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Abstract

Background: Condition-dependence is a ubiquitous feature of animal life histories and has
important implications for both natural and sexual selection. Mate choice, for instance, is typically
based on condition-dependent signals. Theory predicts that one reason why condition-dependent
signals may be special is that they allow females to scan for genes that confer high parasite
resistance. Such explanations require a genetic link between immunocompetence and body
condition, but existing evidence is limited to phenotypic associations. It remains unknown,
therefore, whether females selecting males with good body condition simply obtain a healthy mate,
or if they acquire genes for their offspring that confer high immunocompetence.

Results: Here we use a cross-foster experimental design to partition the phenotypic covariance
in indices of body condition and immunocompetence into genetic, maternal and environmental
effects in a passerine bird, the zebra finch Taeniopygia guttata. We show that there is significant
positive additive genetic covariance between an index of body condition and an index of cell-
mediated immune response. In this case, genetic variance in the index of immune response
explained 56% of the additive genetic variance in the index of body condition.

Conclusion: Our results suggest that, in the context of sexual selection, females that assess males
on the basis of condition-dependent signals may gain genes that confer high immunocompetence
for their offspring. More generally, a genetic correlation between indices of body condition and
imuunocompetence supports the hypothesis that parasite resistance may be an important target of
natural selection. Additional work is now required to test whether genetic covariance exists among
other aspects of both condition and immunocompetence.

Background

Body condition is central to animal life histories because
the expression of many traits critical to survival and repro-
ductive success is condition-dependent [1,2]. Condition-
dependence is, therefore, a topic of broad interest in both
natural and sexual selection. One particularly striking
example of the fundamental role of condition-depend-

ence is in the context of mate choice [3-5]. Females often
choose among males on the basis of condition-dependent
signals, which honestly advertise male quality as the
expression of these signals may trade-off with other life-
history traits [6,7]. Many explanations have been put for-
ward to explain the ubiquity of condition-dependent life
histories and signals, with one influential theory predict-
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Genetic correlation between our indices of immune
response and body condition. Each point represents the
average breeding value across a single breeding pair. Filled
and hollow circles show breeding pairs derived from the
Alice Springs and Townsville sites respectively. Breeding val-
ues were estimated as BLUPs from the linear model
described in Equation (l) in the Methods section.

ing that the adaptive significance of condition-dependent
signals may arise from the large number of genes that may
influence variation in condition, thereby offering females
the opportunity to assess a substantial proportion of male
genomes in determining male quality [8]. Under this
hypothesis, selection favours females who based their
mate choice decisions on condition-dependent signals
because such behaviour increases the females' chances of
obtaining good genes for their offspring. This line of rea-
soning can be extended to predict that one class of genes
that may be of particular interest to females are those loci
that contribute to variation in parasite resistance [9], a
major determinant of reproductive success and survival in
many species [10]. The condition-mediated immunocom-
petence-handicap hypothesis (CMIH) [7,11-14], pro-
poses that females base their mate choice decisions on
condition-dependent male signals in order to obtain
genes that confer high immunocompetence for their off-
spring.

A key requirement of the CMIH hypothesis, and other
related life history hypotheses [15-19], is the presence of
positive genetic covariance between body condition and
immune response. The CMIH hypothesis proposes that it
is this genetic covariance that enables a condition-
dependent signal to advertise the quality of the parasite
resistance genes that a male carries [14]. Although there is
abundant evidence for positive phenotypic associations
between body condition and immunocompetence
[12,15,16,18,20-22], phenotypic analyses are insufficient
to validate the CMIH hypothesis because it remains
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unknown whether females selecting males with good
body condition simply obtain a healthy mate, or if they
actually acquire genes for their offspring that confer high
immunocompetence. An additive genetic component has
been established in several experimental systems for both
body condition [[23], but see [24]] and immune response
[[25-29]; but see [30-32]]. There is also evidence of a
genetic correlation between immune function and sexual
signals [33,34], between immune function and life his-
tory traits [35] and between body condition and male sig-
nal [36]. As far as we are aware, however, it has not been
empirically demonstrated that variation in immune
response is mediated by genetic variation in body condi-
tion, a key element of the CMIH hypothesis [14].

The overall aim of this study was to test directly for genetic
covariance between indices of body condition and immu-
nocompetence in a small passerine bird, the zebra finch
Taeniopygia guttata. Zebra finches provide an ideal oppor-
tunity to determine if this critical genetic association exists
for two reasons. First, this species is a model system for the
study of sexual selection, in which female choice is based
on a number of condition-dependent male signals that
include song rate and bill colour [37-40]. Second, there is
phenotypic evidence of condition-dependent expression
of immunocompetence in this species [4,16]. We there-
fore used this system to investigate the genetic basis of
covariation between an index of body condition and an
index of immunocompetence using a cross-fostering
experiment. Here we implement the cross-fostering exper-
imental design of Riska et al. [42] to estimate additive
genetic components of variance. An important advantage
of this method was that it allowed us to partition the
genetic covariance between these traits into sources attrib-
utable to direct additive genetic covariance, additive
maternal genetic covariance, and the covariance between
these sources.

Results

Genotype-environment interaction

The interaction term (I;,) testing for a genotype-environ-
mental interaction for Equation (1) was not significant for
our indices of either immune response (Fy 4, = 0.86; p =
0.63) or body condition (Fy44, = 0.81, p = 0.69). This
showed that chicks from the two sampling sites did not
respond differently to nest environments from the other
population. Similarly, there were no significant differ-
ences between the sites for the phenotypic means of our
indices of either immunocompetence (F, ;4= 0.88, p =
0.35) or body condition (F, ;4= 3.28, p = 0.08), or the
breeding values of broods for either trait (Immunocompe-
tence F, 59 = 1.85, p = 0.18: Body condition F, 3= 3.32, p
= 0.08; Figure 1). As explained in the Methods section, the
marginally non-significant difference between the popu-
lations in our index of body condition is not sufficient to
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Table I: Observed components of variance for ten types of relatives.
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Observed Method and types of relatives used to obtain component Immune Body Covariance
component (y;) response condition

Y covariance between sire and offspring 0.003 0.106 0.019

Y2 covariance between nurse and offspring where the nurse is not the genetic dam 0.002 -0.122 -0.013

Y3 covariance between dam and offspring where the offspring was nursed by an unrelated 0.0l 0.119 0.002
dam

Y4 covariance between dam and offspring, where the dam is also the nurse. 0.006 0.022 0.022

Ys covariance between full sibs raised by different nurses 0.010 0.328 0.025

Ye covariance between unrelated sibs where the offspring were nursed by an unrelated 0.225 0.179 0.066
dam

Y7 covariance between full sibs raised by different nurses 0.002 0.239 -0.002

Y covariance between unrelated sibs raised the same nurse 0.002 0.076 0.012

Yo covariance between unrelated sibs, each nursed by the genetic dam of the other -0.215 0.149 -0.042

Yo variance among full sibs all with the same nurse 0.031 0.609 0.011

Definitions modified from Riska et al. [42]. Further details are in the Methods.

cause a spurious correlation between our indices of body
condition and immunocompetence. As shown in Figure
1, although one population tends to have slightly higher
breeding values for our index of body condition, both
populations span almost the full range of values for both
traits. Site was not, therefore, considered in the subse-
quent genetic models.

Genetic covariance

When we based our analyses on comparisons between
siblings alone, we detected positive genetic covariance
between our indices of immune response and body con-
dition. A plot of the breeding values, based on BLUP
methodology, for our indices of immune response and
body condition visually demonstrates the positive trend
indicating a positive genetic correlation (Fig. 1).

The mixed-model approach detected positive covariances
for observational components of covariance y, and y; for
our indices of both immune response and body condition
(Table 1). These components accounted for the majority
of additive genetic variation in the design matrix (Table
2), which was relatively free of confounding non-additive
and environmental effects. The estimates of additive direct
genetic variance for our indices of immune response and
body condition were 0.034 + + 0.016 (p = 0.036) and
0.149 £ + 0.156 (p = 0.342), respectively. Most impor-
tantly, however, we detected significant positive genetic
covariance (0.053 + + 0.024, p = 0.030) between our indi-
ces of immunocompetence and body condition (Table 3).
The estimate of the genetic correlation (r,) between our
indices of immune response level and body condition was
0.75 + + 0.41 (Table 3), suggesting that approximately
56% of the additive genetic variance in body condition
can be explained by genetic variation in our index of

immune response, which was calculated as square of the
genetic correlation [43]. No other causal components
were significant in any of the analyses.

Discussion

The relative roles of genetic and non-genetic factors in
determining immunocompetence in birds is controver-
sial. Although theoretical models of sexual selection tend
to assume that such traits have a high genetic component,
previous empirical evidence has often proven equivocal.
The results of our cross-fostering experiment support
claims that a part of the variation in at least one aspect of
immune response is caused by genes [25-29]. Since males
therefore differ in genetically-based levels of this aspect of
immunocompetence, females could conceivably target
immunocompetence during mate choice as predicted by
the CMIH hypothesis.

In addition to indicating that immunocompetence is her-
itable in zebra finches, our experiment found substantial
positive genetic covariance between our indices of immu-
nocompetence and body condition. We found that
approximately 56% of genetic variation in our index of
body condition may be explained by genetic variation in
our index of immune response. Since secondary sexual
ornaments are typically condition-dependent in zebra
finches [39,40], females that select males on the basis of
well developed ornaments are likely to gain genes for their
offspring which confer higher levels of immunocompe-
tence. Therefore, our findings are consistent with the
hypothesis that the genes that determine parasite-resist-
ance may be a major target of sexual selection in this spe-
cies.
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Table 2: Design matrix (X) displaying theoretical causal components of observed variances and covariances.

Observed Causal components
component
0 6’50 Cpa0AM O2am O%pmic 0%

Y, 0.5 0 0.25 0 0 0
Y, 0 0 0.75 0.5 0 0
Y; 0.5 0 0.25 0 0 0
Y, 0.5 0 1.25 0.5 0 0
Ys 0.5 0.25 | | | 0
Y, 0.5 0.25 0 | | 0
Y, 0.5 0.25 0.5 0 0 0
Ys 0 0 0.5 | | 0
Yy 0 0 | 0 0 0
Yo 0.5 0.75 0 0 0 |

G0 = additive direct genetic variance, 652 = dominance direct genetic variance, Gapam = direct-maternal additive genetic covariance, Gay? =
additive maternal (or 'indirect’) genetic variance, 62pp.c = dominance maternal genetic variance and common environmental variance (maternal and
cage), and G¢2 = residual environmental variance. Further details are in the Methods.

The significant genetic covariance between our indices of
immunocompetence and condition implies that the same
genes underlie a proportion of the variation in both traits.
However, although females selecting males with well
developed ornaments are likely to gain genes that confer
higher levels of immunocompetence, our genetic analysis
is not sufficient to conclusively demonstrate that there are
some genes that affect our indices of both immunocom-
petence and body condition. It is possible that linkage dis-
equilibrium, generated by selection for both traits, may
also contribute to the genetic covariance we have found
between these two traits. Distinguishing pleiotropy from
linkage disequilibrium in such a species is difficult; one
approach would be the development of a pleiotropic
quantitative trait loci map of both traits, but such tech-
niques are yet to be applied in wild passerine populations.

The magnitude of the genetic correlation between our
indices of immunocompetence and condition is surpris-
ing because theory predicts that such heritable genetic var-
iation should be eroded through selection. What factors
could maintain such variation? One possible explanation
is that a third trait not included in this analysis trades off
with our indices of immunocompetence and condition
[44]. For example, one aspect of growth rate displays a
negative genetic correlation with our index of immuno-
competence (DJG unpublished data), suggesting that a
more complex model of resource allocation than the sim-
pler two-trait system of our indices of immunocompe-
tence and condition might need to be considered to
understand the maintenance of genetic variance in these
traits.

Our results should be interpreted cautiously as this study
suffers from a number of limitations. First, although our

reciprocal cross-fostering design is efficient at detecting
additive genetic effects, it is less powerful in estimating
other quantitative genetic components. Our results indi-
cated that none of the other causal components of covar-
iance that we estimated were found to be significant. On
first inspection, this suggests that non-additive genetic
and environment effects do not play a role in generating
covariance between our indices of immunocompetence
and body condition, but we caution that this interpreta-
tion would be premature. Because the cross-fostering
experimental design and the subsequent analytical
method that we have used are primarily designed to detect
additive genetic components of variance and covariance
[42], we cannot exclude the possibility that environmen-
tal and/or non-additive components do exist and that we
have simply failed to detect to them. This possibility is
highlighted by the covariance estimates in Table 3, many
of which are large in magnitude and are only non-signifi-
cant because of the very large standard errors. Under these
circumstances, no firm conclusions about the absence of
environmental or non-additive covariance between these
two traits can be drawn.

A second limitation of cross-fostering designs that use full
sib cross-fostering is that they can only control for those
aspects of environmental variance that occur after the
cross-foster manipulation itself. In the case of avian stud-
ies, chicks are typically cross-fostered within 48 hours of
hatching. Hence, although such studies can estimate vari-
ation associated with later incubation and parental feed-
ing, they cannot deal with variance in factors such as the
way mothers provision eggs or anything that happens in
first few hours in the nest. There is always a risk, therefore,
that cross-foster studies will inflate the estimate genetic
components because these also include pre-cross-foster
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Table 3: Genetic and non-genetic sources of variance and covariance.
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source of variation

immune response b, + SE

body condition b; + SE

covariance b; + SE

0.149 + 0.156 0.053 + 0.024*
0.386 + 0.526 0.010x0.110
0.142 +0.178 -0.035 £ 0.029
-0.457 + 0.346 0.051 £ 0.055
0.465 + 0.327 -0.018 + 0.049
0.245 + 0.385 -0.023 + 0.080
0.929 + 0.841 0.037 £ 0.159

Opo 0.034 + 0.016*
b0 0.069 + 0.062
Croam -0.044 + 0.026
Oan2 0.079 + 0.046
ppac -0.055 + 0.033
g2 -0.038 + 0.049
op2 0.045 £ 0.101

Gao? = additive direct genetic variance, G2 = dominance direct genetic variance, Gaoam = direct-maternal additive genetic covariance, Gay? =
additive maternal (or 'indirect’) genetic variance, 62, = dominance maternal genetic variance and common environmental variance (maternal and
cage), and Gg? = residual environmental variance. Asterisks denote statistical significance (* p < 0.05)

environmental components. Nevertheless, in the case of
our study such environmental covariance is unlikely to be
solely responsible for the high positive genetic covariance
between our indices of immunocompetence and condi-
tion because the sire-offspring observation component is
large and positive, which is unaffected by this source of
variation.

The third limitation of our study is the lack of information
about the adults used to establish the breeding experi-
ment. Because the adults were caught from wild popula-
tions we do not know whether they were related to one
another, their immunological history, or whether the
parental generation experienced selection, all of which
could effect the pattern of variation among individuals. In
addition, although field parent and laboratory offspring
relationships have been used to estimate genetic compo-
nents of variance, it is not clear how differences between
the lab and field environments would affect the genetic
estimates in a model as complex as the one employed
here.

Finally, our study is also limited by the fact that we have
only used a single index of body condition and a single
index of immunocompetence. Using residual values of
body weight on skeletal size is a widely used index of body
condition in birds, but it is well established that this
method is not without its limitations and dangers [24,45].
Such an index cannot, for instance, differentiate between
different aspects of condition, such as fat deposition and
muscle size, and it has been shown that such an index can
retain an element of body size itself. We nevertheless used
this measure for our genetic tests, firstly, because it the
index of body condition that has been used widely in pre-
vious phenotypic studies and is therefore of particular
interest to avian studies, secondly, because it has repeat-
edly been shown to be under selection in avian popula-
tions [46], and thirdly, because it is not currently possible
to perform multivariate analyses (with body size and tar-
sus length as separate covariates) using the genetic frame-

work employed here. It would nevertheless be interesting
in the future to test for genetic correlations among alterna-
tive measures of body composition, and to perform mul-
tivariate analyses if the statistical techniques are
developed. Similarly, like any other index of immune
response, our single measure of cell-mediate immunity
cannot provide information on all elements of vertebrate
immunocompetence [18,47]. Again, we used this index in
our genetic study because it has been widely employed in
phenotypic tests [15,20,22,30,40], has been shown to be
associated with important components of fitness such as
survival [20,30], and there is even limited evidence that
variation in this measure may be positive associated with
variation humoral immune response [[48], but see [20]].
But this should not obscure the facts that future studies of
other elements of immunity are required to obtain a com-
prehensive understanding of the genetic basis of parasite
resistance, and that multivariate models would help to
tease these apart. Ideally, a full genetic variance-covari-
ance matrix is required for a series of indices of body con-
dition and a series of indices of immunocompetence, but
this is well beyond the scope of the current study.

Conclusion

Our results support a key prediction of the CMIH hypoth-
esis; that there is positive genetic covariance between an
index of body condition and an index of immunocompe-
tence. More generally, although we have primarily been
concerned here with the link between our indices of
immunocompetence and body condition in the context
of the CMIH hypothesis, a genetic link between indices of
condition and immune function would also have implica-
tions outside sexual selection theory. Condition-depend-
ence is a general feature of many aspects of life histories in
many animal species [1,2]. The genetic correlation
between our indices of immunocompetence and body
condition that we have found in zebra finches suggests
that the inter-relationships between many such traits may
also prove to be parasite-mediated [12,19]. The preva-
lence of condition-dependent life histories may therefore
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arise, in part at least, through parasite resistance being a
target of both natural and sexual selection. The ongoing
challenge is to test the generality of these findings, that is
whether there is significant positive genetic covariance
between other indices of body condition and immuno-
competence. More generally, it would be interesting to
know the pattern of genetic covariance between various
measures of condition and a suite of fitness-related traits.

Methods

Populations and experimental design

To sample the genetic variance present in field popula-
tions, we caught eighty zebra finches from the wild and
then conducted a partial cross-fostering experiment
[42,49], under standardised laboratory conditions. Zebra
finches were caught between August 1998 and February
1999 using mist nets at sites near Alice Springs and
Townsville, Australia. Twenty birds of each sex were col-
lected from each site, and transported by plane. For the
breeding experiments, birds were kept outdoors in two
large free-flight breeding aviaries at the University of
Queensland. Each aviary housed twenty pairs of finches,
which were introduced at the same time and allowed to
form pairs naturally. All pairs bred during the course of
this experiment. Ad libitum food and water were provided
during the study period, including fresh green material.
Birds from the two collection sites were housed separately,
but offspring were cross-fostered between aviaries.

A reciprocal partial cross-fostering design was used to
maximise the opportunity to estimate maternal and non-
additive genetic components of variance [42]. For each
reciprocal cross-foster event, the two nests between which
chicks were transferred was referred to as a 'block' of nests.
Broods typically consisted of four offspring, with two off-
spring being transferred between a pair broods. Broods
within a block were matched with respect to hatching date
and clutch size. Chicks were selected randomly for cross-
fostering except for 'runts', which were not cross-fostered
and always died before measurement. The identity of indi-
vidual chicks was monitored by clipping their downy
head-tufts until they were large enough to carry individu-
ally-numbered leg bands. Offspring were cross-fostered
immediately after hatching, and body condition and
immune response were measured 17 days later.

Measurement of traits

The element of immunocompetence that we measured
was experimentally-induced T-lymphocyte cell-mediated
immune response, an acquired component of the avian
immune system|[18]. We induced a cell mediated immune
response through intradermal injection of phytohemag-
glutinin-P [15]. For each bird, 0.1 mg of phytohemagglu-
tinin-P in 0.02 ml of phosphate buffered saline was
intradermally injecting the right wing web, with 0.02 ml
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of phosphate buffered saline being injected into the oppo-
site wing web as a control. The thickness of each wing web
was measured at the injection site both immediately
before and 24 hours after the injections. Twenty four
hours is the standard reaction period in avian studies and
is the point at which the swelling is typically maximum
[15]. Measurements were taken three times to the nearest
0.001 mm using a digital micrometer and 'before' and
‘after' averages were calculated for each wing. We then cal-
culated the swelling for each wing, which was the differ-
ence between the 'before' and 'after' averages. Finally, cell-
mediated immune response was calculated for each indi-
vidual as the difference in swelling between the phytohe-
magglutinin-P injected wing and the control wing.

In this study body condition is defined as, and was meas-
ured as, the residual value from the regression of body
mass on tarsus length [46]. To enhance the clarity of our
writing we refer to this measure throughout this study as
an index of body condition, although the reader should
keep in mind that this index is derived from an estimate
of residual body mass. Body mass was measured to 0.01 g
using a Petit Precision balance (model MK-200 200 g x
0.01 g). Tarsus was measured to the nearest 0.5 mm using
digital callipers. For parental individuals, all measure-
ments were taken immediately before they began a breed-

ing cycle.

Genotype-environment interactions

Because we collected birds from two different sites, we
tested for possible genotype-environment interactions for
our indices of both immune response and body condi-
tion. A two-way factorial ANOVA comprising nest of ori-
gin, nest of rearing and the interaction term for each block
of nests was used [49-51]:

Zigg = W+ P+ M+ Ny, + Ly + ey (1)

where, P; = average effect of the ith cross-fostered block of
nests, M;; = direct effect of the jth (genetic) mother within
the ith block (j = 1 or 2), Ny, = kth (unrelated) nurse within
the ith block (k = 1 or 2), I;3, = M x N interaction within
the ith block, and ey, = residual error for the ith offspring
of the jth mother raised by the kth nurse within the Ith
block of nests.

The I;j, term of Eq. 1 tested for the presence of a genotype-
environment interaction in this experiment as nest of ori-
gin also represented genetic population of origin and nest
of rearing also represented the population of rearing. Sig-
nificance of nest of origin (M;;) and nest of rearing (Ny,)
was tested using the interaction term (I,) as the error,
type III sums of squares for unbalanced designs. In all
genetic models genetic relationships were inferred on the
basis of the male and female providing care at the nest in
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question, as extra-pair paternity in zebra finch colonies is
low (2.4% of chicks) [52].

When using individuals from two different populations
there is also the risk that such populations could differ
with respect to the parameters under study. Specifically, if
the populations differed with respect to both traits then
pooling individuals from the two populations might gen-
erate spurious covariance between the traits. It is impor-
tant to note here that the populations need to differ for
both traits and not just one of them. This is because, if
populations only differ with respect to in one variable,
this would just increase variation along a single axis. To
assess these possibilities we therefore tested for differences
between the source populations in both the phenotypic
means and breeding values of our indices of both
immune response and body condition.

Genetic covariance

We used two related methods to test for a genetic correla-
tion between our indices of immunocompetence and
body condition. To facilitate comparisons with other
studies, we first used the standard method for analysing
cross-foster experiments, which is based on using off-
spring values alone [49]. We used BLUP methodology to
calculate breeding values [49] and plotted these against
each other to visualise the pattern of covariance. However,
analyses based on full-siblings alone may lead to biased
estimates of additive genetic components since pre-foster-
ing maternal effects and dominance genetic variance can-
not be partitioned out from additive genetic effects
[49,53]. The confounding of genetic and environmental
factors may be of particular concern in birds, where the
egg environment may provide a source of direct maternal
effects [20].

To avoid the potential problems associated with genetic
estimates based on comparisons between full-sibs alone,
we used an under-utilised second method based on a
mixed model [42] to test for a genetic correlation. An
important advantage of this type of model is that it allows
both offspring and parental trait values to be used to dis-
tinguish a number of sources of variation, thereby ena-
bling the separation of additive genetic variance from
dominance genetic variance and direct maternal effects
[42,49]. The degree of similarity between ten types of rel-
atives (Table 1) was then used to estimate six genetic and
non-genetic causal components contained in each of
these observational components, which are displayed in
the design matrix X (Table 2).

The observation vector y comprised ten observational
components of variance (y;) that were estimated by the
various methods listed in Table 1. All components were
computed using methodology taken directly from Riska et

http://www.biomedcentral.com/1471-2148/5/61

al. [42], with the exception of y,. The estimation of the
direct-maternal additive genetic covariance which is iso-
lated by observational component 9 has been the source
of some confusion in the literature. Rutledge et al [54] first
proposed G,oam could be estimated using the interaction
term in (1), which more recently was also advocated as an
appropriate way of estimation in Lynch and Walsh
(1998). However, this method of estimation was subse-
quently shown to be incorrect [55,56]. Riska et al [42] out-
lined that component 9 could be estimated in another
two equivalent ways, but we did not find the exact numer-
ical agreement between these two methods suggested by
these authors (unpublished results). We therefore used an
established alternative method for estimating component
9 described by [55,57], which uses the difference between
the covariance between full sibs raised by different nurses,
and the covariance between unrelated sibs raised by the
same nurse. We note that a limitation of the Riska et al
[42] approach is that using the same mean squares for the
estimation of different causal components generates cov-
ariance between the estimates which is not accounted for
in the model as implemented either by Riska et al [42,55]
or here (i.e. the off-diagonal elements of the V matrix are
set to zero, see below). By using the estimation method of
component 9 employed here, this potential problem is
likely to be exacerbated as the estimate of component 9 is
a linear combination of the mean squares used in other
observational components (5 and 6). Nevertheless, com-
ponent 9 as estimated here has an established interpreta-
tion, and facilitated the isolation of the important 6,
causal component.

Variances of the observational components were used as
the diagonal elements of the square matrix V, with oft-
diagonal elements all zero. To obtain variances for each
observational component [49] for components 1-4:

VAR(02) = (VAR(A) VAR(B) + COV(A, B)2) / (N)  (2)

where A and B represented the two kinds of individuals
whose covariance is being estimated and N is the number
of bivariate observations. The variance of components 5-
10 were estimated as weighted sums of the variances of
the appropriate mean squares, where the variance of a
mean square is given by (Ref [49], equ. A1.10c):

VAR(02) = (2MS?) / (N +2) (3)

in which MS represents the mean square of the term of
interest and N is the number of blocks. The causal compo-
nents of variance were estimated as elements of the vector:
b= (XVIX)IX'Vly  (4)

with covariance matrix:
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S = (XVIX)1.  (5)

where the square root of the corresponding diagonal ele-
ment of S was used to estimate the standard error of b.
Phenotypic variance was estimated as the sum of the ele-
ments of b and its corresponding standard error approxi-
mated by the square root of the summed diagonal
elements of S.

Estimation of the genetic correlation between our indices
of body condition and cell-mediated immune response
level required all observational components to be esti-
mated as cross-covariances [58]. Cross-covariances were
estimated as the product of the values of our indices of
body condition and immune response for each individual
and the sums of products partitioned according to the
source of variation (Falconer 1981). The variances of these
cross-covariances (used as the diagonal elements of the
square matrix V) were determined by calculating separate
variances of cross-covariances for (i) our index of body
condition in parents and our index of immune response
in offspring, and (ii) our index of immune response in
parents and our index of body condition in offspring. The
mean was then taken of these two variances of cross-cov-
ariances. The additive genetic correlation (r,) and an esti-
mate of its standard deviation were calculated using
equations 19.2 and 19.4 in Falconer [58], respectively.
The proportion of additive genetic variance in our index
of body condition explained by genetic variation in our
index of immune response was then calculated as the
square of the genetic correlation [43].
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