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Abstract
Background: Although there are now about 200 complete bacterial genomes in GenBank, deep
bacterial phylogeny remains a difficult problem, due to confounding horizontal gene transfers and
other phylogenetic "noise". Previous methods have relied primarily upon biological intuition or
manual curation for choosing genomic sequences unlikely to be horizontally transferred, and have
given inconsistent phylogenies with poor bootstrap confidence.

Results: We describe an algorithm that automatically picks "representative" protein families from
entire genomes for use as phylogenetic characters. A representative protein family is one that,
taken alone, gives an organismal distance matrix in good agreement with a distance matrix
computed from all sufficiently conserved proteins. We then use maximum-likelihood methods to
compute phylogenetic trees from a concatenation of representative sequences. We validate the use
of representative proteins on a number of small phylogenetic questions with accepted answers. We
then use our methodology to compute a robust and well-resolved phylogenetic tree for a diverse
set of sequenced bacteria. The tree agrees closely with a recently published tree computed using
manually curated proteins, and supports two proposed high-level clades: one containing
Actinobacteria, Deinococcus, and Cyanobacteria ("Terrabacteria"), and another containing
Planctomycetes and Chlamydiales.

Conclusion: Representative proteins provide an effective solution to the problem of selecting
phylogenetic characters.

Background
In molecular phylogeny, a great deal of attention has gone
to computational methods for building phylogenetic trees
[1], but much less to methods for selecting phylogenetic
characters. Most sequence-based studies of prokaryotic
and universal phylogeny have used either small-subunit
rRNA genes [2-4] or highly conserved proteins such as
ribosomal proteins, elongation factors, chaperones, and
tRNA synthetases [4-6], arguing that these core sequences
are unlikely to be horizontally transferred and hence

should reflect vertical descent. Another sequence-based
method relies upon the presence/absence of hand-picked
"signature sequences" (conserved insertions/deletions)
[7,8] to infer descent. This method does not specifically
handle horizontal transfers, but can sometimes resolve a
short internal branch that cannot be unambiguously
resolved by a continuous evolutionary model. Early phyl-
ogenetic studies [2,3,8], limited by availability, were
forced to use manually selected characters, but with the
recent proliferation of full bacterial genomes, this
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restriction no longer applies, as all genes and genome data
have now become potential characters.

Whole-genome phylogeny has the potential to discern
vertical descent even in the case of widespread horizontal
transfer. Many recent attempts at whole-genome phylog-
eny have used automatically computed characters other
than sequence, such as gene order [6], dinucleotide fre-
quencies [9], presence/absence of orthologous pairs [10],
and presence/absence of gene families [11,12]. These
non-sequence studies have given bacterial phylogenies
with substantial areas of disagreement, and indeed it has
been found that for deep prokaryotic phylogeny,
sequence generally carries a stronger signal than dinucle-
otide frequencies [9], gene order [13], or number of com-
mon orthologs [6]. Hence there arises a need for a
phylogenetic methodology that combines the power of
sequence-based approaches with the objectivity and com-
pleteness of whole-genome approaches.

Researchers have responded to this need with a number of
approaches that seek a predominant set of "concordant"
[14] genes compatible with the same phylogeny. The
approaches vary in whether they use gene trees or distance
matrices to evaluate the genes, and also in their levels of
automation and completeness. The use of gene trees is
more common than the use of distance matrices. Brochier
et al. [4] start with 57 translational apparatus proteins,
ubiquitous over the set of organisms under study. They
automatically screen these genes to obtain 44 concordant
genes by principal component analysis of vectors of like-
lihoods for 375 test tree topologies; they associate the first
principal component with gene length and the second
with "incongruence". Along similar lines, Zhaxybayeva
and Gogarten [15,16] evaluate genes by probability map-
ping of small trees such as four-taxon "quartets". Battis-
tuzzi et al. [17] manually curated 60 ubiquitous COGs
[18] down to 32 by rejecting all those that gave unstable
gene trees, gene trees with either archaebacteria or eubac-
teria non-monophyletic, or "deep nesting" of a species
from one phylum within another phylum. Daubin et al.
[19] cluster the topologies of 310 computed gene trees in
order to find a concordant set of 121, and then combine
the concordant trees using the "supertree" approach [20-
22], which can accommodate the missing data resulting
from non-ubiquitous genes.

The use of organismal distance matrices to evaluate genes
is less common, but as we argue below, it has a number of
advantages over the use of gene trees. Clarke et al. [14] and
Gophna et al. [23] compute distance matrices from recip-
rocal-best BLAST scores on a large number of genes. They
measure the concordance of genes by correlation with the
median distance matrix. They then use the consensus dis-
tance matrix of the concordant genes [14] or a weighted

combination of the gene distance matrices [23] to com-
pute the tree directly, rather than employing a more prin-
cipled, model-based method such as maximum
likelihood [1,24,25]. Novichkov et al. [26] improve upon
the distance matrices of Clarke et al. by using a linear
measure of evolutionary distance rather than BLAST
scores and by assigning rate parameters to correct for the
differing mutability of genes. They do not, however, go on
to compute phylogenies based on concordant genes.

In this paper, we introduce and validate a fully automatic,
whole-genome methodology based on "representative
sequences". We start by assembling all of the highly con-
served proteins (families of orthologs) within the set of
genomes. We then use these genes to compute a consen-
sus distance matrix by an algorithm similar to that of Nov-
ichkov et al. [26]. We use the consensus distance matrix to
select representative sequences, but not to build the phyl-
ogenetic tree directly. Representative sequences are contig-
uous subsequences – typically 300 residues – from
ubiquitous, conserved proteins, such that each ortholo-
gous family of representative sequences taken alone gives
a distance matrix in close agreement with the consensus
matrix. The phylogenetic tree is then computed using
maximum-likelihood methods on a multiple alignment
of a concatenation of representative sequences. We vali-
date the methodology on a set of small phylogenetic
problems with accepted answers, before going on to com-
pute automatically a phylogeny for all of Bacteria. Our
overall bacterial phylogeny shows striking agreement with
the tree produced by Battistuzzi et al. [17] using genes that
were manually curated for agreement with accepted
clades.

We chose to use distance matrices rather than gene trees
for the evaluation of gene concordance, because trees are
brittle: a small change in sequence can dramatically
change tree probabilities or the topology of the likeliest
tree. (Even in continuous tree-space [27], small changes in
input can force large changes in trees if the sequence data
is not consistent with any one tree.) Moreover, distance
matrices can more easily incorporate missing data: each
sufficiently conserved gene, ubiquitous or not, can con-
tribute to the pairwise distances between the organisms
containing that gene. Combining trees on different sets of
organisms is not as straightforward; indeed supertree
methods typically combine matrix encodings [20-22].
Our method is conservative in its use of non-ubiquitous
genes, including only those well-conserved proteins
appearing in at least three-fourths of the taxa under study,
but even at this level it can typically use more than three
times as many genes as are completely ubiquitous over the
taxa. Finally, anomalous pairwise distances directly locate
likely horizontal gene transfers and other discontinuous
evolutionary events (such as large insertions or deletions,
Page 2 of 17
(page number not for citation purposes)



BMC Evolutionary Biology 2005, 5:34 http://www.biomedcentral.com/1471-2148/5/34
loss of a domain, hidden paralogy, or rapid evolution due
to change of function), and indeed our method rediscov-
ers a number of previously proposed horizontal transfers.

Results
Our computational experiments produced: (1) an evalua-
tion of the methodology of representative proteins, (2)
findings concerning which proteins make the best phylo-
genetic characters, and (3) a fairly complete and well-
resolved phylogeny for sequenced Bacteria.

Methodology
We evaluated our methodology on a test set of 10 deep
phylogeny problems with known answers, comparing a
maximum-likelihood tree-building method using repre-
sentative sequences with the same method using an iden-
tical amount of randomly chosen, highly conserved,
ubiquitous protein sequence. The same data-mining pro-
gram compiled the families of orthologs in each case, but
the randomly chosen proteins were picked without regard
to their "representativeness", and hence are equivalent to
small subsamples from all highly conserved ortholog fam-
ilies. We used small subsamples, because concatenations
of 20 or more highly conserved genes almost invariably
give correct trees for our relatively easy test set problems.
As seen in Table 1 (also see Table 3), representative pro-
teins generally outscore randomly chosen proteins in
number of correct single-gene trees, number of accepted
clades found over all gene trees, and number of correct
trees on concatenations of genes. The consensus gene tree
(that is, consensus over all single-gene trees) made with
representative proteins succeeded (included all accepted

clades) on all problems except 4 and 9, and a consensus
(over bootstraps) concatenated tree succeeded on all
problems except 4. Randomly chosen proteins succeeded
less often. The consensus gene tree made with randomly
chosen proteins failed on problems 1, 2, 7, and 9, and the
consensus concatenated tree failed on problems 1, 2, 7, 9,
and 10. The one problem on which randomly chosen
ubiquitous proteins outscored representative proteins was
problem 4, for which representative proteins often
divided the organisms as ((Buchnera, Rickettsia), Myco-
plasma) (Staphylococcus, (Mycobacterium, Bifidobacte-
rium)), not finding the relatedness of Mycoplasma and
Staphylococcus. As intended, representative proteins
accurately represent the consensus distance matrix, which
includes the contributions of many non-ubiquitous genes
and has large distances to the endocellular organisms
Buchnera and Mycoplasma, whereas the randomly cho-
sen ubiquitous genes underrepresent the genomic dis-
tances to these two organisms and thus do not imply a tree
with such long branches. Altogether the results on the 10
test problems suggest that representative proteins recon-
struct short internal branches more efficiently than do
randomly chosen ubiquitous proteins, but at the cost of
greater susceptibility to long-branch attraction.

Proteins as phylogenetic characters
We find that protein representativeness cannot be deter-
mined a priori, as many favored proteins such as elonga-
tion factors and ribosomal subunits turn out to be poor
representatives for certain sets of genomes. For example,
EF-G is a relatively weak representative for Proteobacteria;
the pairwise distance matrix computed from EF-G alone

Table 1: Validation of our methodology on 10 deep phytogeny problems. Organism abbreviations are shown in Table 3, and the 
accepted clades are shown with parentheses. The column labeled "# Clades" gives the number of accepted clades to be found. The 
column labeled "# Genes" gives the number of genes used. The Trees column gives the number of gene trees that find all the accepted 
clades; results for representative proteins are on the left, and results for randomly picked ubiquitous proteins are on the right. For 
each gene, the most conserved 300-residue sequence was used, and randomly picked proteins were matched to the representative 
proteins in overall conservation level. Consensus gives the number of accepted clades found over all gene trees; an asterisk indicates 
that the consensus tree (computed using CONSENSE from the PHYLIP package [52]) finds all the accepted clades. Concatenation 
gives the number of clades found in 100 bootstraps from a concatenated alignment of all genes; an asterisk here indicates the success 
of the consensus over bootstrap trees. In problem 6 for example, there are 5 accepted clades, 8 single-gene trees, and 100 bootstrap 
trees, so a perfect "Consensus" score would be 40, and a perfect "Concatenation" score would be 500.

Organisms # Clades # Genes Trees Consensus Concatenation

1. (Borr, Trep) (Chlor, Bac) (Campy, Bruc) 3 8 8* 2 24* 12 299 112
2. (Neiss, Rals) (Xyl, Haem) (Rick, Meso) 3 8 5* 3 21* 19 247 207
3. (Clost, Lacto) (Mycob, Bifid) (Campy, Rick) 3 8 6* 4* 18* 18* 294 283
4. (Buch, Rick) (Mycob, Bifid) (Staph, Mycop) 3 8 2 1* 13 15* 235 297
5. (Urea, Mycop) (Strep, Lacto) (Staph, List) 3 8 8* 5* 24* 21* 300 300
6. (Syn, Pro) (Rick, Buch) (Chlor, Bac) (Staph, Strep) (Borr, Trep) 5 8 7* 2* 37* 26* 481 472
7. ((Rick, Bruc) ((Vib, Esch, Haem), Neiss) (Heli, Campy)) (Syn, Pro) (Clost, Staph) 
(Borr, Trep)

8 17 3* 3 129* 108 762 741

8. ((Caul, Meso), Esch) (Chlor, Bac) (Pro, Nos) 4 8 7* 3* 30* 27* 400 398
9. ((Geo, Desulf), (Wol, Campy), (Caul, Rick)) (Borr, Lep) (Chlor, Bac) 6 8 1 2 31* 32 554 512
10. (Chlor, Bac) (Mycop, Strep, Clost) (Mycob, Bifid) 3 8 1* 2* 15* 13 255 245
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has a correlation coefficient of .64 with the 200-protein
consensus distance matrix, whereas the best proteins such
as GroEL have correlation coefficients greater than .90 as
shown in Table 2. Yet EF-G is an acceptable protein for
rooting the bacterial tree or for computing the initial,
overall tree for Figure 1 using a diverse set of 30 bacteria;
for these tasks its correlation coefficients of .77 and .70 are
not much lower than those of the best proteins. Brochier
et al. [4] also found EF-G suspect; it fell outside of their
main cluster, and with further analysis they found proba-
ble horizontal gene transfer (HGT) between β- and γ-Pro-
teobacteria. Ribosomal proteins S1, S14, and L4 are poor
representatives for the diverse set of 30 bacteria, with
anomalously small distances between Deinococcus and
α-Proteobacteria, Actinobacteria and Proteobacteria (also
noted by [28]), and Actinobacteria and Firmicutes, respec-
tively. Yet S1 turns out to be a good representative for Pro-
teobacteria alone; in this case S1 has a correlation

coefficient of .88, whereas for the diverse set the correla-
tion coefficient is only .29. Generally tRNA synthetases are
less representative than elongation factors and ribosomal
subunits.

Methionyl-tRNA synthetase seems to have been horizon-
tally transferred between Cyanobacteria and Firmicutes,
isoleucy1-tRNA synthetase between Actinobacteria and
Rickettsiales, and at least one domain of alanyl-tRNA syn-
thetase between Aquifex and Bacteroidetes/Chlorobi.
Researchers have been somewhat divided about tRNA
synthetases. Brown et al. [5] used them as phylogenetic
characters, but Brochier et al. [4] used them as a gene sam-
ple enriched in HGT. By individually screening protein
families for representativeness for a specific set of organ-
isms, we can use the representative tRNA synthetases and
avoid the anomalous ones; for example we use threonyl-

Table 2: Representative proteins used to compute Figure 2. Class is the COG functional code [18]. Rank is rank in a list of most 
conserved proteins (families of orthologs), from 0 to 199, for the set of genomes under study; thus FtsH (rank 2) is more conserved 
than DNA polymerase I (rank 59). Coeff, S. Dev, and Max are respectively the correlation coefficient, the standard deviation, and the 
maximum elementwise difference between the scaled distance matrix given by this protein and the consensus distance matrix. 
Distances for this set of organisms were approximately 0–150. Each sequence was limited to the most conserved 300-long amino acid 
sequence for the protein.

Gene Class Name COG Rank Coeff S.Dev Max

GidA D glucose-inhibited division protein 0445 23 .92 4.27 11.90
- R GTP-binding protein 0012 43 .94 3.84 12.43

RuvB L Holliday junction DNA helicase 2255 19 .89 4.32 12.51
Pnp J polynucleotide phosphorylase 1185 25 .86 4.94 13.11

PyrG F CTP synthetase 0504 26 .91 4.19 13.95
LepA N GTP-binding elongation factor 0481 15 .92 4.88 14.00
DnaX L DNA polymerase III subunits gamma and tau 2812 86 .90 4.37 14.59

Mfd LK transcription-repair coupling factor 1197 31 .88 4.82 14.94
UvrB L DNA excision nuclease subunit B 0556 12 .93 4.44 16.29
InfB J translation initiation factor IF-2 0532 32 .90 4.59 17.46
Exo L DNA polymerase I 0258 59 .89 4.85 17.60

PolC L DNA polymerase III, alpha chain 0587 61 .77 6.43 17.81
RecA L RecA protein 0468 4 .85 6.22 19.18
GyrA L DNA gyrase subunit A 0188 10 .88 5.60 19.74
HflB 0 cell division protein FtsH 0465 2 .86 5.29 19.89

ClpX O ATP-dependent Clp protease, ClpX 1219 13 .89 5.12 20.10
ThrS J threonyl-tRNA synthetase 0441 33 .77 6.94 20.19
Rho K transcription termination factor rho 1158 3 .87 5.83 20.20

GroL O GroEL, chaperone Hsp60 0459 8 .92 5.90 20.35
ClpB 0 ClpB protein 0542 7 .75 6.23 21.01

- R putative GTP-binding protein 1160 165 .94 7.93 21.07
DnaK 0 dnaK, chaperone Hsp70 0443 5 .81 6.48 21.27
RpSA J 30S ribosomal subunit protein S1 0539 38 .88 8.14 22.48
RpoA K DNA-directed RNA polymerase alpha chain 0202 102 .91 10.93 32.41
TrxB 0 thioredoxin reductase 0492 66 .87 8.67 32.54
UvrC L excinuclease ABC subunit C 0322 133 .93 6.67 32.68
NusA K transcription pausing 0195 106 .83 11.11 39.39
QRI7 O o-sialoglycoprotein endopeptidase 0533 123 .89 7.53 43.68
YidC N 60 kD inner membrane protein 0706 179 .85 13.69 53.24
SecY N subunit of translocase 0201 82 .86 8.00 58.78
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tRNA synthetase (correlation coefficient .77) for the left
half of Figure 1.

Despite the examples just given, representative proteins
do tend to come disproportionately from core functional
categories such as transcription and translation, consist-
ent with the hypothesis [29,30] that HGT is less common

for informational proteins than for metabolic proteins.
Table 2 gives the list of representative proteins used to
compute Figure 2. Several poorly characterized GTPases
(Ffh, Obg, LepA, COG0012, COG1160), rarely used in
phylogeny, repeatedly turned out to be representative [see
Additional file 1]. Table 2 also lists three different meas-
ures of representativeness – agreement with the consensus

A rooted phylogenetic tree of Bacteria computed from representative proteinsFigure 1
A rooted phylogenetic tree of Bacteria computed from representative proteins. As explained in the text, this tree 
was computed first altogether, then with an outgroup of Aeropyrum and Methanopyrus to place the root, and then again in 
overlapping halves using different proteins, with the split at the doubled edge near Chlorobium. The numbers indicate boot-
strap support for clades out of 100 trials; omitted numbers are all 100. The bootstrap support for the root is 44; the second 
choice is shown dashed. The weakest bootstrap support is for the Spirochaetes and Chlamydiales clade; again the second 
choice is shown dashed. The Chloroflexus genome is available only in a draft; we give it a tentative placement, without boot-
strap support or edge lengths, based on about 1200 columns.
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distance matrix – for the representative proteins. One of
these measures, the maximum elementwise difference
between the single-gene and the consensus distance
matrices, is generally quite large; every protein gave some
pairwise distance that differed by at least 10% from the
corresponding consensus distance. This observation
means that very few proteins land near the center of all
pairwise histograms (Figure 6) for a diverse set of bacteria;
most proteins are well away from the mode in at least one
such histogram. All measures of representativeness
improve quite dramatically, however, with decreasing

taxon diversity. The computation of Figure 3 for β- and γ-
proteobacteria used only proteins with correlation coeffi-
cients at least .88, whereas the overall bacterial phylogeny
necessarily used proteins with correlation coefficients as
low as .62.

Bacterial phylogeny
Figures 1, 2, 3, 4, 5 give our phylogenies for Bacteria.
These trees provide further validation of the methodology
in the sense that they correctly identify all accepted clades,
and are fairly robust under bootstrapping and under vary-

An unrooted phylogenetic tree of Proteobacteria and related bacteriaFigure 2
An unrooted phylogenetic tree of Proteobacteria and related bacteria. This tree shows the left half of Figure 1, 
including a number of additional genomes. The numbers associated with edges give bootstrap support as before; the best sup-
ported alternative choices are shown dashed. This tree slightly favors breaking the Spirochaetes/Chlamydiales clade of Figure 1.
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An unrooted phylogenetic tree of β- and γ-ProteobacteriaFigure 3
An unrooted phylogenetic tree of β- and γ-Proteobacteria. The edge labeled 67 is the only edge without bootstrap 
support of 100; the one alternative topology covers the other 33 bootstrap trials. This tree switches the branching order of 
Vibrio and Haemophilus from that shown in Figures 1 and 2. This tree should be more reliable, due to better taxon sampling 
and protein representativeness. For this less diverse set of taxa, many proteins had correlation coefficients greater than .90 
with the consensus distance matrix. Notice that the two species of Vibrio are much more diverged than Escherichia and 
Salmonella.
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ing the choices of representative proteins and species.
These trees were computed by maximum-likelihood
methods on alignments of 5000–8000 columns, concate-
nations of (typically 300-residue) subsequences of the
20–40 most representative proteins for the set of genomes
under study. The same number – or even a greater number
– of columns of randomly chosen ubiquitous proteins
gives worse results, not always finding the monophyly of
Proteobacteria and of γ-Proteobacteria, two well-accepted
clades that are nontrivial to resolve [23]. As explained in
the Methods section, Figure 1 was computed all at once
with a subsample of organisms, and again in two overlap-

ping pieces (which gave compatible trees), each piece
again using 5000–8000 columns. A separate run with the
same subsample of organisms along with two archaea
(Aeropyrum and Methanopyrus) was used to root the tree,
and yet another separate run was used to place Chlo-
roflexus, a partially sequenced genome. Figures 1, 2, 3, 4,
5 are in almost complete agreement with each other, as
were the several different runs used to compute Figure 1,
so our results seem to be robust under different taxon
samples. One exception is Bacteroidetes/Chlorobi; if this
phylum is omitted as in [6] deep branches rearrange, for
example, Actinobacteria/Deinococcus/Cyanobacteria

An unrooted phylogenetic tree of Firmicutes, Actinobacteria, and CyanobacteriaFigure 4
An unrooted phylogenetic tree of Firmicutes, Actinobacteria, and Cyanobacteria. Chlorobium and Bacteroides 
were included here and in Figure 2 in order to orient the trees relative to each other.
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forms a high-level clade with Firmicutes. Figure 1 suggests
that Chlorobium is the organism that has diverged least
from the difficult-to-resolve central area of the tree.

The trees given in Figures 1, 2, 3, 4, 5 show substantial
areas of agreement with those of other researchers [4-
7,17]. Especially striking is the agreement with the
recently published phylogeny by Battistuzzi et al. [17],
computed from about 8000 columns from 32 manually
selected genes. Figure 1 disagrees with the tree of Battis-
tuzzi et al. only at three internal branches with poor boot-

strap support in both studies: the root (they use the
dashed edge), the edge marked 81 (they join
Actinobacteria/Deinococcus/Cyanobacteria with
Firmicutes), and the edge marked 85 between the
branches to Haemophilus and Vibrio (they switch the
order as in our Figures 2 and 3).

Our study supports a basal position for Aquifex as in
[4,6,17], rather than placing it near Bacteroidetes/Chlo-
robi [7,8] or Proteobacteria [31]. We place Bacteroidetes/
Chlorobi as a bridge between Gram-positive bacteria and

An unrooted phylogenetic tree of Firmicutes and ActinobacteriaFigure 5
An unrooted phylogenetic tree of Firmicutes and Actinobacteria. This tree includes the reduced genomes of Myco-
plasma and Ureaplasma. We found that if these genomes were included in larger phylogenies, such as those in Figures 1 and 4, 
we obtained unreliable results with poor bootstrap support.
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Proteobacteria as in [17] and in the rRNA tree of Brochier
et al. [4]. We form a clade containing Actinobacteria, Dei-
nococcus, and Cyanobacteria ("Terrabacteria" [17]) as in
[4-6,17], but (just barely) reject a higher-level clade [6,17]
combining Actinobacteria/Deinococcus/Cyanobacteria

with Firmicutes. We place Planctomycetes (Pirellula) with
Chlamydiales as in [32]. We find that Spirochaetes,
Chlamydiales (plus Pirellula), and ε-Proteobacteria form
a close trio, with exact branching order hard to resolve,
due to closely spaced branching events and/or numerous

Histograms of evolutionary distancesFigure 6
Histograms of evolutionary distances. Plotted are the evolutionary distances, between E. coli and three other bacteria, 
Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. Each distance D(i, j, k), described in the Meth-
ods section, is given by a pairwise alignment of amino acid sequences of a given length (typically 300 residues), the most con-
served subsequences for a family of orthologous proteins. We can interpret distances as times, with greater time towards the 
left. All three histograms are roughly bell-shaped but with rather high variances, which suggests that reliable phylogenetic infer-
ence requires either a great many sequences or representative sequences that sit near the center in all pairwise histograms. 
The peaks at 100+ indicate missing orthologs. There are several apparent horizontal transfers (right-side outliers) in S.pneumo-
niae and N.meningitidis. Even discounting the peaks at 100+, the left-side outliers (rapid evolution, large insertions or deletions, 
missing domains, hidden paralogs, and horizontal transfers from more distant organisms) outnumber right-side outliers; this 
pattern holds true even for very distant pairs such as S.pneumoniae and E.coli.

0

20

40

60

80

100

100+ 90 80 70 60 50 40 30 20

N
um

be
r 

of
 S

eq
ue

nc
es

Evolutionary Distances

S.pneumoniae
N.meningitidis

H.influenzae
Page 10 of 17
(page number not for citation purposes)



BMC Evolutionary Biology 2005, 5:34 http://www.biomedcentral.com/1471-2148/5/34
horizontal transfers. The bootstrap values at the branches
in this trio stand out as weak in our generally well-
resolved tree. We also consider the root to be relatively
weak, not only because of its bootstrap value but also
because it appears next to two thermophilic eubacteria
showing the most HGT with Archaea. Our program rejects
obvious cases of HGT as non-representative, but it cannot
screen out subtle ancient transfers or genome-wide biases
in amino acid composition. We reject grouping δ- and ε-
Proteobacteria into a clade as in GenBank's taxonomy,
because such a grouping had zero support out of 100 tri-
als. We place Buchnera/Wigglesworthia farther than Hae-
mophilus, Vibrio, and Shewanella from E. coli, in
agreement with [17], but in disagreement with a recent
phylogeny of γ-Proteobacteria [33] and two more focused
studies [34,35]. Our placement of Buchnera/Wiggleswor-
thia, however, may be an artifact related to long-branch
attraction as in problem 4 of Table 1, so the true position
of these reduced genomes may indeed be with
enterobacteria.

Our tree supports the history of photosynthetic organisms
determined by signature sequences [8]; moreover it places
Chloroflexus, Chlorobium, and Cyanobacteria in close
proximity. Even so, our tree implies either HGT or a com-
mon ancestor with both RC-1 and RC-2 types of reaction
centers [8,36,37]. One explanation of the paraphyly of
RC-1 and RC-2 would be horizontal transfer from Chlo-
roflexus/Cyanobacteria to Proteobacteria, and indeed our
program flags protochlorophyllide reductase, both ChlB
and ChlN subunits, as anomalously close between Cyano-
bacteria and photosynthetic proteobacteria. Our program
does not, however, find an unusually large amount of
HGT among photosynthetic bacteria.

Discussion
Any attempt to screen proteins for anomalous evolution
inevitably leads to questions concerning horizontal gene
transfer. The rate of HGT is notoriously difficult to esti-
mate [38,39]. One study [40] indirectly estimates that
about 30% of genes have been subject to HGT within Bac-
teria, whereas a more direct analysis finds evidence for
HGT in about 50% of ubiquitous genes over all prokaryo-
tes [17]. A recent study [26] finds that about 30% of sin-
gle-ortholog COGs deviated significantly from "clock-like
evolution" over smaller taxa, such as γ-Proteobacteria,
with about half of these deviations due to HGT and half
due to other anomalies. In what is perhaps the most
detailed study to date, Lerat et al. [33] found only two
strong examples of horizontal transfers among 205 genes
within γ-Proteobacteria.

We did not derive estimates of the rate of HGT from our
experiments; however, our finding that representativeness
improves dramatically with decreasing taxon diversity

suggests that any study relying on a set of bacterial
genomes from a single phylum, as in the recent work on
γ-Proteobacteria [26,33], is likely to underestimate the
rate of HGT. Our finding (Figure 6) that unusually large
pairwise evolutionary distances are much more common
than unusually small distances confirms [26] that many
proteins deviate from clock-like evolution due to discon-
tinuous evolutionary events besides HGT.

In a recent study, Raymond et al. [41] concluded that HGT
has obscured the history of photosynthetic organisms on
the basis of widespread disagreement among 188 gene
trees relating five such organisms: Synechocystis, Chlo-
roflexus, Chlorobium, Rhodobacter, and Heliobacterium
(close to Clostridium). We think, however, that the phyl-
ogeny of these five diverse and sparsely sampled [42]
bacteria is simply too hard a problem for single gene
sequences to resolve. We found that 100 bootstraps from
single genes also gave widespread disagreement among
resulting trees. An important point is that the number of
alignment sites (columns) required to build a robust tree
depends not on the number of organisms but rather on
the length of the shortest internal tree edge. Daubin et al.
[43] recently made this same point, and further argued
that HGT has been overused as an explanation for the dif-
ficulty of bacterial phylogeny. Horizontal transfer, how-
ever, at the rate of one core gene replaced – "xenologous
displacement" [26] – in each genome per 100 million
years would be sufficient to pose an obstacle to deep bac-
terial phylogeny, yet remain undetected by the technique
of Daubin et al., which looked for transfers into exactly
one of a closely related pair (probably less than 100 mil-
lion years since divergence) such as E. coli and Salmonella
typhimurium.

Conclusion
Ultimately prokaryotic phylogeny faces many obstacles
beyond horizontal transfer. Even in eukaryotes, where
HGT is extremely rare, Rokas et al. [44] found that con-
catenations of a large number of genes gave more consist-
ent trees and better bootstrap support than single genes
and concatenations of fewer than 20 genes. Representa-
tive proteins are clock-like proteins, ubiquitous over the
set of genomes under study, selected with reference to a
distance matrix computed by robust statistical methods
from hundreds of well-conserved, but not necessarily
ubiquitous, genes. Concatenations of representative
proteins give results consistent with much larger concate-
nations of randomly selected proteins for phylogenetic
problems with known answers, so there is reason to
believe that representative proteins can also provide the
statistical leverage necessary to shed light on deep unre-
solved branches that remain controversial even with the
use of all ubiquitous genes. The method of representative
proteins, however, like all phylogenetic methods, has
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strengths and weaknesses. By incorporating information
from many faster-evolving, non-ubiquitous genes, the
method may be more susceptible to long-branch attrac-
tion and convergent evolution than reliance on ubiqui-
tous genes.

In our view, genes have rich and varied evolutionary his-
tories, contingent upon selective pressures and random
events at several different levels. Hence genes are likely to
show continuous variation in quality as phylogenetic
characters, rather than falling into two universal
categories, bad and good, "subject to horizontal transfer"
and "conserved core" [4,19]. There may well be genes
whose entire evolutionary histories are smooth and regu-
lar, but there are surely not enough of them to resolve all
phylogenetic questions, and we will be forced to use
other, locally reliable genes to resolve certain parts of the
tree of life. Hence we believe that the tools we developed
for mining and ranking potential characters fill an
important niche in the evolving methodology of phyloge-
netic inference.

Methods
We used the publicly available genomes from GenBank
[45] and the Joint Genome Institute [46]. We relied on the
annotations to identify protein-coding genes, but not to
identify orthologous sequences. All the software devel-
oped for this project is available from the authors upon
request.

Orthologous sequences
We used our own data-mining program (manuscript in
submission), similar to an all-against-all BLAST search
[47], to find orthologous sequences and rank them by
degree of conservation. Given a set of genomes and a
sequence length, say 300 amino acid residues, this pro-
gram returns a ranked list of the 200 most conserved
proteins at that length, along with pointers into the
genomes for the locations of the sequences. If there are
not 200 well-conserved orthologous families within the
set of genomes – for example if the set includes a mix of
eubacteria and archaea – then the program returns only as
many families as are deemed to be obvious homology
(approximately 30% pairwise identity). The choice of 200
is somewhat arbitrary, but seemed to be close to the max-
imum for genome sets containing more than one bacterial
phylum, without incurring much misalignment or muta-
tional saturation. The program is not designed to find
remote homology, and existing tools such as PSI-BLAST
[48] are in fact better for this task. We ran the program for
several different sequence lengths from 60 to 300, and
included each representative protein only once, at the
maximum length for which it was representative.

We could have used existing tools such as BLAST or exist-
ing databases such as COGs for ortholog assembly, but
our own program offered several advantages. First, it ranks
ortholog families by conservation level, measured by the
quartile log odds similarity over all pairs, that is, the sim-
ilarity score greater than 1/4 and smaller than 3/4 of the
pairwise similarities. (Thus if a gene is missing from more
than 1/4 of the genomes under study, it has a conserva-
tion level near zero.) The program limits attention to
sequences of fixed length, such as 300 residues, in order to
compare conservation levels fairly. Then by examining
ortholog families in order of decreasing conservation
level, the program screens out families that are not suffi-
ciently conserved. Second, it is much faster than BLAST, so
that we could perform ortholog assembly separately for
each set of genomes, thereby finding proteins conserved
within the taxa under study, but not conserved more
generally. Third, because it finds ortholog families using
all pairwise alignments of candidate orthologs, rather
than by a reciprocal or circular BLAST search, it also min-
imizes the problem of hidden paralogy [49]. We rarely
observed paralogs (as identified by GenBank annota-
tions) when the sequence length was greater than 100 res-
idues. Moreover, selection of representative proteins
should filter out remaining hidden paralogy that could
mislead the tree-building program.

Representative sequences
The next step condenses the large amount of information
in the conserved sequences to a matrix {D(i, j)} of pair-
wise evolutionary distances. The step also retains a matrix
{D(i, j, k)} for each protein k, that is, the pairwise evolu-
tionary distances given by the k-th set of orthologous
sequences. The amount of agreement between {D(i, j, k)}
and {D(i, j)} determines whether protein k is representa-
tive. We start by computing, for each pair of organisms
and each protein, a pairwise alignment and a log odds
score (Smith-Waterman algorithm using the BLOSUM50
substitution matrix with default gap costs). This gives a
three-dimensional array of log odds similarity scores S(i,
j, k), where i and j index the organisms and k indexes the
proteins. There are many alternative choices of similarity
scores, simpler scores such as percent identity and more
complicated scores involving multiple BLOSUM matrices;
the alternatives we tried gave nearly identical choices of
representative proteins. We assume that each protein has
its own "clock" as in Yang's proportional model [50], so
that in any given time period, the log odds of a given
amount of evolution for protein k is a fixed multiple of the
log odds of the same amount of evolution for protein k'.
We compute the multiplier Mk for protein k with an itera-
tive procedure. We first detect whether an organism i is
missing protein k; for such an i and k, score S(i, j, k) is very
low for all j. We discard these S(i, j, k) scores altogether.
Then starting with Mk = 1 for all k, we alternate the follow-
Page 12 of 17
(page number not for citation purposes)



BMC Evolutionary Biology 2005, 5:34 http://www.biomedcentral.com/1471-2148/5/34
ing steps. Convergence (to three decimal places) resulted
after only three iterations.

1. For each i and j, set S(i, j) ← trimmed mean MkS(i, j, k).
For each i and j, we drop the top and bottom 20% of the
MkS(i, j, k) values and compute the mean of the middle
60%. We chose this trimmed mean after estimating the
size of distribution tails (anomalous distances) in histo-
grams such as those shown in Figure 6.

2. For each k, set Mk ← median S(i, j) / S(i, j, k). Then nor-
malize Mk ← Mk·c, where c = m / ∑kMk and m is the
number of proteins, so that the Mk's average 1.0.

Step 1 forms a consensus over proteins and step 2 forms a
consensus over organism pairs. We used robust statistics
(trimmed means and medians) instead of ordinary means
due to the many outliers. Multipliers typically varied from
about 0.5 for the most conserved protein to about 1.6 for
the 200-th most conserved protein. Novichkov et al. [26]
independently developed a similar procedure; however,
they used the median rather than trimmed mean in Step 1
and simply ran the two steps once each, without iteration.
Because the consensus similarities S(i, j) improve with
estimates of the multipliers Mk, iteration gives better
results, as we discuss below.

We convert the scaled similarity scores Mk·S(i, j, k) to evo-
lutionary distances D(i, j, k) = C - log (Mk·S(i, j, k)), where
C is a constant chosen so that all the D(i, j, k) are positive.
In the case that organism i or j was identified as missing
protein k, we set D(i, j, k) = ∞. Figure 6 shows histograms
of D(i, j, k) values for three different pairs of organisms;
the distances for missing proteins appear at 100+.

We set the consensus distance D(i, j) between organisms i
and j to be the trimmed mean (again using the middle
60%) of the finite (not from missing proteins) D(i, j, k)
values. We tested how well distance matrices conformed
to trees by running the Fitch-Margoliash algorithm [1,51]
(program FITCH in the PHYLIP package [52]). For exam-
ple, the Fitch-Margoliash tree [see Figure S1 in Additional
file 1] gives 0.199 relative squared errror, that is, 0.199 =
∑i, j (T(i, j) - D(i, j))2/D(i, j)2, where T(i, j) is the pairwise
distance given by the tree, and gives 1.51% average
percent standard deviation (APSD) [51,52], a measure of
the typical error of T(i, j) relative to D(i, j). For compari-
son, we tested the median procedure of Novichkov et al.
by computing consensus similarities with SN(i, j) =
median S(i, j, k) and consensus distances with DN(i, j) = C
- log SN(i, j). On 8 out of the 9 distance matrices used in
our study, {D(i, j)} conformed to tree distances (com-
puted with FITCH) more closely than did {DN(i, j)}, with
APSDs ranging from 0.63 to 3.67 for {D(i, j)} and from
0.92 to 4.26 for {DN(i, j)}. For the organisms in Figure S1

the FITCH tree produced from {DN(i, j)} broke several
accepted clades and achieved a relatively poor APSD of
4.24%. The one case on which {DN(i, j)} outperformed
{D(i, j)} was the taxon sample that included the partially
sequenced genome Chloroflexus.

The distances {D(i, j, k)} given by a protein k can be
regarded as a vector with N = n(n - 1)/2 entries, where n is
the number of organisms. We computed three different
measures of how well {D(i, j, k)} represents the consensus
matrix {D(i, j)}. The three measures are: (1) correlation
coefficient of {D(i, j, k)} with {D(i, j)}; (2) standard devi-

ation, that is, ; and (3) max

distance, that is, maxi, j |D(i, j, k) - D(i, j)|. We chose the
top-ranking proteins by max distance, enough proteins to
give approximately 10,000 columns; we marked the worst
20% of proteins by each of measures (1) and (2), and
dropped all marked proteins, thereby obtaining 6000–
8000 columns. Thus a protein had to be good on all three
measures to be considered representative; in particular, a
protein had to be ubiquitous over the organisms under
study. For this reason, we initially left out organisms with
very reduced genomes, such as Mycoplasma and Buchn-
era; these organisms are best added to the tree (Figures 3
and 5) later using representative proteins chosen for a
smaller range of taxa.

Multiple alignment and tree building
We used CLUSTAL W [53] to compute a multiple align-
ment for each set of orthologs. We removed columns of
possibly incorrect alignment using a method recom-
mended by Sidow (personal communication). We first
removed all columns containing a gap character -, and
then removed columns to the left and right of a gap col-
umn until reaching a column of chemical agreement. A
column of chemical agreement is one in which all the
amino acids in the column are from a single group, where
the groups are acidic residues {D, E}, aromatic residues
{F, W, Y}, basic residues {H, K, R}, cysteine {C}, nonpo-
lar residues {A, G, I, L, P, V}, and polar residues {M, N, Q,
S, T}. We also removed blocks of more than eight consec-
utive columns in which no column was one of chemical
agreement; even if such a highly variable block is a correct
alignment (one-for-one amino acid substitution over evo-
lutionary time), it may have too many superimposed
mutations to be helpful for phylogeny. Finally we
concatenated all the cleaned alignment files, obtaining a
multiple alignment of about 5000–7000 columns.

We used SEMPHY Version 0.9 to compute phylogenetic
trees [54]. SEMPHY is a relatively fast EM (expectation
maximization) program for ML (maximum likelihood)
phylogeny, which assumes a Markov model of evolution.
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Table 3: Bacterial genomes used in this paper. All phyla in GenBank as of December 2004 are represented. Bold letters give 
abbreviations used in Table 1.

Specific Genome Taxonomy (Phylum; Class)

Corynebacterium glutamicum Actinobacteria;Actinobacteria
Mycobacterium tuberculosis H37Rv Actinobacteria;Actinobacteria
Bifidobacterium longum Actinobacteria;Actinobacteria
Streptomyces avermitilis Actinobacteria;Actinobacteria
Aquifex aeolicus Aquificae;Aquificae
Bacteroides thetaiotaomicron VPI-5482 Bacteroidetes/Chlorobi;Bacteroidetes
Chlorobium tepidum TLS Bacteroidetes/Chlorobi;Chlorobi
Porphyromonas gingivalis W83 Bacteroidetes/Chlorobi;Chlorobi
Chlamydia trachomatis Chlamydiae/Verrucomicrobia;Chlamydiae
Chlamydophila pneumoniae AR39 Chlamydiae/Verrucomicrobia;Chlamydiae
Chloroflexus aurantiacus Chloroflexi;Chloroflexi
Gloeobacter violaceus Cyanobacteria;Chroococcales
Synechococcus sp WH8102 Cyanobacteria;Chroococcales
Synechocystis PCC6803 Cyanobacteria;Chroococcales
Nostoc sp Cyanobacteria;Nostocales
Prochlorococcus marinus MIT9313 Cyanobacteria;Prochlorophytes
Deinococcus radiodurans Deinococcus-Thermus;Deinococci
Bacillus subtilis Firmicutes;Bacilli
Oceanobacillus iheyensis Firmicutes;Bacilli
Listeria monocytogenes Firmicutes;Bacilli
Staphylococcus aureus subsp. aureus N315 Firmicutes;Bacilli
Lactococcus lactis Firmicutes;Bacilli
Streptococcus pneumoniae R6 Firmicutes;Bacilli
Clostridium tetani E88 Firmicutes;Clostridia
Thermoanaerobacter tengcongensis Firmicutes;Clostridia
Mycoplasma Firmicutes;Mollicutes
Ureaplasma Firmicutes;Mollicutes
Fusobacterium nucleatum Fusobacteria;Fusobacteria
Pirellula sp Planctomycetes;Planctomycetacia
Caulobacter crescentus Proteobacteria;Alphaproteobacteria
Rhodopseudomonas palustris Proteobacteria;Alphaproteobacteria
Brucella melitensis Proteobacteria;Alphaproteobacteria
Bradyrhizobium japonicum Proteobacteria;Alphaproteobacteria
Mesorhizobium loti Proteobacteria;Alphaproteobacteria
Rickettsia conorii Proteobacteria;Alphaproteobacteria
Ralstonia solanacearum Proteobacteria;Betaproteobacteria
Neisseria meningitidis Z2491 Proteobacteria;Betaproteobacteria
Chromobacterium violaceum Proteobacteria;Betaproteobacteria
Bordetella pertussis Proteobacteria;Betaproteobacteria
Nitrosomonas europaea Proteobacteria;Betaproteobacteria
Coxiella burnetii Proteobacteria;Gammaproteobacteria
Escherichia coli K12 Proteobacteria;Gammaproteobacteria
Haemophilus influenzae Proteobacteria;Gammaproteobacteria
Pseudomonas aeruginosa Proteobacteria;Gammaproteobacteria
Shigella flexneri 2a Proteobacteria;Gammaproteobacteria
Shewanella oneidensis Proteobacteria;Gammaproteobacteria
Vibrio cholerae Proteobacteria;Gammaproteobacteria
Xanthomonas campestris Proteobacteria;Gammaproteobacteria
Xylella fastidiosa Proteobacteria;Gammaproteobacteria
Desulfovibrio desulfuricans Proteobacteria;delta/epsilon subdivisions
Geobacter sulfurreducens Proteobacteria;delta/epsilon subdivisions
Campylobacter jejuni Proteobacteria;delta/epsilon subdivisions
Helicobacter pylori J99 Proteobacteria;delta/epsilon subdivisions
Wolinella succinogenes Proteobacteria;delta/epsilon subdivisions
Borrelia burgdorferi Spirochaetes;Spirochaetes
Leptospira interrogans Spirochaetes;Spirochaetes
Treponema pallidum Spirochaetes;Spirochaetes
Thermotoga maritima Thermotogae;Thermotogae
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We used the JTT model [55], which is SEMPHY's default.
The newer SEMPHY Version 1.0 models mutation rate
variation among columns with a discrete gamma distribu-
tion, but we found only insignificant differences in the
resulting ML trees, so we preferred the simpler, homoge-
neous-rate model. Cleaned alignments of representative
proteins tend to be more homogeneous than alignments
of random proteins. To estimate the confidence of clades,
we used a bootstrapping procedure or – more precisely –
a jackknife procedure. To create a random subsample of
the entire alignment file we included each block of 80
consecutive columns in the subsample with probability
0.5; this gives a slightly harsher test than the standard
bootstrap. We tested one tree (the overall tree for Figure 1)
both ways; the jackknife numbers were all 0–10% smaller
than the corresponding bootstrap numbers. The rationale
for randomly sampling blocks rather than individual col-
umns was to effectively vary the set of representative pro-
teins as in [44]. For each ML tree computation, we created
100 random subsamples and ran SEMPHY on each sub-
sample. Typical running times were 15–20 minutes per
subsample, or about 30 hours for 100 subsamples. We
also tried PhyML [56], another fast program for ML phyl-
ogeny. With a single substition rate category, PhyML Ver-
sion 2.4.4 is faster than SEMPHY (7 minutes versus 17
minutes for a computation with 29 organisms and 5424
columns). On the other hand, PhyML may be more prone
to converge to a suboptimal local optimum, as we some-
times obtained a greater likelihood within PhyML by
inputting SEMPHY's solution as PhyML's starting tree.

To produce Figure 1, we made five different runs of tree
computations with different sets of genomes. We chose
representative proteins separately for each run, because
representativeness depends upon the set of genomes
under study. An initial run with 30 diverse bacteria [the 30
bacteria shown in Figure S1 of Additional file 1], with all
phyla except Planctomycetes represented, sketched out an
unrooted phylogeny. The root was placed by a run with
the same 30 eubacteria along with two archaea, Aero-
pyrum and Methanopyrus. We then split the tree in two
pieces ("left" and "right") by cutting it at the deep interior
edge with best bootstrap support, the doubled edge
shown in the figure. Computing a large phylogenetic tree
in pieces allows the use of more proteins of greater
representativeness, but such a split must be done very cau-
tiously because each organism potentially affects all the
unknown sequences at interior nodes. We added more
organisms, such as Xanthomonas and Vibrio, assigning
them to the left or right half according to the accepted tax-
onomy. We then added a right-half organism
(Chlorobium) to the left half, and a left-half organism
(Escherichia) to the right half, and made two more runs of
tree computations, one for the left and one for the right.
These runs corroborated the split by their placements of

Chlorobium and Escherichia. In Figure 1 all edge lengths
and bootstrap-support numbers refer to these last two
runs, except for the numbers on the doubled edge and the
root. (Edge lengths on the left and right sides of the tree
are thus not strictly comparable as they refer to different
proteins.) Finally, we added Chloroflexus by rerunning
the overall computation, that is, 31 organisms in all. The
draft genome, however, is missing many typically repre-
sentative proteins such as GroEL and elongation factor
TU, so we could harvest only about 1200 columns of rep-
resentative proteins, and we indicate its position by a
dashed edge without bootstrap support. (The 84 in Figure
1 is the support for the Actinobacteria/Deinococcus/
Cyanobacteria clade.) In order to produce Figure 2, we
reran the organisms of the left half along with some other
fully sequenced Proteobacteria, Spirochaetes, and
Chlamydiales. For Figure 3, we reran our procedures on γ-
and β-proteobacteria, now including the reduced
genomes of Buchnera and Wigglesworthia. For Figure 4,
we reran most of the organisms of the right half along
with some other genomes, and finally for Figure 5 we ran
Actinobacteria and Firmicutes (along with Fusobacterium
and Deinococcus), now including the reduced genomes
of Mycoplasma and Ureaplasma. We attempted to include
these reduced genomes at the higher level of Figure 4, but
obtained inconsistent results depending upon the pro-
teins selected.
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