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Abstract

Background: Fishes in the families Cichlidae and Labridae provide good probable examples of
vertebrate adaptive radiations. Their spectacular trophic radiations have been widely assumed to
be due to structural key innovation in pharyngeal jaw apparatus (PJA), but this idea has never been
tested based on a reliable phylogeny. For the first step of evaluating the hypothesis, we investigated
the phylogenetic positions of the components of the suborder Labroidei (including Pomacentridae
and Embiotocidae in addition to Cichlidae and Labridae) within the Percomorpha, the most
diversified (> 15,000 spp) crown clade of teleosts. We examined those based on 78 whole
mitochondrial genome sequences (including 12 newly determined sequences) through partitioned
Bayesian analyses with concatenated sequences (13,933 bp).

Results: The resultant phylogenies indicated that the Labridae and the remaining three labroid
families have diverged basally within the Percomorpha, and monophyly of the suborder was
confidently rejected by statistical tests using Bayes factors.

Conclusion: The resultant phylogenies indicated that the specified PJA evolved independently at
least twice, once in Labridae and once in the common ancestor of the remaining three labroid
families (including the Cichlidae). Because the independent evolution of pharyngeal jaws appears to
have been followed by trophic radiations, we consider that our result supports, from the aspect of
historical repeatability, the idea that the evolution of the specialized PJA provided these lineages
with the morphological potential for their spectacular trophic radiations. The present result will
provide a new framework for the study of functional morphology and genetic basis of their PJA.

Background

Fishes of the families Cichlidae and Labridae [1] (includ-
ing scarids and odacids as subgroups) represent good
probable examples of vertebrate adaptive radiations [2,3].
Although the two families inhabit different aquatic envi-
ronments (freshwater cichlids vs marine labrids), both
families have radiated into several hundreds to over a

thousand of species exhibiting various feeding modes
(Fig. 1). In terms of species richness, cichlids exceed
labrids (1478 spp. vs 576 spp.; calculated from the data
from FishBase [4], whereas labrid morphological diversity
is comparable to that of the cichlids in terms of feeding
modes, as represented by the wide variety of their skull
forms (Fig. 1) [5]. Indeed, biomechanical studies of lower
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jaw shapes [6,7] quantitatively demonstrated that the
labrid functional diversity in lower jaw was well compara-
ble to that of all ray-finned fishes.

The dramatic radiation of the cichlid and labrid fishes is
widely believed to result from the "key innovation" of a
unique pharyngeal jaw apparatus (PJA). Generalized per-
comorph fishes, from which the cichlids and labrids were
derived, have upper and lower "pharyngeal jaws" within
the throat, which function chiefly to transport food into
the esophagus, whereas the "oral jaws" have a task of both
collecting and manipulating (crushing and processing)
food. In the cichlid and labrid fishes, the pharyngeal jaws
and attached muscles (constituting PJA) was modified
into a derived condition with three major features: 1) the
left and right lower jaw elements are fused into a single
structure, 2) the lower jaw is suspended in a muscular
sling that runs from the neurocranium to the posterior
muscular arms of the lower jaw, and 3) the upper jaw ele-
ments have a diarthrotic articulation with the underside
of the neurocranium (Fig. 2) [8]. The unique condition of
the PJA is assumed to allow efficient manipulation (par-
ticularly strong bite) of food [8-10]. Liem [9] has sug-
gested that the evolution of the uniquely modified PJA in
cichlids and labrids freed the oral jaws from the task of
food manipulation, allowing it to diversify into various
food-collecting modes (see Fig. 1).

Although this scenario is one of the most well-known
examples of an evolutionary key innovation (cited in
Futuyma's [11] "Evolutionary Biology", the most widely-
used textbook in the field), it has never been evaluated
adequately. Unfortunately, the key innovation hypothesis
on the specialized PJA has been proposed being coupled
with a taxonomic hypothesis that has widely been
accepted ever since: the family Labridae and Cichlidae
have been classified into the suborder Labroidei, together
with Pomacentridae and Embiotocidae, based on the
sharing of the specialized PJA [10,12]. According to
Stiassny & Jensen [12], the specialized PJA has seven mor-
phological features including the above three major ones.
None of them is, however, unique to labroid fishes,
although there is no other group known to have them all
[13]. Moreover, there is no independent, corroborative
evidence for a monophyletic Labroidei outside of the spe-
cialized PJA [12,13]. This situation has led some evolu-
tionary biologists to doubt not only the taxonomic
hypothesis but also the key innovation hypothesis (e.g.
[14]). The doubt about the latter hypothesis is a little rash,
however, because appropriateness of the evolutionary
hypothesis essentially does not depend on that of the
appended taxonomic hypothesis.

A discussion of the specialized PJA as a key innovation,
however, hinges, first of all, upon a phylogenetic hypoth-
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esis independent of pharyngeal characters as below. The
widely-accepted taxonomic hypothesis (monophyletic
Labroidei) assumed that the evolution of the specialized
PJA occurred only once during the percomorph evolution,
a situation that has prevented the famous evolutionary
example from being examined from the aspect of histori-
cal repeatability. The traditional taxonomic hypothesis
based on the sharing of the specialized PJA, however,
needs reconsideration. Phylogeny independent of the PJA
may come to demonstrate multiple origins of the special-
ized PJA followed by trophic radiations, which support
the key innovation hypothesis at least from the aspect of
the historical repeatability. The hypothesis, however,
must be tested statistically by comparing the diversity of
the clades with the trait to that of the sister taxa without
that trait [15,16] when the true sister taxa are found in a
future study.

For the first step of evaluating the key innovation hypoth-
esis on the specialized PJA, we examined labroid mono-
phyly based on 78 whole mitochondrial genome
sequences from a variety of the Perciformes and related
other ordinal taxa (collectively called "Percomorpha").
Usefulness of whole mitochondrial genome sequences
(ca. 16,000 bp) for resolving higher-level phylogenetic
relationships of teleost has been demonstrated in several
studies [e.g. [17-19]]. Although non-monophyly of the
labroid families have been suggested in previous studies
[14,20,21], limited sequence data used in these studies
(2,222 bp at longest) have precluded them from drawing
definite conclusions, and no statistical test has been con-
ducted for corroborating that hypothesis. Our analysis
used the whole mitochondrial genome sequences
(>13,000 bp per species), and confirmed the independent
origins of the two diversified families by statistical tests
using Bayes factors.

Results

The final DNA alignment contains 13,933 nucleotide sites
for the 78 taxa listed in Table 1. Of the sites, 9,037 were
variable and 7,832 informative under the parsimony cri-
terion. Partitioned Bayesian analyses based on three dif-
ferently-weighted datasets, #1, #2 (3rd codons RY-coded),
and #3 (3rd codons excluded), recovered nearly identical
topologies. Figure 3 shows a 50% majority rule consensus
tree of the 4,700 pooled trees from two independent Baye-
sian analyses for dataset #2. It was fully bifurcated with
the exception of an unresolved trichotomy denoted by an
arrow, and most internal branches were supported by
100% posterior probabilities (PPs). Topological differ-
ences among results from the three datasets were shown
only in the trichotomy and five internal branches denoted
by arrowheads in Fig. 3.
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Diversity of the skull in the Cichlidae (a-h) and Labridae (i-p). (a) Rhamphochromis macrophthalmus, a piscivore, (b)
Haplochromis euchilus, a digger in sand, (c) Labidochromis vellicans, a picker of small arthropods, (d) Lethrinops brevis, a digger in
sand, (e) Petrotilapia tridentiger, a rock scraper, (f) Labeotropheus fuelleborni, an algal-eating rock scraper, (g) Haplochromis similis,
a leaf chopper, (h) Genyochromis mento, a scale eater, (i) Cheilinus celebicus, feeds on small fishes and invertebrates, (j) Hemigym-
nus melapterus, feeds on invertebrates in sand, (k) Anampses geographicus, feeds on small hard-shelled invertebrates, (I) Epibulus
insidiator, engulfs crustaceans and small fishes, (m) Chlorurus microrhinos, feeds on the epilithic algal matrix of coral reefs, (n)
Siphonognathus argyrophanes, feeds on small invertebrates picked from weeds or the substratum, (o) Gomphosus varius, feeds on
small benthic crustaceans, (p) Labrichthys unilineatus, a coral-polyp eater. Drawings of cichlids modified from Fryer & lles [59].

In the resultant trees, every family of the suborder Labroi-
dei (Cichlidae, Pomacentridae, Embiotocidae, and Labri-
dae) was monophyletic with 100% PPs, and moreover,
the family Labridae (clade A) was phylogenetically distant
from the remaining three labroid families forming clade

B. Monophyly of the Labroidei comprised of all the four
families was confidently rejected by a statistical test using
Bayes factor (2 In = 540.28). The family Pseudochromidae
(represented by Labracinus cyclophthalma, underlined in
Fig. 3), which was sometimes thought to be a possible sis-
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Figure 2

Diagrammatic representation of the principal components of the specifically modified PJA of cichlids. Red ele-
ments are the upper and lower pharyngeal jaws. The muscles organizing the PJA (pharyngeal jaw apparatus) are represented as
black thick lines, and the principal directions of force has been indicated by arrows. The drawing modified from Liem & Green-
wood [32]. Numbers indicate three major features of the specialized "labroid" PJA: ) the left and right lower jaw elements are
fused into a single structure, 2) the lower jaw is suspended in a muscular sling that runs from the neurocranium to the poste-
rior muscular arms of the lower jaw, and 3) the upper jaw elements have a diarthrotic articulation with the underside of the
neurocranium.

ter to the Labridae based on larval morphology [22], was  Discussion

placed not close to the Labridae (clade A), but more  Percomorpha phylogeny

closely related to the clade B. Overall relationships among the percomorph fishes
examined here were quite similar to those obtained by
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Order Family Species Accession No.

Outgroups

Polymixiiformes Polymixiidae Polymixia japonica [DDBJ: AB034826]

Beryciformes Berycidae Beryx splendens [DDBJ: AP002939]

Percomorpha sensu Miya et al. [18]

Ophidiiformes Ophidiidae Bassozetus zenkevitchi [DDBJ: AP004405]
Bythitidae Diplacanthopoma brachysoma [DDBJ: AP004408]

Lophiiformes Lophiidae Lophius americanus [DDBJ: AP004414]

Mugiliformes

Atheriniformes

Beloniformes

Cyprinodontiformes

Zeiformes

Gasterosteiformes

Synbranchiformes

Scorpaeniformes

Perciformes

Chaunacidae

Caulophrynidae
Melanocetidae

Mugilidae

Melanotaeniidae
Atherinidae
Adrianichthyidae
Scomberesocidae
Exocoetidae
Aplocheilidae
Poeciliidae
Caproidae
Hypoptychidae
Gasterosteidae
Indostomidae
Synbranchidae
Mastacembelidae

Dactylopteridae

Scorpaenidae

Triglidae
Cottidae
Cyclopteridae
Pseudochromidae
Percidae

Carangidae

Lophius litulon
Chaunax abei
Chaunax tosaensis
Caulophryne pelagica
Melanocetus murrayi
Mugil cephalus
Crenimugil crenilabis
Melanotaenia lacustris
Hypoatherina tsurugae
Oryzias latipes
Cololabis saira
Exocoetus volitans
Kryptolebias marmoratus
Gambusia dffinis
Antigonia capros
Hypoptychus dybowskii
Gasterosteus aculeatus
Indostomus paradoxus
Monopterus albus
Mastacembelus favus
Dactyloptena tiltoni
Dactyloptena peterseni
Helicolenus hilgendorfi
Sebastes schlegeli
Satyrichthys amiscus
Cottus reinii
Aptocyclus ventricosus
Labracinus cyclophthalma
Etheostoma radiosum
Carangoides armatus
Caranx melampygus

Trachurus japonicus

[DDBJ: AP004413]
[DDB)J: AP004415]
[DDBJ: AP0044 6]
[DDB)J: AP004417]
[DDB}J: AP004418]
[DDB}J: AP002930]
[DDBJ: AP002931]
[DDB}: AP004419]
[DDBJ: AP004420]
[DDBJ: AP004421]
[DDBJ: AP002932]
[DDBJ: AP002933]
[GenBank: AF283503]
[DDBJ: AP004422]
[DDB}J: AP002943]
[DDB}J: AP004437]
[DDB}: AP002944]
[DDB}: AP004438]
[DDB}: AP002945]
[DDB}J: AP002946]
[DDB}: AP004440]
[DDB}J: AP002947]
[DDBJ: AP002948]
[GenBank: AY491978]
[DDBJ: AP004441]
[DDB): AP004442]
[DDB}: AP004443]
[DDB}J: AP009125]
[GenBank: AY341348]
[DDB): AP004444]
[DDB}: AP004445]
[DDB}J: AP003091]
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Table I: List of species used in this study, with DDBJ/EMBL/GenBank Accession Numbers. Classifications follow Nelson [23]. (Continued)

Pleuronectiformes

Tetraodontiformes

Emmelichthyidae
Lutjanidae

Sparidae

Cichlidae

Embiotocidae

Pomacentridae

Labridae

Odacidae
Scaridae
Zoarcidae
Pholidae
Trichodontidae

Blennidae

Gobiesocidae

Rhyacichthyidae
Eleotridae
Gobiidae

Scombridae

Paralicthyidae
Pleuronectidae
Balistidae
Monacanthidae
Tetraodontidae

Molidae

Trachurus trachurus

Emmelichthys struhsakeri

Pterocaesio tile
Pagrus auriga
Pagrus major

Oreochromis sp.

Neolamprologus brichardi

Tropheus duboisi

Astronotus ocellatus

Cymatogaster aggregata

Ditrema temmincki
Abudefduf vaigiensis
Amphiprion ocellaris
Pseudolabrus sieboldi
Halichoeres melanurus
Odax cyanomelas
Chlorurus sordidus
Lycodes toyamensis
Enedrias crassispina
Arctoscopus japonicus
Petroscirtes breviceps
Salarias fasciatus
Arcos sp.

Aspasma minima
Rhyacichthys aspro
Eleotris acanthopoma
Acanthogobius hasta
Auxis rochei

Auxis thazard
Euthynnus alletteratus
Katsuwonus pelamis
Scomber scombrus

Thunnus alalunga

Thunnus thynnus thynnus

Paralichthys olivaceus
Platichthys bicoloratus
Sufflamen fraenatus
Stephanolepis cirrhifer
Takifugu rubripes
Masturus lanceolatus

Mola mola

[DDBJ: AB108498]
[DDBJ: AP004446]
[DDBJ: AP004447]
[DDBJ: ABI124801]
[DDBJ: AP002949]
[DDBJ: AP009126]
[DDBJ: AP006014]
[DDBJ: APO06015]
[DDBJ: AP009127]
[DDBJ: AP009128]
[DDBJ: AP009129]
[DDBJ: AP006016]
[DDBJ: AP006017]
[DDBJ: AP006019]
[DDBJ: AP006018]
[DDBJ: AP009130]
[DDBJ: AP006567]
[DDBJ: AP004448]
[DDBJ: AP004449]
[DDBJ: AP003090]
[DDBJ: AP004450]
[DDBJ: AP004451]
[DDBJ: AP004452]
[DDBJ: AP004453]
[DDBJ: AP004454]
[DDBJ: AP004455]

[GenBank: AY486321]

[DDBJ: AB103467]
[DDBJ: AB105447]
[DDBJ: AB099716]
[DDBJ: AB101290]
[DDBJ: ABI20717]
[DDBJ: AB101291]

[GenBank: AY302574]

[DDBJ: AB028664]
[DDBJ: AP002951]
[DDBJ: AP004456]
[DDBJ: AP002952]
[EMBL: AJ421455]
[DDBJ: AP006239]
[DDBJ: AP006238]
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Figure 3

Phylogenetic relationships among Labroid families, based on whole mitochondrial DNA sequences. Shown is the
50% majority rule consensus tree of the 4,700 pooled trees from two independent Bayesian analyses for dataset #2 (3rd
codons RY-coded). The dataset comprises unambiguously aligned nucleotide sequences of 13,393 bp from 76 percomorphs
and two outgroups; we set five partitions (Ist, 2nd and 3rd codon positions from 12 protein-coding genes plus tRNA and
rRNA genes). Partitioned Bayesian analyses were conducted using MRBAYES 3.1.2 [53], with the best-fit model of sequence
evolution [ref. 54; GTR + | + I'] being set each partition and all model parameters variable and unlinked across partitions.
Numerals beside internal branches indicate Bayesian posterior probabilities (PPs) (shown as percentages) for dataset # | /#2/#3.
Single numerals are given when analyses for all the datasets have shown the same values, and clades denoted by broad lines
indicate those supported by 100% PPs in the all datasets. An unresolved trichotomy is indicated by an arrow, and topological
incongruities among the datasets are denoted by open arrowheads (dataset #1 vs. #2) and filled arrowheads (dataset #1 vs.
#3). Note that the species of the Labridae and those of the remaining three labroid families (Cichlidae, Pomacentridae, and
Embiotocidae) form different monophyletic groups, respectively.
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unweighted and weighted maximum-parsimony analyses
in Miya et al. [18], except for the newly added fishes, such
as labroids. Although the phylogenies recovered many
interesting inter-subordinal relationships that were not
congruent with the traditional classification, sparse taxon
sampling outside the Labroidei precludes further discus-
sions.

Labroid phylogeny

The resultant trees and the statistical test with Bayes factor
demonstrated that the Labridae and the remaining three
labroid families including Cichlidae have independent
origins within the Percomorpha. Based on molecular
analyses, various relationships among the labroid families
have been so far proposed [14,20,21]. Our analysis dem-
onstrated entirely different relationships from the various
ones with high statistical support, whereas none of the
previous relationships was supported with high statistical
value, probably owing to short sequences (2,222 bp at
longest). The present analyses were conducted based on
the long nucleotide sequences more than six times the
lengths of those so far used (13,933 bp).

In spite of the high statistical supports, we must keep in
mind that the sister relationships obtained here are highly
tentative because of the sparse taxon sampling (76 species
from 53 families) compared to the tremendous taxo-
nomic diversity of the Percomorpha (ca. 14,000 species in
251 families; calculated from Nelson [23]). That is to say,
although the present phylogeny demonstrated that the
three labroid families, Cichlidae, Pomacentridae, and
Embiotocidae, formed a well-supported monophyletic
group (clade B) without non-labroid taxa, there remains a
possibility that some non-labroid taxa would break into
the group when more extensive taxon sampling is con-
ducted. In the same way, there remains not a few possibil-
ities that some yet-to-be-analyzed taxa (ca. 200 families
left) would become sister group of the "labroid" taxa. To
evaluate these possibilities, we need to conduct analyses
with more extensive taxon sampling. In doing so, we
would be able to evaluate "key innovation" hypothesis in
a more rigorous manner using statistical test [15,16].

Implications of the revised labroid phylogeny

The present result supports, from the aspect of historical
repeatability, the famous (but never evaluated) evolution-
ary hypothesis that the dramatic labroid radiations in
trophic ecology are due to evolution of specialized pha-
ryngeal jaw apparatus (PJA). Based on the present phylog-
eny, a single origin of the specialized PJA in a common
ancestor of the suborder Labroidei is unlikely, because
such an evolutionary scenario requires subsequent losses
of the complex structures in a wide variety of perco-
morphs. Rather, it is plausible that the specialized PJA has
evolved twice independently in the Percomorpha history,

http://www.biomedcentral.com/1471-2148/7/10

in a common ancestor of the Labridae (clade A) and that
of the Cichlidae, Pomacentridae, and Embiotocidae
(clade B). Interestingly, evolutionary radiations in jaw
forms and head shape (see Fig. 1) have occurred within
both of the lineages with specialized PJA: one in the Labri-
dae, and the other in the Cichlidae. The independent
occurrence of such evolutionary succession (evolution of
specialized PJA followed by trophic radiation) appears to
support the idea that the evolution of the specialized PJA
provided these lineages with the morphological "poten-
tial" for trophic radiations.

Despite their specialized PJA, the Pomacentridae and
Embiotocidae seem not to have experienced clear trophic
radiation. This may reflect the context-dependence of a
key trait's effect on diversification [24]. There are many
potential factors that could influence how a key trait
affects diversification. De Queiroz [24] categorized these
factors roughly into three types: (1) other taxa, (2) other
traits of the group itself, and (3) the physical environ-
ment. Evolutionary radiations in African Great Lake cich-
lids are supposedly facilitated by colonization of novel
habitats (newly created lakes) without other competitive
taxa [25]. The Pomacentridae and Embiotocidae, both of
which inhabit coastal marine waters, may not have had
such opportunity to colonize novel habitats without com-
petitors.

Evolution of the specialized "labroid" PJA

It is interesting fact that the complex "labroid" PJA
evolved multiply in the Percomorpha history (other than
the two lineages recognized here, two fossil labroid fami-
lies have been recognized so far from the lower Middle
Eocene [ca. 50 million years ago] of Monte Bolca, Italy,
together with the oldest fossil records of the Labridae and
Pomacentridae [26-29]). Is the acquisition of the "success-
ful" PJA not so difficult for percomorph fishes, like paral-
lel evolution of trophic morphologies in African Great
Lake cichlids [30]? According to Stiassny & Jensen [12],
typical labroid PJA has seven features (three of them
shown in Fig. 2). Interestingly, none of them is unique to
labroid fishes (| 12]; e.g. fused lower pharyngeal jaw is also
shown in several families of Perciformes and members of
Beloniformes), though there is no other group known to
have them all [13]. In addition to it, it seems that such fea-
tures can be accomplished by a very simple change in
ontogenetic mechanism (e.g. fusion of lower pharyngeal
jaws into one unit) [9]. The labroid PJA is therefore con-
sidered to have been achieved through the unique combi-
nation of several commonplace and slight morphological
modifications. It will be worthwhile to study the molecu-
lar mechanisms underlying the morphological modifica-
tions, which would reveal molecular basis for the
probable key innovations. According to Hulsey et al. [31],
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more than ten genes have been so far recognized which
putatively influence teleost pharyngeal jaw.

The present result will provide a new view point for func-
tional morphology of the unique organ (the "labroid"
PJA). Although many works on the trophic apparatus have
been so far published [e.g. [8-10,12,32-35]], comparison
between labrid and other labroid fishes (including cich-
lids) as evolutionary independent lineages has never been
conducted. Careful comparisons, particularly based on
more extensive phylogenies including labroid and non-
labroid fishes possessing "partly" specialized PJA (e.g.
members of Beloniformes), will shed light on overlooked
evolutionary implications.

Conclusion

The phylogenetic analyses of whole mitochondrial DNAs
from various labroid and non-labroid "percomorph"
fishes revealed that the Labridae and the remaining three
labroid families have diverged basally within Percomor-
pha, indicating that the specified "labroid" PJA evolved
independently at least twice, once in Labridae and once in
the common ancestor of the remaining three labroid fam-
ilies (including the Cichlidae). Because both of the evolu-
tion appear to be followed by trophic radiations, we
consider that our result supports the idea that the evolu-
tion of the specialized PJA provided these lineages with
the morphological potential for their spectacular trophic
radiations.

The present result will provide a new view point for func-
tional morphology of the unique organ: although many
works on the specialized PJA have been so far published,
comparison between labrid and other labroid fishes
(including cichlids) as evolutionary independent lineages
has never been conducted. Careful comparisons, particu-
larly based on more extensive phylogenies, will shed light
on overlooked evolutionary implications.

Methods

Taxon sampling

To examine monophyly of suborder Labroidei, we used
all four labroid families (Labridae, Cichlidae, Pomacentri-
dae, and Embiotocidae) and a possible sister family for
Labridae (Pseudochromidae) in our analysis. In addition,
we used all available whole mitochondrial genome
(mitogenome) sequences from the Percomorpha (sensu
Miya et al. [18]) in the database (NCBI Organelle Genome
Resources) [36] in the analyses. We chose two basal acan-
thomorph (but not percomorph) taxa, Polymixia japonica
and Beryx splendens, as collective outgroups to root the
trees. A list of taxa examined in this study is provided in
Table 1 along with DDBJ/EMBL/GenBank accession.

http://www.biomedcentral.com/1471-2148/7/10

DNA extraction, PCR, and sequencing

We amplified whole mitogenome sequences for the 11
labroids plus a single non-labroid species (Labracinus
cyclophthalma: Pseudochromidae) using a long PCR tech-
nique [37]. We used six fish-versatile long PCR primers in
the following four combinations (S-LA-16S-L + S-LA-16S-
H; L2508-16S + H1065-12S; L2508-16S + H12293-Leu;
L12321-Leu + S-LA-16S-H; for locations and sequences of
these primers, see Miya & Nishida [17,38], Inoue et al.
[39,40], Ishiguro et al. [41], Kawaguchi et al. [42]) so as to
amplify the entire mitogenome in two reactions. Long
PCR reaction conditions followed Miya & Nishida [38].
Dilution of the long PCR products was with sterile water
(1:10-100) served for subsequent uses as short PCR tem-
plates.

We used a total of 162 fish-versatile PCR primers in vari-
ous combinations to amplify contiguous, overlapping
segments of the entire mitogenome for each of the 12 spe-
cies (for locations and sequences of the primers, see Miya
& Nishida [17,38], Inoue et al. [39,40,43-45]; Ishiguro et
al. [41], Kawaguchi et al. [42]). Short PCR reaction condi-
tions followed Miya & Nishida [38].

Double-stranded short PCR products, purified using a
Pre-Sequencing kit (USB), subsequently served for direct
cycle sequencing with dye-labeled terminators (Applied
Biosystems and Amersham Pharmacia) with the same
primers for the short PCRs. All sequencing reactions were
performed according to the manufacture's instructions.
Labeled fragments were analyzed on model 373/377/
3100 sequencers (Applied Biosystems).

Sequences editing and alignment

The sequence electropherograms were edited with the
computer programs EDITVIEW (Version 1.01; Applied
Biosystems). AUTOASSEMBLER (Version 2.1; Applied
Biosystems) and DNASIS (Version 3.2; Hitachi Software
Engineering) were used to concatenate the consensus
mitogenomic sequences. Then, sequences were exported
to phylogenetic software programs. To build our character
matrix, we combined the 12 newly determined sequences
with the 66 previously published sequences.

For each individual protein-coding gene, we manually
aligned the sequences for the 78 species, with respect to
the translated amino acid sequence, using MACCLADE
[46]. All stop codons and gaps were excluded from the
subsequent phylogenetic analyses, as well as ambiguously
aligned regions. The ND6 gene was also excluded because
of its heterogeneous base composition and consistently
poor phylogenetic performance [17]. The 22 tRNA genes
were also aligned manually, and ambiguous and gap
alignment were excluded from the phylogenetic analyses.
The 12S and 16S rRNA sequences were aligned using the
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software PROALIGN (Version 0.5) [47], and default set-
ting parameters. Regions with posterior probabilities of <
50% were excluded from the subsequent phylogenetic
analyses.

Phylogenetic analysis

When using a mitogenomic dataset for a particular taxo-
nomic sampling, Simmons & Miya [48] empirically dem-
onstrated that Bayesian analysis [49-52] is the most
efficient character-based method for accurately recon-
structing phylogeny. Following their recommendations,
we used this method for constructing the labroid phylog-
eny.

Partitioned Bayesian phylogenetic analyses were per-
formed with MRBAYES (Version 3.04 b) [53] for three dif-
ferent character matrices. The first matrix (dataset #1,
13,933 positions) includes concatenated nucleotide
sequences from 12 protein-coding genes (10,758 posi-
tions), 22 transfer RNA genes (1,406 positions) and the
two ribosomal RNA genes (1,769 positions). The second
(dataset #2, 13,933 positions) includes the same set of
characters with 3rd codon positions of the protein-coding
genes converted into purine (R) and pyrimidine (Y), and
the third matrix (dataset #3, 10,347 positions) with the
3rd codon positions excluded. Assuming that functional
constraints on sequence evolution are more similar
within codon positions (or types of molecules) across
genes than across codon positions (or types of molecules)
within genes, five partitions (1st, 2nd and 3rd codon posi-
tions of protein-coding genes, tRNA genes and rRNA
genes) were set for the datasets #1 and #2, and four parti-
tions (no third codon positions included) were done for
dataset #3.

The general time reversible model with some sites
assumed to be invariable and with variable sites assumed
to follow a discrete gamma distribution [ref. [54]; GTR + I
+ I'] was used for model of sequence evolution, as it was
selected as best-fitting model with MRMODELTEST (Ver-
sion 2) [55] for each partition except for positions with
the RY-coding. We assumed that all of the model parame-
ters were unlinked and rate multipliers were variable
across partitions. For 3rd codon positions in the dataset
#2, we used arbitrarily "A" and "C" instead of "R" and "Y"
and set a single rate category (Iset nst = 1) instead of six
(Iset nst = 6) to allow the program to estimate only trans-
versional changes between purine (R) and pyrimidine (Y)
nucleotides. MrBayes unnecessarily estimated transitional
changes (A < G or C < T) when RY-coding was
employed, which simply imposed fixed nucleotide com-
positions on R (A + G) and Y (C + T) during the calcula-
tion.

http://www.biomedcentral.com/1471-2148/7/10

For each of the three matrices, two independent Bayesian
analyses with Markov chain Monte Carlo (MCMC) proc-
ess of 3,000,000 generations were performed. Parameter
values and trees were sampled every 1,000 generations,
and the samples before the convergence of the Markov
chain were discarded for each run. The remaining samples
from the two independent run were combined into a sin-
gle file with a total of 5,200, 4,700 and 5,520 phyloge-
netic trees, respectively. The combined tree files were then
imported into PAUP (Version 4.0b10) [56] to compute
the 50% majority rule consensus trees. The percentages for
the branches in the consensus trees represent the Bayesian
posterior probabilities, which are the rough equivalent of
a maximum likelihood search with bootstrapping [53].

Testing an alternative phylogenetic hypothesis

We tested an alternative hypothesis for labroid phylogeny
using Bayes factors. Constrained Bayesian trees (imposing
labroid monophyly on the trees) were estimated with
MRBAYES (Version 3.1.2) [53] and harmonic means of
log likelihood scores (calculated using "sump" com-
mand) were compared between constrained and uncon-
strained trees. Two independent partitioned Bayesian
analyses with MCMC process of 3,000,000 generations
were performed based on the dataset #2 (RY coding),
which effectively removes likely "noise" from the dataset
and avoids the apparent lack of signal by retaining all
available positions in the dataset. Parameters and trees
were sampled in the same way as described above, being
combined into a single file with a total of 5,200 trees. The
alternative trees were then compared using a Bayesian
approach with Bayes factors [57], the traditional criterion
of 2 In Bayes factor of > 10 being used as very strong evi-
dence against the alternative hypothesis [58].

Authors' contributions

KM, MM and MN designed the study, and all authors were
involved in sampling. KM, MM and YA carried out the
molecular work, and KM analyzed the data and drafted
the manuscript. MM and MN helped draft the manuscript.
All authors read and approved the final manuscript.

Acknowledgements

We wish to thank Australian Museum and Tokyo Sea Life Park for providing
tissues. We also thank the following individuals and institutions for their
help in collecting the specimens: J. Paxton, M. McGrouther, T. Mukai, and
Iriomote Station, Tropical Biosphere Research Center, University of the
Ryukyus. We are grateful to D. R. Bellwood for comments on an early ver-
sion of the manuscript. This study was supported by Research Fellowships
of Japan Society for the Promotion of Science for Young Scientists (No.
72503), and Grants-in-Aid from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan (12NP0201 and 15380131).

References

I. Westneat MW, Alfaro ME: Phylogenetic relationships and evo-
lutionary history of the reef fish family Labridae. Mol Phylo-
genet Evol 2005, 36:370-390.

Page 10 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15955516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15955516

BMC Evolutionary Biology 2007, 7:10

20.

21.

22.

23.

24.

25.
26.

27.

Meyer A, Kocher TD, Basasibwaki P, Wilson AC: Monophyletic
origin of Lake Victoria cichlid fishes suggested by mitochon-
drial DNA sequences. Nature 1990, 347:550-553.

Westneat MW, Alfaro ME, Wainwright PC, Bellwood DR, Grubich JR,
Fessler JL, Clements KD, Smith LL: Local phylogenetic diver-
gence and global evolutionary convergence of skull function
in reef fishes of the family Labridae. Proc R Soc B 2005,
272:993-1000.

FishBase [http://www fishbase.org]

Wainwright PC, Bellwood DR, Westneat MW, Grubich |R, Hoey AS:
A functional morphospace for the skull of labrid fishes: pat-
terns of diversity in a complex biomechanical system. Biol
Linn Soc 2004, 82:1-25.

Westneat MW: A biomechanical model for analysis of muscle
force, power output and lower jaw motion in fishes. | Theoret
Biol 2003, 223:269-281.

Westneat MW: Evolution of levers and linkages in the feeding
mechanisms of fishes. Integr Comp Biol 2004, 44:378-389.
Wainwright PC: Functional morphology of the pharyngeal jaw
apparatus. In Biomechanics of fishes Edited by: Shadwick R, Lauder
GV. Chicago: Elsevier; 2005:77-101.

Liem KF: Evolutionary strategies and morphological innova-
tions: cichlid pharyngeal jaws. Syst Zool 1973, 22:425-441.
Kaufman LS, Liem KF: Fishes of the suborder Labroidei (Pisces:
Perciformes): phylogeny, ecology and evolutionary signifi-
cance. Breviora 1982, 472:1-19.

Futuyma DJ: Evolutionary biology 3rd edition. Sunderland: Sinauer;
1998.

Stiassny MLJ, Jensen JS: Labroid interrelationships morphologi-
cal complexity, key innovations, and the study of compara-
tive diversity. Bull Mus Comp Zool 1987, 151:269-319.

Johnson GD: Percomorph phylogeny: progress and problems.
Bull Mar Sci 1993, 52:3-28.

Streelman JT, Karl SA: Reconstructing labroid evolution with
single-copy nuclear DNA. Proc R Soc B 1997, 264:101 1-1020.
Sanderson M), Donoghue MJ: Reconstructing shifts in diversifica-
tion rates on phylogenetic trees. Trends Ecol Evol 1996, 11:15-20.
Slowinski JB, Guyer C: Testing the stochasticity of patterns of
organismal diversity: an improved null model. Am Nat 1989,
134:907-921.

Miya M, Nishida M: Use of mitogenomic information in teleo-
stean molecular phylogenetics: a tree-based exploration
under the maximume-parsimony optimality criterion. Mol
Phylogenet Evol 2000, 17:437-455.

Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh
TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M:
Major patterns of higher teleostean phylogenies: a new per-
spective based on 100 complete mitochondrial DNA
sequences. Mol Phylogenet Evol 2003, 26:121-138.

Miya M, Satoh PS, Nishida M: The phylogenetic position of toad-
fishes (order Batrachoidiformes) in the higher ray-finned fish
as inferred from partitioned Bayesian analysis of 102 whole
mitochondrial genome sequences. Biol | Linn Soc 2005,
85:289-306.

Sparks JS, Smith WL: Phylogeny and biogeography of cichlid
fishes (Teleostei: Perciformes: Cichlidae). Cladistics 2004,
20:501-517.

Dettai A, Lecointre G: Further support for the clades obtained
by multiple molecular phylogenies in the acanthomorph
bush. CR Biologies 2005, 328:674-689.

Richards W], Leis JM: Labroidei: development and relation-
ships. In Ontogeny and Systematics of fishes Edited by: Moser HG.
Gainesville: American Society of Ichthyologists and Herpetologists;
1984:542-547.

Nelson JS: Fishes of the world 3rd edition. New York: John Wiley &
Sons; 1994.

De Queiroz A: Contingent predictability in evolution: key
traits and diversification. Syst Biol 2002, 51:917-929.

Schluter D: The ecology of adaptive radiation. Oxford: Oxford
University Press; 2000.

Sorbini L, Boscaini E, Bannikov AF: On the morphology and sys-
tematics of the Eocene fish genus Tortonesia Sorbini from
Bolca. Studi e Ricerche sui Giacimenti Terziari di Bolca 1990, 4:115-132.
Bellwood DR: A new Eocene fossil fish, Sorbinia caudopunctata
Gen. et Sp. nov., from Monte Bolca, Italy. Boll Mus Civ di St Nat
Verona 1995, 19:461-474.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51,

http://www.biomedcentral.com/1471-2148/7/10

Bellwood DR, Sorbini L: A review of the fossil record of the
Pomacentridae (Teleostei: Labroidei) with a description of a
new genus and species from the Eocene of Monte Bolca,
Italy. Zool J Linn Soc 1996, 117:159-174.

Bellwood DR: Fossil pharyngognath fishes from Monte Bolca,
Italy, with a description of a new pomacentrid genus and spe-
cies. Studi e Ricerche sui Giacimenti Terziari di Bolca 1999, 8:207-217.
Kocher TD, Conroy JA, McKaye KR, Stauffer JR: Similar morphol-
ogies of cichlid fish in Lakes Tanganyika and Malawi are due
to convergence. Mol Phylogenet Evol 1993, 2:158-165.

Hulsey CD, Fraser GJ, Streelman JT: Evolution and development
of complex biomechanical systems: 300 million years of fish
jaws. Zebrdfish 2005, 2:243-257.

Liem KF, Greenwood PH: A functional approach to the phylog-
eny of the pharyngognath teleosts. Amer Zool 1981, 21:83-101.
Galis F, Drucker EG: Pharyngeal biting mechanics in centra-
rchids and cichlids: insights into a key evolutionary innova-
tion. J Evol Biol 1996, 9:641-670.

Wainwright PC, Bellwood DR: Ecomorphology of feeding in
coral reef fishes. In Coral reef fishes. Dynamics and diversity in a com-
plex ecosystem Edited by: Sale PF. Orlando: Academic Press;
2002:33-55.

Hulsey CD: Function of a key morphological innovation:
fusion of the cichlid pharyngeal jaw. Proc R Soc B 2006,
273:669-675.

NCBI Organelle Genome Resources
www.ncbi.nlm.nih.gov/genomes/ORGANELLES/7898.html]
Cheng S, Chang SY, Gravitt P, Respess R: Long PCR. Nature 1994,
369:684-685.

Miya M, Nishida M: Organization of the mitochondrial genome
of a deep-sea fish Gonostoma gracile (Teleostei: Stomii-
formes): first example of transfer RNA gene rearrange-
ments in bony fishes. Mar Biotechnol 1999, 1:416-426.

Inoue ]G, Miya M, Tsukamoto K, Nishida M: Complete mitochon-
drial DNA sequence of the Japanese sardine, Sardinops
melanostictus. Fish Sci 2000, 66:924-932.

Inoue )G, Miya M, Tsukamoto K, Nishida M: A mitogenomic per-
spective on the basal teleostean phylogeny: resolving higher-
level relationships with longer DNA sequences. Mol Phylogenet
Evol 2001, 20:275-285.

Ishiguro N, Miya M, Nishida M: Complete mitochondrial DNA
sequence of ayu, Plecoglossus altivelis. Fish Sci 2001, 67:474-481.
Kawaguchi A, Miya M, Nishida M: Complete mitochondrial DNA
sequence of Aulopus japonicus (Teleostei: Aulopiformes), a
basal Eurypterygii: longer DNA sequences and higher-level
relationships. Ichthyol Res 2001, 48:213-223.

Inoue )G, Miya M, Aoyama ], Ishikawa S, Tsukamoto K, Nishida M:
Complete mitochondrial DNA sequence of the Japanese eel,
Anguilla japonica. Fish Sci 2001, 67:118-125.

Inoue ]G, Miya M, Tsukamoto K, Nishida M: Complete mitochon-
drial DNA sequence of Conger myriaster (Teleostei: Anguilli-
formes): novel gene order for vertebrate mitochondrial
genomes and the phylogenetic implications for anguilliform
families. | Mol Evol 2001, 52:311-320.

Inoue ]G, Miya M, Tsukamoto K, Nishida M: Complete mitochon-
drial DNA sequence of the Japanese anchovy, Engraulis
japonicus. Fish Sci 2001, 67:828-835.

Maddison DR, Maddison WP: MACCLADE: Analysis of Phylogeny
and Character Evolution, version 4.03. Sunderland: Sinauer; 2000.
Loéytynoja A, Milinkovitch MC: A hidden Markov model for pro-
gressive multiple alignment. Bioinformatics 2003, 19:1505-1513.
Simmons MP, Miya M: Efficiently resolving the basal clades of a
phylogenetic tree using Bayesian and parsimony approach: a
case study using mitogenomic data from 100 higher teleost
fishes. Mol Phylogenet Evol 2004, 31:351-362.

Rannala B, Yang Z: Probability distribution of molecular evolu-
tionary trees: a new method of phylogenetic inference. | Mol
Evol 1996, 43:304-31 1.

Yang Z, Rannala B: Bayesian phylogenetic inference using DNA
sequences: a Markov Chain Monte Carlo method. Mol Biol Evol
1997, 14:717-724.

Larget B, Simon DL: Markov Chain Monte Carlo algorithms for
the Bayesian analysis of phylogenetic trees. Mol Biol Evol 1999,
16:750-759.

[http://

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2215680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2215680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2215680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024356
http://www.fishbase.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9263469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9263469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11133198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11133198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11133198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12470944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12470944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12470944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15992750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15992750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15992750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12554458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12554458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8025722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8025722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8025722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16608685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16608685
http://www.ncbi.nlm.nih.gov/genomes/ORGANELLES/7898.html
http://www.ncbi.nlm.nih.gov/genomes/ORGANELLES/7898.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8208299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10525676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10525676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10525676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11476635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11476635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11476635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11343127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11343127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11343127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15019630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15019630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15019630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8703097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8703097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9214744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9214744

BMC Evolutionary Biology 2007, 7:10

52.

53.

54.

55.
56.

57.

58.

59.

Mau B, Newton MA, Larget B: Bayesian phylogenetic inference
via Markov Chain Monte Carlo methods. Biometrics 1999,
55:1-12.

Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian Inference of
PhylogeneticTrees. Bioinformatics 2001, 17:754-755.

Yang Z: Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites: approximate
methods. | Mol Evol 1994, 39:306-314.

Johan Nylander [http://www.abc.se/~nylander/]

Swofford DL: PAUP#*: Phylogenetic Analysis Using Parsimony
(*and Other Methods), version 4.0bl0. 2002 [http://
paup.csit.fsu.edu]. Sunderland: Sinauer

Brandley MC, Schmitz A, Reeder TW: Partitioned Bayesian anal-
yses, partition choice, and the phylogenetic relationships of
scincid lizards. Syst Biol 2005, 54:373-390.

Kass RE, Raftery AE: Bayes factors. | Am Stat Assoc 1995,
90:773-795.

Fryer G, lles TD: The cichlid fishes of the Great Lakes of Africa, their biol-
ogy and evolution London: Oliver & Boyd; 1972.

http://www.biomedcentral.com/1471-2148/7/10

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11318142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11318142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7932792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7932792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7932792
http://www.abc.se/~nylander/
http://paup.csit.fsu.edu
http://paup.csit.fsu.edu
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16012105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16012105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16012105
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Discussion
	Percomorpha phylogeny
	Labroid phylogeny
	Implications of the revised labroid phylogeny
	Evolution of the specialized "labroid" PJA

	Conclusion
	Methods
	Taxon sampling
	DNA extraction, PCR, and sequencing
	Sequences editing and alignment
	Phylogenetic analysis
	Testing an alternative phylogenetic hypothesis

	Authors' contributions
	Acknowledgements
	References

