT

N. pharaonis, i1E 1, o1E 0, 
HP

M. kandleri, S1E 4, YP
Halobacterium, s1E 1, HP
H. marismortui, s1E 1, HP
M. maripaludis, s1E 1, MS
M. stadtmanae, s1E 1, MS
M. jannaschii, s1E 2, YP

2.75 i2: 3.0, o2: 3.0 i1: 1.6, o2: 3.7 i1: 1.0, o1: 0.0 1.6

Note: The occurrence and the location of trpB genes were coded according to the following scheme used in the top line: S2 species possess exactly 
one, non operon-based trpB2 gene, s2: ditto, the gene is located inside the trp operon. trpB1 was treated analogously. i2_o2 are species possessing 
an trpB2 gene inside and a second trpB2 outside the operon, i1_o2 are species with an operon-based trpB1 and a non operon-based trpB2, and i1_o1 
are species possessing an operon-based and at least one non operon-based trpB1. The number of genomes having the same species-type is given in 
brackets. The acronyms following the species name classify trpB genes; see Results. Numbers give tryptophan codons occurring in the respective 
gene. The abbreviations indicate hyperthermophilic (HT), thermoacidophilic (TA), thermophilic (TP), mesophilic (MS), halophilic (HP), or 
hyperthermophilic + halophilic species (YP). The last line of the table gives mean values for the occurrence of tryptophan codons.
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exclusively trpB2 genes: If only one trpB2 gene exists, it is
of type trpB2_a, if two trpB2 genes occur, one is an operon-
based trpB2_i, the second a trpB2_a, or a trpB2_o gene.

TrpA
Correlated with TrpB speciation, TrpA proteins showed a
division into two, statistically highly significant sub-
groups; see Figure 2. The larger TrpA1 group consisted of
TrpA sequences originating from genomes that possess a

trpB1 gene. Most likely, TrpA1 proteins interact with the
operon encoded TrpB1 and thus fall into the same class.
The smaller TrpA2 group contained exclusively TrpA pro-
teins of species-types S2, s2, or i2_o2, i.e. TrpA proteins
whose putative interaction partner is exclusively a TrpB2
protein. The high bootstrap value of 1000 (100%) for the
central edge emphasises the distinction made between
TrpA1 and TrpA2. S2, s2, i2_o2 species formed three statis-
tically significant subtrees; compare Figure 2. These har-

Phylogenetic tree of TrpB sequencesFigure 1
Phylogenetic tree of TrpB sequences. Using archaeal and bacterial TrpB sequences, a multiple sequence alignment was 
generated and an unrooted phylogenetic tree was constructed. Proteins were labelled according to the naming scheme intro-
duced in the Results section. Subtrees were marked according to the sequence type (TrpB1 or TrpB2). TrpB2 sequences span 
three subtrees; clustering is in agreement with the location of genes. TrpB2_o proteins are all encoded outside operons; 14 
out of 16 originate from species that possess an operon-based trpB1 in addition. TrpB2_i proteins are encoded inside operons. 
Each of these genes is accompanied by a non operon-based trpB2. TrpB2_a sequences occur exclusively in genomes that have a 
single trpB2 gene or occur as a second trpB2 outside an operon in combination with a trpB2_i gene. The numbers are bootstrap 
values resulting from 1000 replications. Gene names are colour-coded. Blue colours indicate genes occurring in S2 (violet), s2 
(light blue) and those i2_o2 species, which possess trpB2_a or trpB2_i genes (dark blue). Orange colours designate trpB2_i and 
trpB2_o genes. Red colours signify genes of i1_o2, S2, or s2 species, and green colours mark genes of s1 (light green) or S1 
(dark green) species. The names of the two trpB1 copies occurring in N. pharaonis are printed in brown. For acronyms of spe-
cies-types, see legend of Table 2. The length of the horizontal bar corresponds to 0.1 substitutions per site.
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boured the TrpA sequences of (i) Sulfolobaceae, (ii)
Thermoplasmatales (T. acidophilum, T. volcanium, P. tor-
ridus) and (iii) P. aerophilum, and A. pernix. The composi-
tion of these groups is in agreement with the TrpB2_a and
TrpB2_i groups in Figure 1 and indicates the coevolution
of trpB2 variants with trpA.

TrpD, TrpE, and TrpG
In all three trees (see Figures 3 and 4), both the proteins
of Thermoplasmatales and of the three Sulfolobaceae consti-
tuted sub-clusters. The edges determined for TrpD or TrpE
entries of these species have similar lengths as those calcu-
lated for TrpA or TrpB. Especially for the trpA and trpB
genes of these species, an increased rate of evolution has
been previously postulated [25]. However, the compari-
son of trees and edge lengths showed that in these species

Phylogenetic tree of archaeal and bacterial TrpA sequencesFigure 2
Phylogenetic tree of archaeal and bacterial TrpA sequences. The two subtrees cluster genomes, which encode at 
least one trpB1 gene (S1, s1, i1_o1, or i1_o2 species) or which possess only genes of type trpB2 (S2, s2, i2_o2 species). The clus-
ters were named TrpA1 or TrpA2, respectively. For abbreviations of sequence names, see Results. For colour code, see legend 
of Figure 1. For the acronyms of species-types, see legend of Table 2.
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evolutionary divergence is similarly high for several pro-
teins encoded by the trp operon. These findings argue
against a specifically increased rate of trpA and trpB evolu-
tion. In general, smaller genomes evolve faster [34].
Therefore, a higher evolutionary rate in the trp genes of
Thermoplasmatales is more plausible explained by a gen-
eral trend, which is due to their smaller genome size.

Interestingly, no sub-clustering into smaller, distinctly
separated groups was observed in TrpE and TrpG, which
form like TrpA and TrpB a heteromeric complex. The
above finding distinguishes the subunits of tryptophan
synthase from those of anthranilate synthase. TrpG was
characterised as the evolutionary most stable trp protein
by the compactness of its phylogenetic tree; see Figure 4.

The three Euryarchaeota Halobacterium (s1), Haloarcula
marismortui (s1) and Natronomonas pharaonis (i1_s1 spe-
cies) constituted an isolated group in all five trees (Figures
1, 2, 3, 4); edge lengths were comparable to those of s2 or
i2_o2 species. This congruence indicates an elevated evo-
lutionary rate for all elements of these trp operons. Note
that these operons harbour trpB1 genes.

Analysing typical differences in TrpA and TrpB sequences
The phylogenetic tree depicted in Figure 1 illustrates that
all TrpB variants can be sorted into four, clearly separated
groups. The tree did however not allow to deduce the
degree of sequence similarity and to infer whether these
differences were subtle sequence variations broadly dis-
tributed in the whole sequence or larger indels (inserts or
deletions). Table 3 lists the results of pairwise sequence
comparisons generated by using BLAST [35]. The selected

Phylogenetic tree of TrpD sequencesFigure 3
Phylogenetic tree of TrpD sequences. Archaeal and bacterial protein sequences were used to construct the unrooted 
tree. The last letter of the acronyms indicates the taxonomical position of the species. "E" marks Euryarchaeota, "C" Crenarchae-
ota, and "B" bacterial species. The three TrpD sequences of N. pharaonis are designated as _1E, _2E, and _3E. For colour code 
and abbreviations, see legend of Figure 1.
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sequences represent the species-types S2, i2_o2, i1_o2, s1,
and S1. As expected, sequence similarity values are in
agreement with tree composition. Importantly, for all
pairwise comparisons, more than 25% identical residues
were determined. Therefore, all TrpB variants should most
probably have the same overall 3D-structure [36].

In order to characterise sequence differences in detail,
multiple sequence alignments (MSAs) were generated on
the basis of a representative selection of TrpA and TrpB
sequences. Figure 5 lists for TrpB the MSA, residue conser-
vation, secondary structure and the location of the inter-
face area. Residues interacting with ligands and residues,
which are characteristic for TrpB1 and TrpB2 respectively,
were labelled. 3D-data were deduced from the X-ray struc-
ture of Pfurio_i1E, i.e. the operon-based TrpB1 protein of
P. furiosus [18], which has PDB code 1WDW. For
Ssolfa_o2C, the 2D-structure was predicted by using Jpred
[37]. SDPpred [38] was employed to identify those resi-
dues, which separated TrpB1 and TrpB2 due to their
skewed or bimodal distribution. In the following, posi-
tions and residues are referenced according to the
sequence Pfurio_i1E. Annotations referring active site res-
idues and the interface originate from the PDBsum page

and the Macromolecular Structure Database of the EMBL-
EBI.

The MSA shows that nearly all differences between TrpB1
and TrpB2 are due to larger indels, in agreement with [25].
Interestingly, an insertion of 2 to 6 residues between posi-
tions 243 and 244 occurred coincidently in TrpB2_a and
TrpB2_o sequences, i.e. exclusively in non operon-based
proteins. All considered TrpB1 and TrpB2_i sequences
lack this subsequence, which was not predicted as a well-
defined 2D-element by Jpred. Several representatives
belonging to these two sets of operon-based proteins were
shown to interact with TrpA [26,39]. Therefore, it is prob-
able that this putative loop influences the allosteric com-
munication with TrpA. Most residues, which are in
contact with ligands in the known TrpB1 structure, were
strictly conserved among all TrpB1 and TrpB2 sequences.
The only exception is residue C225, which is V225 in
TrpB2_a sequences. The active site residues H81, K82, and
S371 were strictly conserved, whereas active site residue
K162 was conserved only in TrpB1 proteins and active site
residue D300 (TrpB1) was an arginine in TrpB2. Several
residues of the interface regions, adjacent to active sites
and near sites interacting with ligands had a bimodal
occurrence pattern distinguishing TrpB1 and TrpB2.

Phylogenetic trees for TrpG and TrpE sequencesFigure 4
Phylogenetic trees for TrpG and TrpE sequences. Archaeal and bacterial protein sequences were used to construct the 
unrooted tree. The last letter of the acronyms indicates the taxonomical position of the species. "E" marks Euryarchaeota, "C" 
Crenarchaeota, and "B" bacterial species. The two TrpE sequences of N. pharaonis are designated as _1E, _2E. For colour code 
and abbreviations, see legend of Figure 1.
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Among these were residues 2 and 110, which were strictly
conserved tryptophan residues in all TrpB2 proteins.
Given its position near the gene start, W2 may assume a
function in translation control. W110 succeeds a cluster of
strictly conserved residues suggesting a role in stability or
protein function.

Figure 6 lists the MSA generated for TrpA sequences. It
shows that the active site residues E36, D47, and Y161 are
strictly conserved in the TrpA sequences studied. Most evi-
dent was a three-residue insertion into TrpA2 sequences
following position 125 (numbering deduced from TrpA
of P. furiosus) as well as deletions at position 162 and
between positions 172 and 174. Moreover, most posi-
tions showing a bimodal or skewed distribution specific
for a trpA variant were located near interface regions. In
summary, the deviations characterising the two TrpA var-
iants were not as pronounced as those observed in TrpB
sequences, however three indels distinguished TrpA1
from TrpA2.

Frequency of Trp codons in trpB genes
It has been postulated that the avoidance of tryptophan
residues in enzymes for tryptophan synthesis provides a
selective advantage [7] as has been shown for a number of
amino acid biosynthetic enzymes [40]. This criterion was
also applied to the trpB genes by assessing the frequency
of tryptophan codons (Table 2). trpB1 genes contained
one or two tryptophan codons with a mean value of 1.6
both for S1, s1, and i1_o2 species. trpB2 genes contained
two tryptophan codons or more with a mean of 2.75 for
S2 species, and 3.0 for i2_o2 species. Most pronounced
was the difference for i1_o2 species. Here, trpB2 genes had
a mean of 3.7, whereas trpB1 genes had a mean of 1.6 tryp-
tophan codons. These trpB1 genes showed a habitat-spe-
cific imbalance of tryptophan codon occurrence with one
in mesophilic species and at least two tryptophan codons
in hyperthermophiles. In summary and according to the
notion of tryptophan codon avoidance, trpB2 genes are
less optimised than trpB1 genes.

The composition of archaeal trp gene clusters
The evolution of individual genes and operon formation
proceed in parallel. For the combined analysis of both
processes, gene orders of relevant archaeal and some bac-
terial trp operons were determined and plotted in Figure
7. In most operons, the gene orders trpBA and trpEG,
respectively, were conserved; however, the arrangement of
the linkage groups varied. Figure 7 is organised as six pan-
els A – F. Panel A depicts the trp clusters of Thermoplas-
mataceae, which are of type trpA2DFEGC; trpB2 lies
isolated. In Sulfolobaceae and P. torridus (Panel B), trpB2 is
the first gene of the gene cluster trpB2ADFEGC, which
matches the above trpA2DFEGC in all positions following
trpB2. Panel C gives the gene clusters of A. pernix and P.
aerophilum, which possess a trpB2_i and a trpB2_o gene. In
the genome of A. pernix, two linkage groups trpA2B2FC
and trpDEG occur; P. aerophilum possesses the cluster
trpB2DEGA2. Panel D lists archaeal genomes containing
linkage groups trpCB1A1 and trpDFEG. In Methanosarcina
mazei, these genes form a single cluster, resulting in
trpCB1A1DFEG. In N. pharaonis, these groups are sepa-
rated by more than 69kb. In panel E, operons are listed
where trpB1 lies close to the 3'-terminal end. For Thermo-
coccus kodakaraensis, Methanococcus maripaludis, Archae-
oglobus fulgidus and Pyrococcus abyssi, gene order is
trpCDEGFB1A1. The gene orders in Panel E resemble bac-
terial operons; two representative examples are plotted in
panel F.

It has been argued that simple trp clusters may have been
unstable until the complexity of regulation and the foun-
dation of a metabolic theme had reached a certain level
[10]. Gene clusters observed in s2 and i2_o2 species can be
considered the less evolved stages of cluster organisation;
compare Panels A – C. Moreover, the only archaeal trp
gene regulatory systems identified so far are part of the trp
operons of M. thermoautotrophicus [7] and T. kodakaraensis
[8], which both have a bacterial-like composition.

Table 3: Pairwise sequence similarity values of TrpB proteins

Ssolfa_i2C Ssolfa_o2C Paerop_i2C Paerop_o2C Afulgi_i1E Afulgi_o2E Tmarit_i1B Tmarit_o2B Mmarip_s1E Mkand_S1E Ecoli_s1B

Tacido_S2E 49, 72, 2 76, 88, 0 47, 65, 2 46, 67, 1 26, 44, 17 46, 64, 2 32, 43, 18 47, 66, 2 28, 43, 12 30, 46, 11 26, 42, 6
Ssolfa_i2C - 54, 75, 2 56, 71, 3 53, 72, 1 34, 48, 14 57, 72, 1 34, 47, 12 54, 73, 1 30, 46, 15 30, 45, 12 28, 42, 14
Ssolfa_o2C - 50, 66, 2 52, 71, 1 33, 50, 13 47, 68, 1 32, 46, 13 48, 70, 1 28, 43, 16 30, 45, 11 27, 40, 10
Paerop_i2C - 57, 68, 3 35, 49, 14 54, 63, 3 35, 50, 12 54, 65, 3 32, 48, 12 34, 46, 15 31, 43, 13
Paerop_o2C - 30, 45, 13 63, 78, 1 32, 46, 13 60, 75, 1 28, 44, 16 33, 46, 11 28, 41, 16
Afulgi_i1E - 31, 44, 11 65, 78, 0 36, 48, 10 65, 85, 0 65, 78, 0 59, 76, 1
Afulgi_o2E - 34, 47, 12 64, 76, 0 30, 45, 9 32, 45, 9 29, 40, 12
Tmarit_i1B - 35, 47, 11 61, 79, 1 64, 79, 1 58, 75, 1
Tmarit_o2B - 34, 46, 9 32, 46, 8 29, 40, 12
Mmarip_s1E - 59, 77, 0 58, 77, 0
Mkand_S1E - 57, 72, 0

Note: The sequences represent species-types S2, i2_o2, i1_o2, s1, and S1. All pairs were compared by using BLAST with default parameters. For 
each pair, the fraction of identical residues, similar residues, and inserted gaps is given in percent. For the generation of protein names, see Results.
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Besides Nanoarchaeum equitans, Thermoplasmata (T. volca-
nium, T. acidophilum, and P. torridus) possess the smallest
archaeal genomes sequenced so far. Most plausibly,
strong selective pressure associated with the colonised
habitat enforces the minimisation of genome size. How-
ever, both Thermoplasma species possess the gene cluster
trpA2DFEGC. Therefore, the need for tryptophan synthesis
can be taken for granted. The separation of trpB2 from the
remaining trp genes is consistent with a demand for indi-
vidual gene regulation and expression presumably due to
an additional function of TrpB2. Most plausibly, under
these constraints, trpB2 is the more optimal variant, which
is in a specific environment favoured over trpB1.

What is the origin of trpB genes?
Recently, TrpA, Tmari_i1B and Tmari_o2B of T. maritima
have been produced in E. coli, purified, and characterised
[39]. It has been shown that recombinant TrpA forms an
α-monomer, and that both recombinant TrpB proteins
form β2-homodimers. However, only the operon-

encoded Tmari_i1B – but not Tmari_o2B – associated
with TrpA to constitute the conventional αββα tryp-
tophan synthase complex in which both subunits recipro-
cally activate each other. An analogous experiment has
been carried out for genes of S. solfataricus [26]. The results
have shown that Ssolfa_i2C – but not Ssolfa_o2C – asso-
ciates transiently with TrpA during catalysis to form a
functional tryptophan synthase complex. However, in
contrast to regular tryptophan synthases, the affinity
between the two subunit-types was weak, and activation
has been unidirectional from Ssulfo_i2C to TrpA. These
results indicate the following ranking for the binding-
affinity to TrpA: TrpB2_o < TrpB2_i < TrpB1.

In the course of modelling trpB evolution, the relationship
between the trpB variants has to be made plausible. A pos-
sible explanation for the existence of two trpB variants
would be convergent evolution, i.e. the independent
development of trpB1 and trpB2 towards a trpB gene. In
this case, few residues, which are critical for function,

Multiple sequence alignment of TrpB sequencesFigure 5
Multiple sequence alignment of TrpB sequences. Representatives of the four groups of TrpB sequences were aligned. 
Ssolfa_o2C, Ptorri_o2E, and Tacido_S2E represent TrpB2_a sequences. Ptorri_i2E, Ssolfa_i2C, and Stokod_i2C represent 
TrpB2_i, Maceti_o2E, Afulgi_o2E, and Tmarit_o2B represent TrpB2_o sequences. Maceti_i1E, Tmarit_i1B, Afulgi_i1E, and 
Pfurio_i1E represent TrpB1 sequences. The 2D-structural elements of Pfurio_i1E, as deduced from the PDB file 1WDW, are 
shown below the sequences, and residues involved in protein interaction with TrpA (I) are assigned under 'Interface'. The line 
Jpred (top) lists a 2D-prediction of Ssolfa_o2C generated by using the Jpred server [37]. Residues in bold face printing are con-
served; black residues are strictly, grey residues are less strictly conserved. Active site residues are plotted in italics; residues in 
contact with ligands are underlined. These data were deduced from the PDBsum pages [56] and the PISA server [58] of the 
EMBL-EBI. Residues printed in boxes were predicted by SDPpred [38] as being specific for TrpB1 or TrpB2. See legend of Fig-
ure 1 for an explanation of sequence acronyms.
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Pfurio_i1E                               V                                                                Y    T                      A     N                          H

Maceti_i1E          G   D   Q  N               V                           N      W                                                        A
Tmarit_i1B          G   D   Q  N               V                           N      W                                                        A
Afulgi_i1E          G   D   Q  N               V                           N      W                                                        A
Pfurio_i1E          G   D   Q  N               V                           N      W                                                        A
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should correspond. However, one would expect these res-
idues embedded into polypeptides, which are relatively
dissimilar on the sequence level. In contrast, comparison
of TrpB1 and TrpB2 sequences shows that on average 30%
of the residues are identical and 40% are similar; compare
Table 3. This finding and the conservation of indels makes
convergent evolution highly improbable and argues for a
common origin of trpB1 and trpB2 genes.

The most-widely accepted model for the evolution of
novel protein functions postulates gene duplication and
the generation of a redundant gene copy [41]. It is
assumed that evolutionary stress for a copy is largely
reduced thus facilitating the evolution of a paralogue with
a novel function. This model is based on the notion that
negative trade-offs dominate evolutionary processes [42].
According to this model of evolution, one of the trpB
genes originates from a copy of the ancestral variant.

Which of the two existing variants represents the more
ancient gene? The arguments listed below suggest that
trpB2 is the ancestral trpB gene.

i) trpB1 is not universally distributed among archaea. Cre-
narchaeota possess exclusively trpB2 genes. ii) A low fre-
quency of amino acids in enzymes required for their
synthesis provides selective advantage [40]. In general,
trpB1 genes contain fewer tryptophan codons than trpB2
genes; in i1_o2 species, the ratio is 1.6/3.7 i.e. less than
0.5. Therefore, trpB1 is the more evolved gene. iii) The
sophisticated inter-subunit communication suggests that
the products of trpB1 and trpA1 of species-types s1 or i1_o2
are the most efficient enzymes; see [39] and references
therein. Hence, TrpB1 is the more optimised and later
evolved TrpB variant. iv) It has been postulated that
ancient enzymes possess broad specificities [43]. The
occurrence of trpB2 outside trp operons argues for either a

Multiple sequence alignment of TrpA sequencesFigure 6
Multiple sequence alignment of TrpA sequences. Ssolfa_i2_o2C, Aperni_i2_o2C, and Ptorri_i2_o2C represent TrpA 
sequences from i2_o2 species possessing both an operon-based and a non operon-based trpB2. Tacido_s2E represents a spe-
cies having exclusively an operon-based trpB2. Ecoli_s1B and Tmarit_i1_o2B represent bacterial TrpA proteins. Mstadt_s1E is 
from a species possessing exclusively an operon-based trpB1 gene, Mmazei_i1_o2E, Afulgi_i1_o2E and Pfurio_i1_o2E are TrpA 
sequences from i1_o2 species possessing an operon-based trpB1 and a non operon-based trpB2 gene. Presumably, these TrpA1 
proteins interact with a protein of type TrpB1. Below the alignment, the 2D-structure of TrpA of P. furiosus (Pfurio_i1_o2E), 
and residues involved in protein interaction with its TrpB1 (I) are given. The line named Jpred lists a 2D-prediction of 
Ssolfa_i2_o2C generated by using the Jpred server [37]. Residues printed in bold are conserved; black residues are strictly, 
grey residues are less strictly conserved. Active site residues are plotted in italics. These data were deduced from the PDBsum 
pages [56] and the PISA server [58] of the EBI. Residues printed in boxes were predicted by SDPpred [38] as being specific for 
the two TrpA species.

Jpred

2D Pfurio
Interface

Jpred

2D Pfurio
Interface

Jpred

2D Pfurio

- EEEE EE HHH HHHHHHHHHH EEEE HH HHHHHHHH HHHHHHH HHHHHH EEEEEE H HH HHHHHHH

TTEEEEE EETTSS HHH HHHHHHHH GG G S EEEE SS SS HH HHHHHHHHHH TT HHHHHH HHHHHHT T EEEEE HH HHH HH HHHH

30| I IIIIIIIII II I I|60 IIII III I II 100|

HHHHHHH EEE HHHHHHHHHH H EEEEE HHHHH HHHHH EE EE EEE HHHH HHHHHHHHH EEEEE HHHHHHHH

HHHHHHHT EEEETT GG G HHH HHHHH HTT EE EE TT HHHHH HHHHH SS E EEE HHHH HHHHHHHHH SS EEEES SHHHHHHHH

110| IIIIII I 130| II IIIII I I 160| I II 180| 210|

HH EEEEE HHHHHHHH HH HHHHHH HHHHHHH

HTT SEEEE HHHHHHHHHH GGG HHHHHH HHHHHH

220| 248|

----- ----- - --- --- -------- - --- - --
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Ssolfa_i2_o2C R Q
Aperni_i2_o2C R S
Ptorri_i2_o2E R D
Tacido_s2E R A

Ssolfa_i2_o2C L G P
Aperni_i2_o2C I G P
Ptorri_i2_o2E I G P
Tacido_s2E I G P
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new function or a broader specificity. In summary, it is
plausible to regard trpB2 as representing the more ancient
variant of trpB.

Modelling the evolution of TrpB
In order to reduce the number of possible alternative sce-
narios that have to be discussed for modelling the evolu-
tion of trpB, the following assumptions were made:

i) For bacteria, an ancestral trp operon of type
trpEGDCFB1A1 is most likely [10]. Therefore, the exist-
ence of a trpB1 gene in the bacterial predecessor was taken
for granted. In addition, it has been concluded for bacte-
rial trp operons that horizontal gene transfer (HGT) did
not affect the path of evolutionary history [44].

ii) trpB1, trpB2, trpA1 and trpA2 have been invented only
once. The analysis of multiple sequence alignments (see
Figures 5 and 6) shows that the main differences distin-
guishing the variants are conserved indels. It has been
convincingly argued that conserved indels result less likely
than e.g. point mutations from independent mutational
events and provide useful milestones for the identification
of evolutionary phases [45]. In addition, the strong coher-
ence seen in the TrpB subtree argues against an independ-

ent evolution occurring in parallel for bacteria and
archaea. Due to the existence of conserved indels, an evo-
lutionary process trpB2_i → trpB1 → trpB2_o or vice versa
is unlikely too.

iii) As has been deduced previously [46], the following
order of importance was taken for the processes of
genome evolution: gene loss > gene genesis > gene dupli-
cation > HGT.

iv) The integration of a trpB gene into the trp operon (or
linkage group) was rated less probable than other translo-
cations, gene duplications, gene loss, and mutations. It is
presumably very rare that a particular gene gets integrated
into a specific gene cluster [47], which is the trp operon in
the considered case.

v) It is unlikely that several recent events of HGT explain
the taxonomically widespread occurrence of trpB2 genes
in bacteria. In bacteria, trpB2 genes were found in hyper-
thermophilic (Aquificae and Thermotogae) and mesophilic
bacteria belonging to the taxonomical groups of Alpha-
and Gammaproteobacteria and Bacteroides. The program
SIGI [48] identifies genomic islands, i.e. gene clusters hav-
ing a conspicuous codon usage indicating recent HGT

Gene organisation of archaeal and bacterial trp gene clustersFigure 7
Gene organisation of archaeal and bacterial trp gene clusters. Each panel A – F represents the occurrence and orien-
tation of trp genes in the genomes of organisms listed in the second column. The third column gives the species-type and the 
taxonomical lineage. "E" marks Euryarchaeota, "C" Crenarchaeota, and "B" bacteria. A vertical double line (Panels A and D) indi-
cates borders of gene clusters separately located in the genome. Open arrows represent hypothetical genes. The arrows are 
not to scale; gaps of arbitrary length were inserted between genes to allow the alignment of arrows. For acronyms of species-
types, see legend of Table 2.
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events. In none of the considered genomes were trpB1 or
trpB2 genes (both inside and outside operons) elements
of such islands.

In order to model the evolution of tryptophan synthase, a
phylogenetic tree based on archaeal 16S rRNA sequence
comparisons was plotted according to Fig. 2 from [49]. All
considered species and their species-types were added.
Using the above premises, the most plausible sequence-
types of predecessors were determined. These types and
evolutionary events needed to infer the modern species-

types from the predecessors were added to the tree; see
Figure 8.

The most plausible predecessor of all Crenarchaeota is of
type i2_o2; for Bacteria and for Euryarchaeota it is of type
i1_o2. Assuming this and excluding Thermoplasmata (see
below), of the 23 modern archaeal species, 14 have the
same species-type as their ancestor. Of the 9 species pos-
sessing a deviating type, 7 can be explained with a single
gene loss, and for only 2 modern species a more compli-
cated genomic rearrangement has to be postulated: Loss
of trpB2 and dislocation of trpB1 has to be postulated for

A parsimonious reconstruction of predecessorsFigure 8
A parsimonious reconstruction of predecessors. The phylogenetic tree is based on 16S rRNA sequence comparisons 
(after Fig. 2 of [49]). For all modern species, their species-type and evolutionary events leading most plausibly from the ances-
tral predecessor to the current genome content are added. The most probable species-type of predecessors for Crenarchaeota, 
Euryarchaeota, and Bacteria is given next to the grey circles. Abbreviations for events changing genomic content: Li1 or Lo2, 
(L)oss of the operon-based trpB1 or the non operon-based trpB2 gene, respectively. Ti1 (T)ranslocation of the operon based 
trpB1, Di1 (D)uplication of the operon-based trpB1. The colour of species names indicates the habitat: Hyperthermophiles are 
given in red, thermoacidophiles in orange, thermophiles in pink, mesophiles in green, halophiles in blue, and species living in a 
both hyperthermophilic and halophilic environment are given in purple.
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Alternative models of trpB evolutionFigure 9
Alternative models of trpB evolution. Model A assumes that a single and intermediate trpB* gene existed in the last uni-
versal common ancestor (LUCA) of bacteria and archaea. The evolution of the trpB2 gene is considered an archaeal and that of 
the trpB1 gene is considered a bacterial invention. The occurrence of trpA1 and trpB1 genes in archaea and of trpB2 genes in 
bacteria are explained by a twofold horizontal gene transfer (HGT). A duplication of trpB2 in an ancient archaeal genome has 
been postulated to explain the existence of the non operon-based trpB2. Models B and C propose two alternatives for the evo-
lution of the LUCA. Model B assumes that the evolution trpB2 → trpB1 occurred in an early bacterial species after the diver-
gence of bacteria and archaea. The replacement of linkage group trpB2A2 by trpB1A1 via HGT was postulated to account for 
the euryarchaeal predecessor of type i1_o2. Model C assumes that the evolution trpB2 → trpB1 occurred before the diver-
gence of bacteria and archaea. Hence, the replacement of an operon-based trpB1 by a trpB2 gene and the evolution trpA1 → 
trpA2 was postulated for the crenarchaeal ancestor. For acronyms of species-types, see legend of Table 2. Distances are arbi-
trary and do not represent evolutionary time intervals. Stars indicate events of genomic rearrangements, circles filled in grey 
represent ancient predecessors.

A

Crenarchaeota

Bacteria

i1_o2

i1_o2

i2_o2

Euryarchaeota

trpB2_i � trpB1

B

LUCA: i1_o2

Bacteria

i1_o2

i1_o2

i2_o2

Euryarchaeota

HGT
trpA1B1

trpB2_i � trpB1

C

Ancestor, i2_o2

Bacteria

i1_o2

i1_o2

i2_o2

Euryarchaeota

Duplication trpB2

LUCA: trpB*

trpB* � trpB1

trpB* � trpB2

HGT
trpA1B1

HGT
trpB2

Replacement of trpB2/trpA2 via HGT

Crenarchaeota

Integration, i2_o2

LUCA: i2_o2

Duplication of trpB2

Replacement of trpB2/trpA2 via HGT

Replacement of trpB1_i by trpB2_o

Ancestral
Prokaryote, S2

Archaea

Archaea

Archaea

Crenarchaeota

Ancestral
Prokaryote, S2

Ancestral
Prokaryote, S2



BMC Evolutionary Biology 2007, 7:59 http://www.biomedcentral.com/1471-2148/7/59
M. kandleri (representing Methanopyri), which is a S1 spe-
cies. The replacement of trpB2_o with a copy of trpB1 is
necessary to explain the i1_o1 genome of N. pharaonis. The
only euryarchaeal class requiring a more complex expla-
nation than gene loss and translocation subsumes Ther-
moplasmata, which possess exclusively trpB2 and trpA2
genes. The composition of congruency groups (compare
Figures 1 and 2) makes a common evolution with Sulfolo-
bales or the acquisition of the same trp genes probable. The
similarity of operon structures supports this assumption:
operon structures of P. torridus and Sulfolobales are identi-
cal (compare Panel B of Figure 7). For T. acidophilum, a
large amount of HGT with S. solfataricus, which is found
in the same habitat, has been made plausible [50]. In
summary, a common evolutionary history of trpB2 and
trpA2 genes of Sulfolobales and Thermoplasmata is highly
plausible, proposing for both taxonomical classes an
ancestor of species-type i2_o2. Assuming an i2_o2 ances-

tor, gene loss is sufficient to explain the genome composi-
tion of all modern Thermoplasmata.

Based on these predecessors, three alternatives explaining
the evolution and distribution of trpB species starting
from the last universal common ancestor (LUCA) of bac-
teria and archaea were deduced (Figure 9, Panels A – C).
In the following paragraph, the plausibility of these alter-
natives will be discussed. The rest of this paragraph is used
to elucidate the three alternatives.

In Panel A of Figure 9, the existence of an ancestral trpB*,
an intermediate of trpB1 and trpB2 was postulated for the
LUCA. trpB* might then have diverged into a bacterial
trpB1 and an archaeal trpB2 variant. To explain the exist-
ence of a non operon-based trpB2 in archaea, a duplica-
tion of trpB2 is necessary. The advent of an euryarchaeal
i1_o2 predecessor requires the replacement of linkage

Composite model of trpB evolutionFigure 10
Composite model of trpB evolution. Upon duplication and integration of an ancient trpB2 gene into the trp operon, the 
last universal common ancestor (LUCA) of bacteria and archaea was of species-type i2_o2. In a bacterial ancestor, the evolu-
tion of a linkage group trpB1A1 occurred. Via horizontal gene transfer (HGT), an euryarchaeal ancestor acquired this linkage 
group, which gave rise to a predecessor of type i1_o2. Thermoplasmata acquired trpA2 and trpB2 genes in an ancient event of 
HGT. For all taxonomical orders, species-types of current species are given. S2 species possess exactly one, non operon-based 
trpB2 gene, s2: ditto, the gene is located inside the trp operon. trpB1 was treated analogously. i2_o2 are species possessing a 
trpB2 gene inside and a second trpB2 outside the operon, i1_o2 are species with an operon-based trpB1 and a non operon-
based trpB2, and i1_o1 are species possessing an operon-based and at least one non operon-based trpB1.
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group trpB2A2 with trpB1A1 via HGT from bacteria to
archaea. The occurrence of trpB2 in bacterial genomes
demands an early transfer of trpB2 from an archaeal to a
bacterial predecessor.

Panel B of Figure 9 depicts an alternative model for the
evolution of the LUCA towards the bacterial and archaeal
ancestors. As introduced above, gene duplication is
regarded the first step for evolving a novel gene function.
In addition, trpB2 must be considered to represent the
more ancient variant of trpB. Therefore, the evolution
towards the LUCA of bacteria and archaea is most plausi-
bly explained by the duplication of a non operon-based
trpB2 gene, which was subsequently integrated into the trp
operon and constituted an ancient linkage group trpB2A2.
This makes a common ancestor of type i2_o2 plausible.
These considerations are the basis for further reconstruct-
ing the evolution of predecessors. In Panels B and C, two
alternatives are given.

In Panel B, it is assumed that the LUCA was of type i2_o2
and that the evolution trpB2 → trpB1 occurred in an early
bacterial species. In this case, species-types of the LUCA
and the crenarchaeal predecessor are identical. To explain
the advent of an euryarchaeal predecessor of type i1_o2,
an ancient event of HGT from Bacteria to Archaea has to be
postulated for the acquisition of the linkage group
trpB1A1, which replaced trpB2A2.

In Panel C, it is assumed that the LUCA was of type i1_o2,
i.e. the evolution trpB2 → trpB1 occurred earlier than the
speciation of Bacteria and Archaea. In this case, the species-
types of the LUCA and the predecessors of Bacteria and
Euryarchaeota are identical. However, a replacement of
trpB2_i by trpB2_o is necessary to constitute the crenar-
chaeal predecessor.

How plausible are these three models?
Model A requires at least two ancient events of HGT to
explain the occurrence of trpB2 in Bacteria and of trpA1B1
in Euryarchaeota. The phenomenon of non-orthologous
displacement in situ is well-characterised [51,52]. In addi-
tion to HGT, a duplication of the trpB2 gene is needed for
the predecessor of Archaea. This model is not the most
parsimonious one: Model B demands only one HGT
event, the ancient acquisition of the linkage group
trpB1A1 by an euryarchaeal predecessor.

Model C postulates a LUCA of species-type i1_o2. The
sophisticated inter-subunit communication clearly sug-
gests that products of trpB1 and trpA1 genes are the most
specialised and most recently evolved tryptophan syn-
thases; see [39] and references therein. Thus, the replace-
ment of trpB1 with trpB2, which is needed to explain the
existence of a crenarchaeal predecessor of type i2_o2,

would – with respect to protein-protein interaction – lead
to a less optimal tryptophan synthase. This seems
unlikely, if one presumes the sustained need for tryp-
tophan synthesis in Crenarchaeota.

In contrast, model B postulates the replacement of a (less
evolved) trpB2_i by a trpB1 for the euryarchaeal predeces-
sor and does not require the replacement of a trpB1 by a
trpB2 for the crenarchaeal predecessor. The case of Thermo-
plasmata makes clear that in a thermophilic or hyperther-
mophilic environment trpB2 and trpA2 genes are favoured
over trpB1 and trpA1. There is evidence that the LUCA was
a thermophilic or hyperthermophilic species [34,53,54].
Therefore, it is more probable to expect a LUCA of species-
type i2_o2. In summary, considering parsimony argu-
ments and the assumption that negative trade-offs domi-
nate evolutionary processes [42], model B is the likelier
one. Figure 10 summarises the most parsimonious sce-
nario explaining the composition of modern archaeal trp
operons: Assuming that the LUCA was of type i2_o2, and
that trpB1 was a bacterial invention, besides gene loss,
which is a frequent evolutionary event, two cases of
ancient HGT are sufficient to explain the distribution of
trpA and trpB species in current archaeal genomes.

Conclusion
In archaeal genomes, various stages of trpB function have
been conserved. Most plausibly, trpB2 represents the
ancestral variant of trpB genes. With respect to TrpA/TrpB
communication and cooperativity, the situation observed
in S2 species (T. acidophilum and T. volcanium) is probably
the least complex one. Similarly archaic are the non
operon-based trpB2 genes of Sulfolobaceae, whereas the
operon-based trpB genes are more evolved. s1 and i1_o2
species possess highly cooperative synthases. Thus, the
archaeal tryptophan synthase (especially trpB variants)
constitutes a model system for the study of protein com-
plex formation. Due to different environmental condi-
tions, several stages of cooperativity have been conserved,
which allow to characterise the progress of trpA – trpB
coevolution based on gene expression and on functional
cooperativity.

Materials
Genomes and protein sequences
Genomic content was determined by analysing version
6.2 of the STRING database [30].

All protein sequences were downloaded via the "Genome
Project" database of the NCBI [55], which allows to access
completely sequenced genomes. Respective COG tables
were consulted to determine the COG group of genes [29]
and to download sequences. Genes originating from the
following completely sequenced genomes were analysed
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(abbreviations used for Figures and accession numbers of
genomes in brackets):

Crenarchaeota
Aeropyrum pernix K1 (Aperni, NC_00854), Pyrobaculum
aerophilum str. IM2 (Paerop, NC_003364), Sulfolobus aci-
docaldarius DSM 639 (Sacido, NC_007181), Sulfolobus sol-
fataricus P2 (Ssolfa, NC_002754), Sulfolobus tokodaii str. 7
(Stokod, NC_003106).

Euryarchaeota
Archaeoglobus fulgidus DSM 4304 (Afulgi, NC_000917),
Haloarcula marismortui ATCC 43049 (Hmaris,
NC_006396), Halobacterium sp. NRC-1 (Halob,
NC_002607), Methanocaldococcus jannaschii DSM 2661
(Mjanna, NC_000909), Methanococcoides burtonii DSM
6242 (Mburto, NC_007955), Methanococcus maripaludis
S2 (Mmarip, NC_005791), Methanopyrus kandleri AV19
(Mkandl, NC_003551), Methanosarcina acetivorans C2A
(Maceti, NC_003552), Methanosarcina barkeri str. Fusaro
(Mbarke, NC_007355), Methanosarcina mazei Go1
(Mmazei, NC_003901), Methanosphera stadtmanae DSM
3091 (Mstadt, NC_007681), Methanospirillum hungatei JF-
1 (Mhunga, NC_007796) Methanothermobacter thermau-
totrophicus str. Delta H. (Mtherm, NC_000916), Natrono-
monas pharaonis DSM 2160 (Nphara, NC_007426),
Picrophilus torridus DSM9790 (Ptorri, NC_005877), Pyro-
coccus abyssi GE5 (Pabyss, NC_000868), Pyrococcus furiosus
DSM 3638 (Pfurio, NC_003413), Pyrococcus horikoshii
OT3 (Phorik, NC_000961), Thermococcus kodakaraensis
KOD1 (Tkodak, NC_006624), Thermoplasma acidophilum
DSM1728 (Tacido, NC_002578), Thermoplasma volcanium
GSS1 (Tvolca, NC_002689).

Bacteria
Escherichia coli K-12 (Ecoli, NC_000913), Geobacter metal-
lireducens GS-15 (Gmetal, NC_007517), Geobacter sul-
furreducens PCA (Gsulfu, NC_002939), Thermotoga
maritima (Tmarit, NC_00853).

Methods
Generating multiple sequence alignments
For the generation of multiple sequence alignments
(MSAs) the program M-Coffee [32] was used. It combines
the output of nine individual MSA methods for the gener-
ation of a "meta"-MSA. M-Coffee has been shown to out-
perform all individual methods of MSA generation [32].

Annotating multiple sequence alignments
For each position in a MSA, residue conservation, second-
ary structure, the location of the interface area, active sites
and residues, which are characteristic for sequence types,
were determined and plotted. 3D-data were deduced from
the PDB-file 1WDW, describing the TrpA/TrpB complex of
P. furiosus [18]. For 2D-structure prediction, Jpred [37]

was used. SDPpred [38] was utilised to identify those res-
idues, which distinguished sequence groups due to their
skewed or bimodal distribution. Annotations referring
active site residues were deduced from the PDBsum page
[56,57], interface residues were annotated according to
the Protein interfaces, surfaces and assemblies service PISA
[58,59]. Both services were located at the webserver of the
European Bioinformatics Institute (EMBL-EBI).

Creating and evaluating phylogenetic trees
SplitsTrees4 [33], a frame-work for phylogenetic analyses,
was used to generate and analyse phylogenetic trees. MSAs
originating from M-Coffee were utilised to calculate max-
imum likelihood protein distance estimates based on a
JTT [60] model. The bio-neighbour joining approach [61]
was used to generate trees. Resulting trees were analysed
by bootstrapping (1000 replications each).
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