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Abstract
Background: With the increased availability of sequenced genomes there have been several
initiatives to infer evolutionary relationships by whole genome characteristics. One of these studies
suggested good congruence between genome synteny, shared gene content, 16S ribosomal DNA
identity, codon usage and the genome signature in prokaryotes. Here we rigorously test the
phylogenetic signal of the genome signature, which consists of the genome-specific relative
frequencies of dinucleotides, on 334 sequenced prokaryotic genome sequences.

Results: Intrageneric comparisons show that in general the genomic dissimilarity scores are higher
than in intraspecific comparisons, in accordance with the suggested phylogenetic signal of the
genome signature. Exceptions to this trend, (Bartonella spp., Bordetella spp., Salmonella spp. and
Yersinia spp.), which have low average intrageneric genomic dissimilarity scores, suggest that
members of these genera might be considered the same species. On the other hand, high genomic
dissimilarity values for intraspecific analyses suggest that in some cases (e.g.Prochlorococcus marinus,
Pseudomonas fluorescens, Buchnera aphidicola and Rhodopseudomonas palustris) different strains from
the same species may actually represent different species. Comparing 16S rDNA identity with
genomic dissimilarity values corroborates the previously suggested trend in phylogenetic signal,
albeit that the dissimilarity values only provide low resolution.

Conclusion: The genome signature has a distinct phylogenetic signal, independent of individual
genetic marker genes. A reliable phylogenetic clustering cannot be based on dissimilarity values
alone, as bootstrapping is not possible for this parameter. It can however be used to support or
refute a given phylogeny and resulting taxonomy.

Background
With the availability of an ever-increasing number of
whole genome sequences, evolutionary history can be
analysed genetically on a more comprehensive level.

Among microorganisms, phylogenetic relationships have
traditionally been defined by phenotypic characters. With
current comparative genomics, evolutionary distances
may be inferred more thoroughly, independent of varia-
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ble expression profiles or morphological characteristics.
Recently, a number of studies suggested taxonomy should
be based on whole genomic DNA content in order to
more properly reflect evolutionary relationships [1-4].
These studies concur with previous observations by
Coenye and Vandamme, who tested phylogenetic consist-
ency of a number of parameters in the lactic acid bacteria,
including 16S rDNA identity, genome synteny, identity of
several house-keeping genes, codon usage and the
genome signature similarity. They concluded that these
genomic parameters largely agree with each other [5].

The latter parameter, the genome signature, is a composi-
tional parameter reflecting the dinucleotide relative abun-
dance values, which are similar between closely related
species, and dissimilar between non-related species [6-8].
The difference in genome signature between two
sequences is expressed by the genomic dissimilarity (δ*),
which is the average absolute dinucleotide relative abun-
dance difference between two sequences. This parameter
is suitable for intragenomic detection of putative horizon-
tally acquired sequences [7,9], and recently an online tool
was made available to detect compositional dissimilarity
between input sequences and representative whole
genome sequences [10], which has shown for example
that plasmids are more dissimilar in composition com-
pared to their host genomes than previously anticipated
[11], and that genomic islands can be clustered by similar-
ities in dinucleotide composition [12]. Although genome
signature analyses have been used for both intragenomic
comparisons [7,10-12] and for intergenomic analyses
[5,8,13,14], these analyses were predominantly per-
formed on relatively few, or only partial, prokaryotic
genomes. While genome signatures had been analysed
prior to the genomic era [6], intra- and intergenomic com-
parisons based on the genome signature between eukary-
otes have been scarce [15]. However, a recent study on
several eukaryotic genome sequences (i.e. from human,
mouse, rat, fruit fly and nematode) based on short range
correlations in DNA sequences, showed that in most
cases, chromosomes originating from the same species
cluster together [16].

In order to assess the applicability of the genome signa-
ture in phylogenetic analyses in general, we performed a
comprehensive interchromosomal comparison of
prokaryotic genome signatures. Using 334 prokaryotic
genome sequences, we tested the congruence of the
genome signature with the current genus and species
nomenclature, and compared the signal of the genome
signature to the phylogenetic signal of 16S rDNA identity
scores.

Results
Prokaryotic whole genome signature comparisons
We calculated the genomic dissimilarity values (δ*)
between all 334 available prokaryotic genome sequences
available at the time of analysis (May, 2006). We parti-
tioned this large dataset to three smaller subsets to inves-
tigate specific topics (see below, see Additional Files 1, 2,
3, 4): the δ* values between chromosomes from the same
genus (containing 36 bacterial and 4 archaeal genera: 130
different species in total), the δ* values between chromo-
somes from the same species (containing 33 bacterial spe-
cies: 111 different strains in total), and δ* values of
prokaryotes with multiple chromosomes (7 different gen-
era, 16 different species). Genera are defined as organisms
with the same genus name, and species are defined as
organisms with the same genus name and the same spe-
cific designation, with two exceptions: Shigella spp., which
are considered the same species as Escherichia coli [17],
and the Bacillus cereus cluster, consisting of Bacillus anthra-
cis, Bacillus cereus and Bacillus thuringensis, which are also
considered the same species [18,19]. Indeed, for both
these exceptions, intraclade δ* values are very low as men-
tioned previously [11,13].

Intrageneric compositional comparison of whole genomes
Average intrageneric δ* values for 40 different genera con-
sisting of both Archaea and Bacteria (Additional File 1)
are depicted in Figure 1, indicating a large variation in the
genome signature, with an average intrageneric δ* score of
0.046. All chromosomes from different species of the
same genus were compared for these analyses, but
intraspecific comparisons were carried out separately.
Extreme δ* values of intergeneric comparisons were high-
lighted in red (high δ*) and blue (low δ*).

The four genera with very high intrageneric δ* values are
Chlorobium, Helicobacter, Mycoplasma and Treponema.
Although the Chlorobium genome sequences are available,
the sequences are unpublished, and it is therefore unclear
why the genome signature between species of the same
genus would differ so greatly. From the general genomic
attributes at NCBI [20], it is obvious however that the
genomes of Chlorobium chlorochromatii and Chlorobium
tepidum differ substantially in GC% content (44.3% and
56%, respectively), and to a lesser extent in genome size
(2.57 Mbp and 2.15 Mbp, respectively), suggesting a sub-
stantial phylogenetic distance. This however conflicts with
the 16S rDNA sequence identity of 92%.

The reason for the high genomic dissimilarities between
the genomes of Helicobacter hepaticus and the two Helico-
bacter pylori strains are possibly due to substantial differ-
ences in gene complement (possibly due to horizontal
gene transfer) between members of this genus [21]. A
large phylogenetic distance between these species has
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been observed previously [22,23], and whole genome
analyses by Dewhirst and co-workers support a phylogeny
that places H. hepaticus more closely related to Wolinella
succinogenes than to Helicobacter pylori [24]. The latter
study actually supports HGT of 16S sequences, thus
obscuring single locus-based phylogenies for this genus.

The Mycoplasma spp. (including Ureaplasma parvum) and
the Treponema spp. show low intrageneric 16S rDNA
sequence identity scores (between 70–98.3% sequence
identity and 89.1% identity, respectively), which had
already been noted for a subset of the Mycoplasma spp.
genome sequences [8,13]. These two genera also show
large intrageneric phylogenetic distances in a Tree of Life
study based on universally conserved genes [22].

The four genera with very low intrageneric δ* values are
Bartonella (0.0077), Bordetella (0.0042), Salmonella
(0.0023) and Yersinia (0.0025). These values are lower
than the average intraspecific δ* values (see below). All
species that constitute these four genera have nearly iden-
tical 16S rDNA sequences (i.e. show 98.9%, 99.8%,
98.2% and 99.9% intrageneric identity, respectively), thus

corroborating the established close, possibly intraspecific,
evolutionary relationship.

Intraspecific compositional comparisons of whole 
genomes
Although no archaeal genome sequences of the same spe-
cies are currently available, for 33 bacterial species there
are two or more genome sequences available (Additional
File 2), allowing the detection of variation of δ* of
genome sequences from the same species. The average
intraspecific genomic dissimilarity values are depicted in
Figure 2, with an average intraspecific δ* of 0.009. Four
clear outliers are detected with substantially higher δ* val-
ues (red circles in Figure 2), originating from intraspecific
comparisons between the genomes from Rhodopseu-
domonas palustris, Prochlorococcus marinus, Buchnera aphidi-
cola and Pseudomonas fluorescens (intraspecific δ* values of
0.0295, 0.0639, 0.0396 and 0.0822, respectively).

Except for B. aphidicola, for which the intraspecific 16S
rDNA sequence identity is low for members of the same
species (91%), the other 16S rDNA sequence identities are
>96%. However, for the P. marinus genomes, the range of

Intrageneric comparison of the genome signature within 40 prokaryotic generaFigure 1
Intrageneric comparison of the genome signature within 40 prokaryotic genera. Species with high genomic dissimilarity scores 
are in red circles (11: Chlorobium, 20: Helicobacter, 25; Mycoplasma and 36: Treponema) species with low genomic dissimilarity 
scores are in blue circles (5: Bartonella, 12: Bordetella, 31: Salmonella and 34: Yersinia). The average genomic dissimilarity 
between different species of the same genus is 0.046 (red line). The blue line represents the average intraspecific genomic dis-
similarity from figure 2 (δ* = 0.009).
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genomic GC percentages is considerable (30.8–50.7%
GC), and the genome sizes differ substantially (1.66–2.41
Mbp), suggesting that these organisms may not be the
same species, they contain similar 16S rDNA sequences
due to HGT of these loci or that acquisition of large
amounts of anomalous DNA plays an important role in
the genome organization and nucleotide composition.

For both P. fluorescens genomes, a difference in genome
size is observed (>600 Mbp), but the difference in GC per-
centage is relatively small.

Congruence between genomic dissimilarity values and 16S 
rDNA identity values of different bacterial species
It had been suggested previously that various genomic
parameters are congruent in their phylogenetic signal [5].
We compared eight sets of genomic dissimilarity values
with 16S rDNA sequence identity scores between eight
different groups of species; one group containing the B.

cereus cluster, and seven groups of several related species
(the Chlamydia/Chlamydophila clade, the genus Myco-
plasma, the genus Staphylococcus, the E. coli/Shigella/Salmo-
nella clade, the genus Mycobacterium, the genus Ricketsia,
the genus Lactobacillus and the genus Streptococcus; seven
groups in total. see also Additional File 3). An inverse cor-
relation between these two parameters is observed (Fig. 3,
note the differences in scale of the 16S rDNA identity and
δ*), although incongruities are visible (e.g. within the E.
coli/Shigella/Salmonella clade).

Whole genome comparisons of prokaryotic chromosomes 
of species with multiple chromosomes
Sixteen prokaryotic species contain more than one chro-
mosome and the δ* values between the two chromo-
somes of the same strains are illustrated in Figure 4 (for
the species list, see Additional File 4). On average, the δ*
value between two chromosomes from the same species is
0.0156. Four outliers are circled; the two higher outliers

Intraspecific comparisons of genome signature of 33 bacterial speciesFigure 2
Intraspecific comparisons of genome signature of 33 bacterial species. Species with high genomic dissimilarity scores are in red 
circles. The average genomic dissimilarity between genomes of the same species is 0.009 (blue line). The red line depicts the 
average intrageneric genomic dissimilarity from Figure 1 (δ* = 0.046).
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are comparisons between chromosomes 1 and 3 from
Burkholderia spp. 383 and chromosomes 1 and 3 from
Burkholderia xenovorans, indicating a very high genomic
dissimilarity between these chromosomes and thereby
suggesting an exogenous origin for chromosome 3 in
these species (δ* is 0.0289 and 0.0296 for B. spp. 383 and
B. xenovorans, respectively). The two lower outliers are the
two different chromosome I and chromosome II compar-
isons from the two Leptospira interrogans species. The

intragenomic δ* value is 0.0059 for L. interrogans serovar
Copenhageni and 0.0047 for L. interrogans serovar Lai sug-
gesting a longer shared evolutionary history.

Conclusion
Traditionally, the assignment of taxonomical appropriate
names to microbes was based on phenotypic characters,
such as Gram stains or the possession of cell walls. Cur-
rently, with over 350 whole genomes sequenced, there is

Congruence between 16S rDNA sequence identity (y-axis) and δ* (x-axis) within different groups (note the different scales on the axes)Figure 3
Congruence between 16S rDNA sequence identity (y-axis) and δ* (x-axis) within different groups (note the different scales on 
the axes). See Additional File 3 for more information.
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ongoing debate to re-evaluate the prokaryotic species def-
inition [2,25]. One such attempt, considering different
genomic parameters, was performed by Coenye and Van-
damme [5], who compared different phylogenetic
approaches on the lactic acid bacteria. They concluded
that the different approaches agreed well, although these
do not necessarily provide much additional information
about phylogenetic relationships. In our study, we ana-
lysed the overall consistency of the phylogenetic signal of
the genome signature in 334 prokaryotic. We tested the
congruence between the δ* intragenerically, intraspecifi-
cally, and the δ* values with their corresponding 16S
rDNA sequence identity values.

For some species (E. coli/Shigella group, Bacillus cereus
cluster) it was known that they are probably the same spe-
cies, and the low values for δ* corroborate this [11,13].
Comparison of the intrageneric δ* (Fig. 1) and intraspe-
cific δ* (Fig. 2) shows various intrageneric values to be

well in the range of intraspecific values, suggesting that
there are more clusters that may actually constitute one
species. This is the case for the different Bartonella spp.,
Bordetella spp., Salmonella spp. and Yersinia spp., This may
also hold true for M. bovis and M. tuberculosis, and the L.
innocua and L. monocytogenes species. For these six groups,
the 16S rDNA data support the notion of very close phyl-
ogenetic relationships.

In contrast, four extreme intraspecific δ* values are within
the intrageneric range. The different B. aphidicola species
display high genomic dissimilarity values as well as low
16S rDNA sequence identity scores, suggesting these
might actually be different species. This is in agreement
with an estimated divergence time of over 150 million
years [26]. The reason why the different species of R. palus-
tris, P. marinus and P. fluorescens display high δ* values,
while the ribosomal sequences of the individual species
are nearly identical remains unclear, although very long

Intragenomic comparisons of the genome signature of 20 bacterial species (see Additional file 4)Figure 4
Intragenomic comparisons of the genome signature of 20 bacterial species (see Additional File 4). Highlighted are 10 (Burkhol-
deria sp. 383 chromosome 1 vs. 3), 13 (Burkholderia xenovorans LB400 chromosome 1 vs. 3), 21 (Leptospira interrogans serovar 
Copenhageni str. Fiocruz L1–130 chromosome I vs. II) and 22 (Leptospira interrogans serovar Lai str. 56601 chromosome I vs. 
II). The average genomic dissimilarity between chromosomes of the same species is 0.016 (red line).
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branches have been observed between members of these
species in different phylogenetic studies [22,23]. It is of
note that between the different P. marinus genomes
substantial differences in size and GC percentage are
observed.

Generally, an inverse relation between δ* and 16S is
found, but the perceived resolution of this relation seems
low and therefore δ* values alone seem insufficient to
infer reliable phylogenetic relationships. Also, it is not
possible to infer a reliable phylogenetic clustering based
on distance matrices as bootstrapping is not possible.

For some prokaryotic species containing multiple
chromosomes it had been suggested that the secondary
chromosome may have been acquired via horizontal gene
transfer [12,27]. We find that the genomic dissimilarity
between the two primary chromosomes in bacteria is
generally low, but it is higher than the genomic dissimilar-
ity between chromosomes from the same species, sup-
porting the HGT hypothesis. Intragenomic dispersal of
DNA can ameliorate the dissimilarity in genome
signature, obscuring compositional dissimilarities over
time [12]. A consequence of this is that different chromo-
somes found in metagenomic analyses can not readily be
grouped into genomes for prokaryotes, though this is a
minor problem as most prokaryotes have single chromo-
some genomes. We find that each intragenomic compari-
son of the two chromosomes of the different Vibrio
genomes yields a higher δ* value than the average of δ* =
0.009 in intraspecific comparisons (data not shown).
Secondary chromosomes are present in all sequenced
genomes of Vibrio spp., and if they have been present in
each genome since the split of the different Vibrio spp. the
different chromosomes in each genome should have had
ample time to ameliorate towards more similar dinucle-
otide frequencies. The fact that the different chromo-
somes of each Vibrio genome are still dissimilar from each
other in composition may be caused by an instable
chromosome II, which is known to be less well-conserved
between the different Vibrio species than chromosome I
[28].

The precise origin of the genome signature is still
unknown. For the GC percentage it has been suggested
that certain environmental conditions shape the nucle-
otide composition [29]. This has also been found to be
the case for the genome signature [30], although the exact
effect of different conditions on different genome
sequences remains unknown. It is likely that mutational
pressures direct the shape of the genome signature, but
the fact that secondary chromosomes in most cases
remain dissimilar from the primary chromosomes under-
scores our lack of understanding of the factors that shape
the nucleotide composition.

In conclusion, the genome signature is more similar
between closely related species, and increases with larger
phylogenetic distances, but this relation seems inadequate
to infer phylogenetic relationships by itself. Unfortu-
nately, distance matrices based on single values, as is the
case with δ* scores, are not amenable to bootstrapping, so
robust phylogenetic analysis can not be inferred from δ*
values for prokaryotes. This parameter does however have
a strong phylogenetic signal and can therefore be used to
support or contradict a given phylogeny and resulting tax-
onomy. The combination of δ* and 16S rDNA data given
above for Mycobacteria, Listeria, Prochlorococcus and Buchn-
era provide convincing evidence for a re-evaluation of
these taxonomic relationships. Also, if there are no addi-
tional ways to infer relationships (e.g. in the absence of
comparable markers, as with multiple chromosomes in
metagenomic analyses) the genome signature may help to
cluster chromosomes, although the intragenomic δ*
scores can be relatively high in multichromosomal
genomes from prokaryotes.

Methods
Sequences and data analyses
Prokaryotic chromosomal sequences were obtained from
NCBI [20] (Additional Files 1 to 4, August 2005).
Genome signature comparisons were performed using the
online tool Compare_Islands [10,12,22], and all prokary-
ote genome comparisons are available at the
Compare_Islands website [31]. The 16S rDNA sequences
were obtained from the NCBI website [20] and trimmed
after alignment by using the MEGA3 software package
[32]. Identity percentages were calculated using MATGAT
with the BLOSUM50 scoring matrix [33].
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