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Abstract
Background: The past decade has seen a remarkable increase in the number of recognized mouse
lemur species (genus Microcebus). As recently as 1994, only two species of mouse lemur were
recognized according to the rules of zoological nomenclature. That number has now climbed to as
many as fifteen proposed species. Indeed, increases in recognized species diversity have also
characterized other nocturnal primates – galagos, sportive lemurs, and tarsiers. Presumably, the
movement relates more to a previous lack of information than it does to any recent proclivity for
taxonomic splitting. Due to their nocturnal habits, one can hypothesize that mouse lemurs will
show only minimal variation in pelage coloration as such variation should be inconsequential for the
purposes of mate and/or species recognition. Even so, current species descriptions for nocturnal
strepsirrhines place a good deal of emphasis on relatively fine distinctions in pelage coloration.

Results: Here, we report results from a multi-year study of mouse lemur populations from Beza
Mahafaly in southern Madagascar. On the basis of morphological and pelage variation, we initially
hypothesized the presence of up to three species of mouse lemurs occurring sympatrically at this
locality, one of which appeared to be undescribed. Genetic analysis reveals definitively, however,
that all three color morphs belong to a single recognized species, Microcebus griseorufus. Indeed, in
some cases, the three color morphs can be characterized by identical mitochondrial haplotypes.

Conclusion: Given these results, we conclude that investigators should always proceed with
caution when using a single data source to identify novel species. A synthetic approach that
combines morphological, genetic, geographic, and ecological data is most likely to reveal the true
nature of species diversity.

Background
A remarkable amount of primate diversity remains undoc-
umented due to cryptic variation among species. To accu-
rately and thoroughly document this diversity, genetic

and/or behavioral investigations, in addition to morpho-
logical analyses, are necessary. The phenomenon of cryp-
tic diversity is being actively explored, particularly for
nocturnal primates [1-11]. Mouse lemurs (genus Microce-
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bus) can potentially be said to represent a cryptic species
radiation. They are the world's smallest living primates,
with brown pelage and average adult body size ranging
from 30 to 72 grams [12]. Given that they are strictly noc-
turnal, theory [13-15] would predict that mouse lemurs
will emphasize olfactory and auditory communication
signals over visual signals, as has been demonstrated for
other nocturnal primates [1,2], [5,6], [16-18]. An array of
studies conducted on mouse lemurs within the past sev-
eral years appears to confirm this prediction. For example,
exposure to female urine can significantly increase testo-
sterone levels in males, just as exposure to the urine of
dominant males can suppress testosterone production in
other males [19]. Similarly, acoustic studies have revealed
remarkable subtleties in signaling, with two noteworthy
results that have direct implications for potential specia-
tion mechanisms. Acoustic signals in mouse lemurs
appear to evolve extremely rapidly, with the greatest levels
of acoustic separation occurring in the sexual advertise-
ment calls of males [11,20,21]. Thus, it is not surprising
that morphological features might be only subtly variable
in mouse lemurs, making them difficult to distinguish
with human eyes. As with other cryptic species radiations,
empirical recognition of species boundaries will depend
on the reciprocal illumination obtained from a compari-
son of genetic and morphological data. The results of
these analyses will then form working hypotheses of spe-
cies limits, which can then be further tested in the field
(e.g., testing for areas of non-interbreeding sympatry and/
or variations in olfactory and/or acoustic signaling).

In 1972, Martin [22] recognized only two species of
mouse lemur (up from one): Microcebus murinus, a small-
eared, gray form, and M. rufus, a large-eared, reddish-
brown form. This taxonomy was standard until the last
decade of the twentieth century (see, for example, [23]).
In the mid-1990s beginning with the work of Schmid and
Kappeler, two additional species were added to the roster
on the basis of variation in morphometric and coat color
characteristics [24,25]. Then, in a geographically-broad
morphological study that considered cranial, dental, and
postcranial traits, Rasoloarison et al. [12] differentiated
seven species of mouse lemurs from western Madagascar
alone. These species were also described as identifiable by
subtle differences in pelage coloration as well as dental
and other morphological characteristics. Rasoloarison et
al. [12] suggested that, by lumping "red" and "gray" forms
into only two species, earlier researchers had underesti-
mated the species diversity within the genus.

Molecular phylogenetic methods provide an alternative,
powerful tool for examining the relationships and poten-
tial species boundaries of mouse lemurs [9,10], [26,27].
These methods identify species as genetic clades that may
be comprised of individuals even from disparate geo-

graphic locations. This approach also provides the addi-
tional benefit of potentially identifying specimens of
unknown origins, or of elucidating species identity by
examining specimen positions on phylogenetic trees. This
strategy was previously used to classify mouse lemur spec-
imens collected in the Berenty Private Reserve (in south-
eastern Madagascar) from two forest types [10]. The
resulting phylogenetic tree demonstrated that the study
specimens grouped into two mouse lemur species clades,
identifying a single individual as M. murinus and multiple
individuals as M. griseorufus. Thus, two species of mouse
lemur were identified as inhabiting the region of the Ber-
enty Private Reserve. These two species exhibited micro-
habitat separation at Berenty: individuals identified as M.
griseorufus were captured in the spiny forest, while the sin-
gle individual captured in the gallery forest was deter-
mined to be M. murinus. As such, microhabitat separation
of the two species at Berenty seemed evident, and con-
cordant with the observation that M. murinus inhabits a
lusher forest bordering a river at Kirindy, while M. grise-
orufus was known from drier forests at Beza Mahafaly.

We used a similar approach to classify wild-caught mouse
lemur individuals from Beza Mahafaly, a Special Reserve
in southwestern Madagascar composed of two disparately
sized, noncontiguous parcels separated by several kilom-
eters. We captured mouse lemurs at three locations (all
within a radius of about 7 km), including the dry forest at
Ihazoara, but also two locations within the Reserve proper
– a gallery forest (Parcel 1) bordering the Sakamena River,
and a spiny forest (Parcel 2) dominated by succulent veg-
etation, located further from the Sakamena River [28]
(Figure 1). The dry forest at Ihazoara is intermediate in
vegetation characteristics between that of the spiny and
gallery forests, but more similar to the spiny forest.

Previous researchers had inferred the presence of M. muri-
nus at Beza Mahafaly [23,29,30], but no one had actually
studied them in this region until Goodman [31,32] col-
lected osteological specimens from owl pellets outside the
reserve, and found them to contain large numbers of jaws
and postcranial bones of mouse lemurs. Rasoloarison et
al. [12] identified all but one of the jaws as belonging to
M. griseorufus; the outlier appeared to be M. murinus. Addi-
tionally, six mouse lemurs captured by Rasoloarison at
Ihazoara were all identified as M. griseorufus [12].

Rasoazanabary [28] began a long-term program of inten-
sive monitoring of mouse lemurs at Beza Mahafaly in
2003, and individuals captured and released in 2003 for
this behavioral study are the subjects of the molecular
phylogenetic analysis presented herein. Most interesting
was her discovery in 2003 of individuals of differing
pelage coloration. The majority of captured individuals
shared the "typical" M. griseorufus pattern, consisting of a
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Map of the Beza Mahafaly region and sampling locationsFigure 1
Map of the Beza Mahafaly region and sampling locations. P1 and P2 indicate the locations of the two parcels that belong to the 
reserve. The Ihazoara River is a tributary to the Sakamena River, which in turn flows into the Onilahy River to the north. The 
Ihazoara dry forest surrounds the village of Ihazoara. Locations of additional villages within a radius of 7 km from the reserve 
are also shown. For scale, the distance across P1 (east to west) is 1.25 km.
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red-brown tail, shades of gray and brown on the back, a
red-brown stripe of varying intensity along the dorsal
midline, white underside, white stripe between the eyes,
and reddish-brown markings above the eyes, converging
in an apex (the "reversed V") on an otherwise gray cap.
However, six individuals, all captured in the spiny forest,
resembled more strongly the pattern typical of M. murinus
in the region of Kirindy (red-brown tail, gray back lacking
a dorsal midline stripe, cream underside, and no facial
markings or reverse V on the cap). Moreover, two individ-
uals (one in the gallery forest and one in the spiny forest)
had a unique appearance (red-brown tail, red-brown back
lacking a dorsal midline stripe, cream underside, red-
brown face and cap but with a creamy white stripe
between the eyes) (see Figure 2).

Rasoazanabary conducted additional captures and focal
individual follows of mouse lemurs in the three forest
habitats at Beza Mahafaly during the years 2004 and 2005
(for a cumulative total, with 2003, of 14 months). About
17% (i.e., 15) of the individuals captured in 2003 were
recaptured in 2004, 2005, or both. In all, 196 individuals
were captured and marked during the 14-month sampling
period. Of these, 13 (about 7%) showed murinus-like col-
oration, 165 (about 84%) showed typical griseorufus col-
oration, and 18 (about 9%) showed the "all-red"
coloration.

The objective of the present study is to use molecular phy-
logenetic analysis to determine the placement of individ-
uals of different pelage coloration within the larger mouse
lemur phylogeny, and thus to investigate species identity
using genetic evidence. Our a priori hypothesis was that
individuals that displayed a Microcebus murinus-like coat

coloration would fall into the M. murinus clade and M. gri-
seorufus-like individuals into the M. griseorufus clade. We
also hypothesized that the "all-red" individuals would
form a novel clade in the Microcebus tree. In addition to
examining the broader phylogenetic relationships, we
employed molecular techniques to examine the relation-
ships among individuals at the three forests, and thus to
test whether geography has played a significant role in the
generation of intraspecific variation. The genetic and mor-
phological data were tested for structure with respect to
three sampling locations in the Beza Mahafaly region. As
the three sites are ecologically and geographically distinct
(two located within the reserve and one outside, and on
the opposite side of the Sakamena River), we aimed to
determine whether the river and fields separating them, or
the different microhabitats they represent, are potential
barriers to gene flow.

Results
We examined the relationships of seventy specimens from
Beza Mahafaly, in addition to six samples of M. griseorufus
previously obtained from Ihazoara and eleven samples of
M. griseorufus from the Berenty Reserve. From the 70 cyto-
chrome b sequences produced in this study, 44 haplo-
types were found. Included in the analysis were DNA
sequence data of the 70 individuals sampled from Beza
Mahafaly, in addition to thirty-eight published sequences
of Microcebus, representing seven recognized species
(Table 1) and two species of dwarf lemurs (Cheirogaleus
major and Cheirogaleus medius) from the same taxonomic
family, Cheirogaleidae.

Phylogenetic analyses revealed that all Beza Mahafaly
individuals collected for this study were clearly nested
within a Microcebus griseorufus clade, composed of individ-
uals from both the Beza Mahafaly and Berenty regions,
regardless of coat color or sampling location within Beza
Mahafaly (Figure 3). In addition, individuals that dis-
played murinus-like or unique pelage patterns shared a
haplotype with individuals bearing the more common
griseorufus form. The specimens from Berenty formed a
distinct clade nested within the greater M. griseorufus
clade.

We examined the M. griseorufus sequences for geographic
structuring of haplotypes from the two collection sites,
Beza Mahafaly and Berenty. The AMOVA revealed strong
genetic structure separating individuals from Beza Maha-
faly from individuals from Berenty (φst = 0.3552).
MIGRATE analyses consistently yielded the highest popu-
lation size in Parcel 2 within the reserve, the spiny habitat
(0.024); while Parcel 1, the gallery forest, had the smallest
(0.0006; Ihazoara: 0.004). This result is consistent with
the density patterns observed in the field. Migration rate
analyses revealed that most M. griseorufus movement was

Two morphotypes collected at Beza MahafalyFigure 2
Two morphotypes collected at Beza Mahafaly. On the left is 
0659-D2FC (the "all-red" variant), and on the right is 0659-
CE82 (with "typical" M. griseorufus coloration). Both of these 
individuals were found in the gallery forest. Photo by L.R. 
Godfrey.
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Phylogenetic tree of Microcebus derived from cytochrome b sequencesFigure 3
Phylogenetic tree of Microcebus derived from cytochrome b sequences. Asterisks along branches indicate posterior probabili-
ties greaters than 95%. Microcebus sequences generated during the course of this study are in red. Gray arrows are indicative 
of haplotypes from individuals with the all-red variant. Black arrows are indicative of haplotypes from individuals with the muri-
nus-type variant.

Table 1: Genbank accession numbers for sequences used in the molecular analyses

Species Genbank No. Reference

Microcebus griseorufus AF285567–AF285568 9
AY167065–AY167070; AY167072–AY167076 10
DQ979888–DQ979958 de novo

M. murinus AF285557–AF285566 9
AY167071 10
U53572 31

M. berthae AF285540–AF285543 9
M. myoxinus AF285536; AF285538 9
M. ravelobensis AF285529–AF285532 9
M. rufus AF285549; AF285551 9
M. sambiranensis AF285554–AF285556 9
M. tavaratra AF285533–AF285534 9
Cheirogaleus major AY605911 34
C. medius AY605909 34

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285567
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285568
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY167065
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY167070
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY167072
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY167076
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ979888
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ979958
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285557
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285566
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY167071
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U53572
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285540
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285543
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285536
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285538
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285529
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285532
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285549
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285551
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285554
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285556
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285533
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF285534
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY605911
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY605909
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leading into the spiny habitat from the other two popula-
tions, though gene flow was bidirectional among pair-
wise combinations of all three locations.

The haplotype network (Figure 4) visually demonstrates
the distribution of the atypical M. griseorufus morpho-
types. These morphotypes share common cytochrome b
haplotypes with individuals of typical coat coloration.
Also, there are common haplotypes that are shared
between multiple sampling sites. However, haplotypes
that show greater divergence from the common haplo-
types, five or more missing haplotypes connecting two
haplotypes, are more often from the spiny forest (5 occur-
rences) or from Ihazoara (2 occurrences), compared to the
gallery forest (no occurrences).

Chi-square tests of the differences in distributions of
pelage types across the three forests fail to reveal signifi-
cant differences (Table 2, 3, 4); instead, the distributions
are remarkably similar in all three. However, discriminant
function analysis shows significant morphometric differ-
ences between populations in the three forests. Only the
first canonical function (with a Wilks' Lambda of .73 and
a chi-square of 30.22, df = 12) is statistically significant (p
= .003). This function accounts for 83.3% of the variance,
and separates individuals from the gallery forest (with
positive scores) from those in the spiny forest (with nega-
tive scores). There is considerable overlap of scores of
individuals from each forest type, with individuals from
Ihazoara intermediate and most likely to be classified as
coming from one of the other sites. The post hoc classifi-
cation success for all individuals is 55.3%, with 69.8% of
individuals from the spiny forest, 50% of individuals
from the gallery forest, and only 40% of individuals from
Ihazoara correctly classified. The structure matrix, when
considered in conjunction with the centroid scores of
individuals from each of the three forests (Table 5),
reveals that individuals from the spiny forest tend to have
shorter skulls, ears, and bodies than individuals at either
of the two other sites, but especially the gallery forest.
Essentially, individuals from the spiny forest are smaller
in body size than those from other forests. ANOVA con-
firms that these differences are statistically significant
(Table 6), even at a univariate level. The three additional
variables (tail length, bizygomatic breadth, and canine
height) are poorly correlated with scores on this axis, and
two (bizygomatic breadth and canine height) do not vary
significantly by site.

Discussion
The results of molecular phylogenetic analyses of cyto-
chrome b mtDNA sequences fail to support our initial
hypothesis that mouse lemurs collected at Beza Mahafaly
with murinus-like or unique pelage characteristics are
either M. murinus or a novel species. All individuals form

a single clade with individuals previously classified as M.
griseorufus. Therefore, we believe that all seventy individu-
als sequenced should be classified as M. griseorufus. M. gri-
seorufus has significantly diverged from its sister species,
M. murinus, with both species forming distinct clades with
significant posterior probability (>95%). The mouse
lemurs with divergent coat characteristics were included
in the M. griseorufus clade, as they shared identical mtDNA
haplotypes with individuals displaying the more typical
M. griseorufus morphotype. The complex color patterns
are independent of habitat type as confirmed by chi-
square tests (Table 2, 3, 4); they are also uncorrelated with
genetic distance, as suggested by the distribution of hap-
lotypes in the network (Figure 4).

Table 2: Pearson's chi-square tests of pelage differences by 
habitat: dorsal fur (Chi-square = .64, df = 4, p = .96, NS)

Habitat

Dorsal fur color Gallery Ihazoara Spiny Total

Grey 3 3 7 13
Grey-Brown 46 45 74 165
Red 4 5 9 18

Total 53 53 90 196

This is the network of Beza Mahafaly and Berenty cyto-chrome b haplotypesFigure 4
This is the network of Beza Mahafaly and Berenty cyto-
chrome b haplotypes. In this figure each color represents a 
separate habitat type and each circle represents a single hap-
lotype. The number of individuals that share each haplotype 
is drawn in proportion to the size of each circle.

*

 unique red type
murinus-type

red          spiny forest

blue gallery forest

orange Ihazoara Valley
missing haplotype

*

*

*

*
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It is instructive to consider the relative importance of vis-
ual, auditory, and olfactory signals in M. griseorufus social
communication, and how variation in pelage coloration
is likely to be perceived. Like other mouse lemurs, Micro-
cebus griseorufus are nocturnal, solitary foragers with a dis-
persed social system. Encounters among individuals at
Beza Mahafaly are common (indeed, while foraging, two
mouse lemurs may occupy a single tree), but rarely are
individuals in physical contact while active. As in other
mouse lemurs, audition and olfaction are critical to social
signaling. For example, Microcebus murinus has been
shown in captivity to display group-specific vocalization
patterns [21], as have male M. murinus in neighboring
demes during the breeding season [20]. In addition, wild
M. ravelobensis were shown to regulate inter- and intra-
group spatial distributions using olfactory and acoustic
signals [35]. In this species, individuals use different
acoustic signals when sleeping groups disperse at sunset as
opposed to when they gather at sunrise. These acoustic
calls were found to be specific to each social group [35].
Zimmermann et al. [11] have shown that M. murinus can
be distinguished from M. rufus using vocal fingerprinting.
Olfactory and auditory cues have not been studied in
detail in M. griseorufus. Nevertheless, Rasoazanabary has
observed the use of trill vocalizations to attract mates, and
vocalizations can be heard during or just prior to agonistic
encounters. Urine washing is common, and individuals
have strong odors that are detectable even by human
observers. Olfaction and audition are almost certain to be
more important than vision in social encounters.

This is not to imply that vision is unimportant to mouse
lemurs. Reproduction is photoperiod controlled, as is sea-
sonal torpor [36-38]. Indeed, photoperiod appears to
have an effect on life span in mouse lemurs [39]. On a
daily basis, light intensity helps to regulate activity levels
[40]; mouse lemurs do not emerge from their nests to for-
age until light levels are sufficiently low. Facial patterns
(light and dark areas) may contribute to species or indi-
vidual recognition [41]. As in almost all other strepsir-
rhines, mouse lemurs possess a tapetum lucidum to
increase their sensitivity to low light intensity.

However, vision in mouse lemurs is dominated by rods
(photoreceptor cells with high sensitivity to very low lev-
els of illumination, and with a pigment showing maxi-
mum sensitivity to light in the green part of the spectrum)
and is thus largely scotopic. This contrasts with primates
that have photopic vision (dominated by cones, which are
sensitive to varying light wavelengths, depending on pig-
ment type). Cones are not active at low light levels, and
rods have a restricted range of wavelength sensitivity, so
vision may be expected to be achromatic for all strictly-
nocturnal primates [42]. Furthermore, the density ratio of
cones to rods is likely to be low in M. griseorufus. Dkhissi-
Benyahya et al. [43] report a peak rod density of 850,000
rods/mm2 and a peak cone density of 7,500 to 8,000
cones/mm2 in M. murinus. Less than 0.2% of the cone
population is represented by short wavelength-sensitive
(SWS), as opposed to medium to long wavelength-sensi-
tive, cells. Whereas M. murinus do possess a variety of cone
types, their density ratio of cones to rods is very low, and
SWS cones are irregularly distributed [43]. The irregular
distribution and very low number of SWS cones preclude
an important role for color vision, even at dusk or dawn
[44]. In summary, the pelage color variation that is per-
ceptible to humans is likely to be invisible to mouse
lemurs.

Our genetic results demonstrate that coat coloration is not
diagnostic of species differentiation at Beza Mahafaly.
Indeed, pelage color variation may be problematic as an

Table 5: Structure matrix, canonical discriminant function 
analysis of morphometric traits of mouse lemurs in the three 
habitats*

Trait Correlation with Function 1

Skull length .80
Ear length .73
Body length .67
Tail length .45
Canine height .29
Bizygomatic breadth -.09

*Group centroid scores for Function 1: Gallery = .56, Ihazoara = .33, 
Spiny = -.62.

Table 3: Pearson's chi-square tests of pelage differences by 
habitat: reversed V (Chi-square = .001, df = 2, p = 1.00, NS)

Habitat

Presence of reversed "V" Gallery Ihazoara Spiny Total

Absent or indistinct 7 7 12 26
Distinct 46 46 78 170

Total 53 53 90 196

Table 4: Pearson's chi-square tests of pelage differences by 
habitat: dorsal median stripe (Chi-square = .84, df = 2, p = .66, 
NS)

Habitat

Appearance of dorsal stripe Gallery Ihazoara Spiny Total

Absent or indistinct 5 6 13 24
Distinct 48 47 77 172

Total 53 53 90 196
Page 7 of 11
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indicator of species boundaries for nocturnal primates in
general. Why so much intraspecific variation in mouse
lemur pelage coloration exists at Beza Mahafaly is
unknown. In order to further investigate this phenome-
non, we need more systematic data on the degree of coat
color variation in populations of mouse lemurs in differ-
ent geographic regions. We note that at Beza Mahafaly the
three pelage types described here are not always discrete.
Some individuals show combinations that can be consid-
ered intermediate between these types (e.g., gray dorsal
fur with no brown fringe or highlights, but with a some-
what distinct dorsal stripe and reversed V).

With the molecular analysis, we determined that there is
reciprocal gene flow among the three sampling sites
within Beza Mahafaly. The lack of genetic structure and
prevalence of dispersal between the parcels in the reserve
and Ihazoara is noteworthy given our sampling of indi-
viduals on both sides of the Sakamena River, and in hab-
itats separated today by other apparent barriers, such as
cleared fields. Multiple studies have recently implicated
rivers as important barriers to gene flow in lemur species
[27,45,46]. Pastorini and colleagues [46] have deter-
mined that the Tsiribihina and Betsiboka Rivers in west-
ern and northwestern Madagascar, respectively, greatly
hinder gene flow among species in the lemur genera Eule-
mur, Propithecus, Lepilemur, and possibly Microcebus. It is
evident that the Sakamena River fails to do the same for
mouse lemurs at Beza Mahafaly. However, the Betsiboka
and Tsiribihina Rivers are far more formidable year-round
than is the Sakamena and the even-smaller Ihazoara River.
The Sakamena River is a tributary to the Onilahy River (to
the north, more comparable to the Betsiboka or the Tsir-
ibihina Rivers in size), and the Ihazoara is a much nar-
rower tributary feeding into the Sakamena. The Sakamena
and Ihazoara Rivers are dry for eight months every year,
and the water is shallow even during the wettest months.
Floating vegetation (following a cyclone) may occasion-
ally provide pathways for mouse lemurs, allowing them to
cross these narrow rivers, as anecdotal evidence suggests.
Moreover, the distribution of forests in the region of Beza
Mahafaly prior to the arrival of humans in the region over
2000 years ago [46] is not known. Our genetic data con-
firm that dispersal is occurring despite the separation of

forests by potentially inhospitable space, and regardless of
dispersal mechanism. This information is important if we
are to construct and test hypotheses regarding dispersal
mechanisms and determine the connectivity among forest
fragments.

Whatever the mechanisms for geographic dispersal, it is
clear that, at Beza Mahafaly, M. griseorufus is not limited to
spiny-forest habitats, though dispersal patterns may indi-
cate a preference. In contrast to the situation at Berenty
where M. griseorufus has been described to occupy the
spiny forest and M. murinus the gallery forest [10], M. gri-
seorufus at Beza Mahafaly occupy gallery forests, dry for-
ests, and spiny forests. How this species adapts to the very
different microhabitats is the subject of the ongoing
behavioral study at Beza Mahafaly by Rasoazanabary.
Finally, it is apparent that, despite a lack of genetic struc-
ture of populations of mouse lemurs across the microhab-
itats at Beza Mahafaly, individuals from the spiny forest
do differ slightly (but statistically significantly) from indi-
viduals in the gallery forest in such features as body
length, ear length, and skull length. The developmental
basis of this variation will also require further analysis. It
is clear, however, that both habitats play an important
role in the maintenance and possibly the development of
diversity in this species and both should be a priority in
future conservation efforts in this region.

Conclusion
Using a combination of phylogenetics and population
genetic methods, we were able to determine that all
mouse lemur individuals sampled at Beza Mahafaly
belong to the species M. griseorufus, regardless of pelage
characteristics. Three pelage-color variants exist in all
three forests, in roughly similar proportions. This evi-
dence supports the hypothesis that non-visual cues are
paramount in social interactions of individual mouse
lemurs, and that, to the extent that vision is important, it
does not depend on color discrimination. We also deter-
mined that mouse lemurs from ecologically distinct sam-
pling locations display no genetic structuring.

While we are confident in the results produced in this
study, it is limited as only a single mtDNA gene was used

Table 6: Univariate ANOVAs for morphometric trait variation by habitat (Means in mm)

Trait (mm) Gallery Mean (SD) Ihazoara Mean (SD) Spiny Mean (SD) Total Mean (SD) F P value

Skull length 33.3 (.83) 32.6 (1.26) 31.4 (2.55) 32.3 (1.99) 9.37 <.001
Ear length 22.8 (.87) 22.8 (1.30) 21.9 (1.07) 22.4 (1.17) 8.04 <.01
Body length 93.6 (8.00) 88.4 (10.23) 82.7 (15.63) 87.5 (13.02) 7.09 <.01
Tail length 146.4 (8.45) 147.5 (7.33) 142.0 (12.05) 144.9 (10.08) 3.25 <.05
Canine height 1.7 (.13) 1.7 (.15) 1.63 (.17) 1.7 (.15) 1.91 NS
Bizygomatic 20.3 (1.1) 20.1 (.95) 20.8 (.61) 20.4 (6.23) 0.13 NS
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to make inferences. Therefore, we recommend that further
work be performed to confirm the results and conclusions
made in this study, primarily through the inclusion of
nuclear genetic markers.

Methods
Field Methods
Between April 1 and August 15, 2003, 120 Sherman live
traps were set at intervals of 25 m in 7.5-hectare sampling
areas in each of the three forests. Sampling was conducted
for a total of 23 days in each forest (69 days combined). A
total of 89 Microcebus were captured (45 in the spiny for-
est, 21 in the gallery forest, and 23 at Ihazoara). Pieces of
banana were used to lure mouse lemurs into the traps.
Captured individuals were weighed using a Pesola spring
scale and temporarily anesthetized (0.01 ml or less of tel-
azol, depending on body mass). Anesthetized individuals
were measured, marked, and released after full recovery
from the effects of the anesthesia. Each individual was
scored for the presence or absence of a reversed V, the
presence or absence of a dorsal median stripe, the color of
the fur, and the color of the tail. Skull length, bizygomatic
breadth, body length, tail length, ear length and canine
height were recorded for each captured individual. Clips
(ca. 2 mm2) were taken from each ear, and preserved in
70% ethanol.

Laboratory methods
Eighty ear tissue samples were delivered to Yale for molec-
ular analysis; ten of these yielded no DNA or DNA of
insufficient quality for analysis. Each had identifying field
(or microchip) codes, but, to ensure blind analysis of the
DNA, no information regarding location or pelage color-
ation accompanied the samples. Mitochondrial DNA was
extracted using a QIAamp DNA Mini Kit (QIAGEN cat.
no. 51306). The full cytochrome b gene region was ampli-
fied and sequenced for seventy of the sampled individuals
using two pairs of primers L14724/H15261 and L15171/
UMMZ [9]. The PCR protocol was 5:00 min. of 95.0° fol-
lowed by 35 cycles of 95.0° for 0:45 sec., 52.0° for 0:45
sec., 72.0° for 1:00 min., and a final extension of 72.0°
for 5:00 min. PCR products were cleaned with a QIAquick
PCR purification kit (QIAGEN cat. no. 28106). The
cleaned products were cycle sequenced using a big dye-ter-
minator sequencing kit (Applied Biosystems, Foster City,
CA). The sequences were analyzed by capillary electro-
phoresis with an Applied Biosystems Prizm 3100 genetic
analyzer. Cytochrome b sequences were aligned by eye in
Sequencher and exported into MacClade [47] for further
editing.

Molecular Analysis
Phylogenetic analysis of the molecular data was per-
formed using Bayesian methods, implemented in Mr.
Bayes v. 3.1.2 [48] using the model GTR+I+G. The model

of evolution was selected with Modeltest v. 3.06 [49] and
chosen based on the Akaike information criterion [50].
Identical haplotypes were represented only once in the
analyzed phylogenetic dataset. Four Metropolis-coupled
MCMC chains were run for ten million generations with
trees sampled every 1000 generations. Tracer software 1.2
[51] was used to examine stationarity of log posteriors to
estimate a burn, which was discarded.

An AMOVA [52] was performed in Arlequin v. 2.000 [53]
to explore hierarchical patterns of population genetic
structure between M. griseorufus at Beza Mahafaly and Ber-
enty. AMOVA uses the frequencies of haplotypes and the
number of mutations between them to test the signifi-
cance of the variance components associated with various
hierarchical levels of genetic structure (within popula-
tions, among populations within groups, and among
groups) by means of non-parametric permutation meth-
ods [52]. Sampling sites were treated as individual popu-
lations to test for overall genetic subdivision. Uncorrected
pair-wise distances were used to estimate the relative con-
tribution of molecular variance of M. griseorufus at Beza
Mahafaly and Berenty.

The program MIGRATE v.2.1.3 [54,55], was used to
jointly estimate effective population sizes (Θ = Ne*mu)
and asymmetric dispersal rates (M = m/mu) between the
three populations of M. griseorufus found in the Beza
Mahafaly area. Parameters were estimated using the Baye-
sian search strategy [56], using default priors. MIGRATE
runs were replicated to verify consistency, each replicate
consisting of 10 short chains and four long chains that
were heated (1.0, 2.3, 3.6, 9.0) for 10,000,000 steps
excluding 10,000 steps as burn in.

A haplotype network was created using the software pack-
age TCS v. 1.21 [57]. The program collapses DNA
sequences into haplotypes and calculates the frequencies
of haplotypes in the sample. It then calculates an absolute
distance matrix from which it estimates phylogenetic net-
works using a probability of parsimony, until the proba-
bility exceeds 0.95 [58].

Analysis of morphological variation
We used SPSS Version 14 for our analysis of coat and mor-
phometric characteristics. Pearson chi-square was used to
determine the significance of differences in pelage colora-
tion at the three sites. Discriminant function analysis of
morphometric variables (body length, tail length, skull
length, bizygomatic breadth, ear length, and canine
height) was used to determine whether populations at the
gallery forest, spiny forest, and Ihazoara could be distin-
guished from one another on the basis of a set of morpho-
metric variables collected over the entire three-year
period. Only first captures (196 individuals) were entered
Page 9 of 11
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into these analyses, to avoid repeated sampling of the
same individuals. Following Hoaglin and others [59], uni-
variate analyses (ANOVA) were applied in an exploratory
sense to determine the magnitude and direction of site
differences for those variables found (using Discriminant
Function Analysis) to distinguish mouse lemurs at the
three sites.
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