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Abstract
Background: Integrins are a functionally significant family of metazoan cell surface adhesion
receptors. The receptors are dimers composed of an alpha and a beta chain. Vertebrate genomes
encode an expanded set of integrin alpha and beta chains in comparison with protostomes such as
drosophila or the nematode worm. The publication of the genome of a basal chordate, Ciona
intestinalis, provides a unique opportunity to gain further insight into how and when the expanded
integrin supergene family found in vertebrates evolved.

Results: The Ciona genome encodes eleven α and five β chain genes that are highly homologous
to their vertebrate homologues. Eight of the α chains contain an A-domain that lacks the short
alpha helical region present in the collagen-binding vertebrate alpha chains. Phylogenetic analyses
indicate the eight A-domain containing α chains cluster to form an ascidian-specific clade that is
related to but, distinct from, the vertebrate A-domain clade. Two Ciona α chains cluster in laminin-
binding clade and the remaining chain clusters in the clade that binds the RGD tripeptide sequence.
Of the five Ciona β chains, three form an ascidian-specific clade, one clusters in the vertebrate β1
clade and the remaining Ciona chain is the orthologue of the vertebrate β4 chain.

Conclusion: The Ciona repertoire of integrin genes provides new insight into the basic set of these
receptors available at the beginning of vertebrate evolution. The ascidian and vertebrate α chain A-
domain clades originated from a common precursor but radiated separately in each lineage. It
would appear that the acquisition of collagen binding capabilities occurred in the chordate lineage
after the divergence of ascidians.

Background
Integrins are cell surface adhesion receptors which medi-
ate cell-extracellular matrix (ECM), cell-cell and cell-path-

ogen interactions. Integrin receptors are structurally
elaborate and composed of non-covalently associated α
and β subunits. Integrins have a large extracellular
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domain responsible for binding extracellular ligands, a
transmembrane domain and, a relatively small intracellu-
lar domain that interacts with the cytoskeleton and intra-
cellular signaling pathways. Integrins integrate
information from the extracellular and cytoplasmic envi-
ronments by transducing signals bidirectionally across the
plasma membrane. Hence, the binding of a specific ECM
ligand by an integrin may elicit the activation of intracel-
lular signaling pathways, cytoskeletal reorganisations and
changes in cell adhesion or migration; and conversely,
alterations in the intracellular environment and signaling
can result in the activation or inhibition of ligand binding
by the extracellular domain of an integrin [1,2]. Conse-
quently, integrins have fundamental roles in diverse phys-
iological processes including: tissue morphogenesis and
remodeling [3], immune and inflammatory responses [4],
and regulation of cell growth, migration and differentia-
tion [5].

Integrin ligands include ECM components such as lam-
inins, fibronectin and collagens [2], cell surface intercellu-
lar adhesion molecules (ICAMs) and plasma proteins
such as fibrinogen [4]. Since cell adhesion and the pro-
duction of a collagen-based ECM are essential characteris-
tics of metazoa, it is not surprising that integrins have
been detected throughout the multicellular animal king-
dom, from the simplest and most primitive phyla (sponge
and cnidarians) [6] to higher vertebrates. In humans, 18 α
and 8 β integrin subunits combine to form 24 function-
ally distinct heterodimers [2].

Within the complement of 24 human integrin receptors,
distinct functional sub-divisions can be made on the basis
of ligand specificity and tissue distribution. A previous
study of integrin phylogeny [7] identified 5 α subunit
clades with vertebrate chains occupying 4 of these,
namely: laminin binding (α3, α6 and α7 – PS1 clade),
RGD tri-peptide binding (αV, αIIb, α5 and α8 – PS2
clade), and 2 vertebrate-specific clusters consisting of a
small clade comprising the α4 and α9 subunits and a large
αA-domain containing clade including both collagen-
binding (α1, α2, α10 and α11) and leukocyte-specific
(αD, αE, αL, αM and αX) α subunits (I-DOM clade). The
αA-domain is structurally homologous to the module
identified originally in von Willebrand factor. The colla-
gen-binding αA-domains contain an inserted α-helix
which appears to contribute directly to ligand binding. α
subunit integrin homologues from model invertebrates C.
elegans and D. melanogaster clustered in the laminin clade
(PS1) and the RGD binding (PS2) clade with remaining α
chains forming a drosophila-specific PS3 clade [7].

The α chain αA-domain, shared by all members of the I-
DOM clade, mediates ligand binding in a metal ion-
dependant manner by way of a conserved, non-contigu-

ous sequence termed the metal ion-dependent adhesion
site (MIDAS) motif [8,9]. It is somewhat surprising that
no examples of collagen-binding (i.e. αA-domain-con-
taining) integrins have been found in protostomes since
basement membrane and fibrillar collagens are essential
components of some of the most primitive invertebrates
such as the cnidarian, Hydra vulgaris [10,11]. The origin of
the I-DOM clade remains to be fully determined although
since the urochordate Halocynthia roretzi has at least one α
integrin containing an αA-domain [12] the limited evi-
dence available to date suggests that it may be a chordate
invention. In contrast, all known β subunits have a con-
served βA-domain (also known as the I-like domain) [13]
that must therefore have been present in the prototypic
metazoan β subunit.

Vertebrate β subunits have been resolved into three
branches by phylogenetic analysis, with a majority of
sequences falling into two well-supported clades [7]. The
two clades, termed β1 (β1, β2 and β7) and β3 (β3, β5, β6
and β8) included seven of the eight known subunits. In
the β1 clade, the β2 and β7 subunits are leukocyte-spe-
cific, whereas their common ancestor, the β1 subunit,
forms heterodimers with 12 of the 18 α subunits. Clade
β3 subunits are all specific to RGD ligand binding
integrins. The β4 subunit was positioned separately to
other vertebrate clades and contains a unique extended
cytoplasmic domain (~1000 residues), which makes
direct contact with intermediate filaments via type
fibronectin III repeats [14]. Protostome β subunits from
C. elegans and D. melanogaster were not found to cluster
with vertebrate sequences. Similarly, early deuterostome
sequences (sea urchin) formed lineage-specific clusters
with poor resolution amongst all invertebrate clades. A
recent study by Miyazawa and Nonaka (2004) presented
a phylogeny of integrin β subunits including novel
sequences from the urochordate Halocynthia roretzi. These
subunits are expressed on ascidian phagocytic blood cells
(hemocytes) but phylogenetic analyses positioned them
distal from vertebrate leukocyte β integrins in an ascidian-
specific clade [15].

The recent sequencing of the genome of the ascidian Ciona
intestinalis [16], a urochordate and one of the closest
invertebrate relatives of vertebrates, provides a unique
opportunity to gain insight into the complete set of
integrins available in chordates prior to the large-scale or
genome duplication events that many believe were associ-
ated with the early stages of vertebrate evolution [17-20].
An early preliminary analysis identified candidate integrin
genes in the Ciona genome [21]. Here we have identified
and refined the sequences of 11 α and 5 β integrin subu-
nits from the Ciona genome. Eight of the α chains contain
an αA-domain (also known as an I-Domain) that lacks
the collagen-binding α helix and these chains form an
Page 2 of 18
(page number not for citation purposes)



BMC Evolutionary Biology 2005, 5:31 http://www.biomedcentral.com/1471-2148/5/31
ascidian-specific clade related to, but distinct from, the
vertebrate I-DOM clade. The remaining 3 α chains are pre-
dicted to bind laminins and RGD-containing motifs. Two
Ciona β chains cluster with the vertebrate β1 clade and the
remaining 3 form an ascidian-specific β clade. The major-
ity of chains in ascidian-specific clades are expressed on
cells in the blood and are likely to be involved in innate
immunological processes. These novel data provide fur-
ther insights into the mechanism of evolution of the ver-
tebrate family of integrins, and specifically when and how
specific clades of integrin chains first arose. The differ-
ences between the ascidian and vertebrate complements
of integrins again emphasises how phyla and species
mould their genomes by the amplification of specific sub-
sets of genes as part of the process of acquiring a stable
and successful phenotype.

Results
Obtaining refined protein sequences for integrins encoded in
the Ciona genome

The C. intestinalis genome database was searched for α and
β integrin genes and the sequences listed in Fig. 1A were
obtained. These sequences were already annotated and no
additional genes were obtained during extensive BLAST
searching of the Ciona genome using the 26 human
integrin chain sequences. The 12 annotated α chain
sequences recovered directly from genome database
clearly represented fragments of genes, whereas the five β
chain sequences represented a much more complete data
set (Fig. 1A). In order to generate more complete α chain
data, DNA flanking the predicted gene fragments were
downloaded and searched manually for putative "miss-
ing" exons. The search involved the identification of ORFs
based on their sequence being present in EST clones or
conservation of their translated sequence in comparison
with homologous genes. Eleven Ciona α chain genes were
confirmed by this process (Fig. 1B) with two of the JGI
predicted genes (ci0100152017 & ci0100152002 – Fig.
1A) proving to represent different regions of a single gene
(Fig. 2). The sequence refinement process was aided by
the fact that four of the Ciona α chain genes were very
highly conserved and had clearly radiated relatively
recently by a process involving tandem duplication. The
completion of one full-length gene sequence therefore
considerably simplified the elucidation of the exon struc-
tures of the remaining three genes since these were well
conserved (Table 1), which was not the case when com-
paring the gene structures of more distantly related
integrins (data not shown). The size and relative genomic
loci of these four genes (ci100152017, ci0100130149,
ci0100152615 & ci0100131399 – subsequently referred
to as α5–8) is presented in Fig. 2.

Sequence alignments and characterization
The sequences for the 11 Ciona α chains were aligned with
human homologues. An annotated version of this align-
ment is presented in Fig. 3,4,5. Eight of the 11 Ciona α
chains (α1–8) have a well conserved αA-domain includ-
ing the essential residues that constitute the MIDAS motif
(Fig. 3). The position of the αA-domain insertion in the
human and Ciona chains is identical, indicating that all
these chains have arisen from a common progenitor.
However, all 8 Ciona chains lack 9–11 amino acid resi-
dues corresponding to the 'collagen binding' α-helical
domain present in the collagen binding (Hs_α1 & α10)
vertebrate α chains (Fig. 3). The Ciona α chains share all
other major features with their vertebrate homologues
across the alignment including the well-defined trans-
membrane and conserved intracellular interaction
domains (Fig. 3,4,5).

The sequences of the five Ciona β chains are also highly
conserved with respect to their vertebrate orthologues
including the MIDAS motif within the I-like domain, the
four EGF domains, the transmembrane domain, and the
intracellular interaction motifs and PTB-like domains
(Fig. 6 &7).

Phylogenetic analyses
The α chain analysis is presented in Fig. 8 in the form of a
maximum likelihood tree with supporting data from
1,000 neighbor-joining bootstrap replicates and Bayesian
analysis. Overall the inferred phylogenetic relationships
are consistent with a previous phylogenetic reconstruction
[7]. The clades identified by Hughes (PS1, PS2, and the
vertebrate I-DOM and α4/9) are all present (Fig. 8). Note,
the PS3 clade is not shown because it is specific to Dro-
sophila. Ciona α9 and α10 cluster in the PS1 clade and
their position, separating the protostome and vertebrate
sequences, is as expected. In contrast, Ciona α11 clusters
with its ascidian orthologue (Hr_α2) in the PS2 clade but
at an anomalous position distal to the protostome
sequences. Only Neighbor Joining analysis (not shown)
produced the anticipated branching in this region of the
tree with protostome PS2 clade members being most dis-
tal. The remaining eight Ciona α chains (Ci_α1 to α8) all
have an αA-domain and form an ascidian specific clade
that includes the αA-domain containing H. roretzi α1
chain (I-DOM [ascidian] – Fig. 8).

The β chain analysis is presented in Fig. 9. Again, phyloge-
netic relationships are consistent with Hughes [7]. The
vertebrate clades β1 and β4 include Ciona orthologues
(Ci_β1 and β5 respectively). The vertebrate β3 clade has
no identified Ciona orthologue (Fig. 9). The remaining 3
Ciona β chains (Ci_2 to 4) form an ascidian specific clade
including H. roretzi β1 & 2 chains (Fig. 9).
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Comparison of sequences recovered directly from the JGI C. intestinalis database before (A – Recovered) and after (B – Refined) sequence refinementFigure 1
Comparison of sequences recovered directly from the JGI C. intestinalis database before (A – Recovered) and after (B – 
Refined) sequence refinement. The annotated cartoons represent the domain structures of generic α & β integrin chains. Each 
subsequent row represents: (A – Recovered) the domain structure encoded by a sequence as retrieved directly from the data-
base together with its assigned database accession number; and (B – Refined) the refined version of that gene after detailed 
analysis of the genomic sequence as described in the methods together with the name assigned during these analyses (e.g. 
Ci_α1). Refined sequences are presented as alignments in Fig. 3-7 and are also included as amino acid residue sequence files 
(see additional file 1).
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Discussion
The urochordate C. intestinalis occupies a pivotal position
in the animal kingdom for understanding the evolution of
vertebrates. The Ciona genome provides an insight into
the basic set of genes available at the very beginning of
vertebrate evolution since the urochordates diverged just
prior to the widespread gene duplication processes that
are thought to have shaped and transformed the verte-
brate genome [16].

The Ciona genome encodes 11 α and five β integrin
chains. As expected, some Ciona α chains cluster in the
PS1 laminin-binding clade (Ci_α9 & α10), and in the PS2
RGD-binding clade (Ci_α11 together with its ascidian
orthologue Hr_ α2 – see Fig 8). It is unclear why the uro-
chordate members of the PS2 clade cluster in an anoma-
lous position distal to the protostome sequences although
this suggests that the ancestral urochordate PS2 gene
underwent significant and rapid sequence changes after
divergence from the lineage leading to vertebrates. The
remaining eight Ciona α chains all contain an αA-domain

and, somewhat surprisingly, form an ascidian-specific
clade related to, but distinct from, the vertebrate I-DOM
clade. This phylogenetic relationship suggests the verte-
brate and ascidian αA-domain containing clades arose
from a common progenitor but that this gene radiated
separately in both the ascidian and vertebrate lineages
after their divergence. Data supporting this hypothesis
includes: i) ascidian and vertebrate genes have the αA-
domain inserted at the same location supporting the
notion of both lineages having a common progenitor
(Fig. 3); ii) all eight ascidian α chain αA-domains lack the
same 9–11 amino acids encompassing and adjacent to the
α-helical domain in the collagen-binding α chains (Fig.
3); and iii) at least four of the Ciona αA-domain-contain-
ing α chains (α5–α8) appear to have arisen very recently
as a result of tandem duplications within the ascidian
genome based on retained similarities in exon size (Table
1), their high level of sequence identity (Fig. 3,4,5 and 8)
and their genomic location (Fig. 2). The common
progenitor gene presumably evolved in deuterostomes,
possibly in the earliest chordates since the vertebrate and

Table 1: Exon sizes (bp) of Ci_α5–8 genes.

Scaffold 21 91 21 21

JGI acc no ci0100152002 ci0100131399 ci0100152615 ci0100130149
Exon no Ci_a5 Ci_a6 Ci_a7 Ci_a8

1 170 161 167 167
2 128 128 128 128
3 63 63 63 63
4 127 127 67 127
5 123 123 121 123
6 116 92 80 90
7 187 205 187 219
8 179 179 181 179
9 57 68 68 68
10 179 180 180 180
11 87 88 90 86
12 256 256 234 256
13 210 210 232 210
14 307 310 313 304
15 149 146 146 146
16 224 224 224 224
17 143 143 143 143
18 80 107 107 107
19 87 89 89 89
20 101 99 99 99
21 121 120 122 120
22 108 109 109 109
23 129 129 129 129
24 114 114 126 202
25 88 88 76 135
26 135 132 135 97
27 151 92 95 No Exon
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ascidian lineages of αA-domain α chains have radiated
entirely separately and no protostome orthologues have
been identified. The most likely function for the progeni-
tor αA-domain-containing α chain involves the adhesion
of blood cells to complement-like proteins or the extracel-
lular matrix. In the urochordate H. roretzi, the Hr_α1 αA-
domain gene, together with the Hr_β1 & β2 genes, are
expressed on hemocytes and are thought to act as comple-
ment receptors [12]. A large number of EST's for Ciona
αA-domain-containing α chains have been found in
either blood cell or hemocyte cDNA libraries (Table 2).
Finally, the expression of half of the genes comprising the
vertebrate I-DOM clade is leukocyte-specific. In addition,
it would seem that the collagen-binding property exhib-
ited by the other half of the I-DOM α chains was a late
functional acquisition of this vertebrate clade, perhaps
associated with an insertional mutagenic event creating
the collagen binding α-helix. It is noteworthy that Ciona
expresses progenitor forms for all three clades of verte-
brate fibrillar collagens [22]. It is therefore apparent that
the early evolution of chordates did not require collagen-
binding integrins. Functionally important interactions
between integrins and collagen triple helices must have
developed later in chordate evolution, possibly in the ear-
liest vertebrates and co-incidental with the acquisition of
the collagen-binding helix.

The phylogenetic relationships of the Ciona and vertebrate
β integrin chains (see Fig. 9) emphasizes the pivotal posi-
tion invertebrate chordates occupy with respect to under-
standing how vertebrates and their genes evolved.
Previous phylogenetic analysis has suggested that neither
protostome nor early deuterostomes (echinoderm) β
chain sequences cluster with their vertebrate orthologues
[7]. The clustering of a Ciona (Ci_β1) and a previously
reported echinoderm sequence (Sp_ βC) with the verte-
brate β1 clade genes (Fig. 9) resolves more clearly how the
promiscuous vertebrate β1 chain and its paralogues have
evolved from a deuterostome-specific progenitor. In addi-
tion, the vertebrate β4 chain, which fails to cluster with
any other vertebrate genes, has a Ciona orthologue (Ci_
β5, Fig. 9) and must therefore have evolved prior to the
divergence of ascidians. It was not possible to determine
for certain whether the Ci_ β5 chain has the extended
intracellular C-terminal domain present in the vertebrate
β4 chain using either EST analysis or the search for exons
containing conserved ORFs. Nevertheless, direct transla-
tion of 10 kb of genomic sequence 3' to the predicted C-
terminus of the Ciona gene revealed the presence of short
ORFs homologous to a domain present in the vertebrate
integrin β4 intracellular domain and shared by Na+-Ca2+

exchangers (data not shown). The remaining three Ciona
β gene sequences formed an ascidian-specific clade
together with two β chains from H. roretzi (Fig. 9).

The genomic locations and orientations of recovered and refined α integrin genes present on scaffolds 21 and 91Figure 2
The genomic locations and orientations of recovered and refined α integrin genes present on scaffolds 21 and 91. The genomic 
locations and orientations of the four very closely related A-domain containing α integrin genes identified after sequence 
refinement (Ci-α5–8, coloured red) together with the original five JGI-predicted gene fragments (blue) are indicated.
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Alignment of the refined Ciona α chain sequences with representative human orthologues (residues 1-391 based on human α1 integrin chain)Figure 3
Alignment of the refined Ciona α chain sequences with representative human orthologues (residues 1-391 based on human α1 
integrin chain). Protein domains and conserved motifs are annotated. Levels of sequence conservation are indicated (>50% 
identical, red; conservative substitutions, blue). MIDAS and α C-helix within the inserted A-domain are highlighted, as are the 
β-propeller domains 1–3.
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Alignment of the refined Ciona α chain sequences with representative human orthologues (residues 392-796 based on human α1 integrin chain)Figure 4
Alignment of the refined Ciona α chain sequences with representative human orthologues (residues 392-796 based on human 
α1 integrin chain). Protein domains and conserved motifs are annotated. Levels of sequence conservation are indicated (>50% 
identical, red; conservative substitutions, blue). Ca2+-binding motifs in β-propeller repeats 5–7 are highlighted.
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Alignment of the refined Ciona α chain sequences with representative human orthologues (residues 797 to C-terminus based on human α1 integrin chain)Figure 5
Alignment of the refined Ciona α chain sequences with representative human orthologues (residues 797 to C-terminus based 
on human α1 integrin chain). Protein domains and conserved motifs are annotated. Levels of sequence conservation are indi-
cated (>50% identical, red; conservative substitutions, blue). Transmembrane domain (TM) and cytoplasmic interaction motif 
are indicated.
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Alignment of the refined Ciona β chain sequences with representative human orthologues (residues 1-542 based on the human β1 integrin chain)Figure 6
Alignment of the refined Ciona β chain sequences with representative human orthologues (residues 1-542 based on the human 
β1 integrin chain). Protein domains and conserved motifs are annotated. Levels of sequence conservation are indicated (>50% 
identical, red; conservative substitutions, blue). Adjacent to MIDAS (AMIDAS), ligand associated metal binding site (LIMBS) and 
MIDAS cation binding sites, and interaction motifs are highlighted as are the plexin/semaphorin/integrin (PSI), β-A domain (I-
like) and epidermal growth factor (EGF) domains 1–2.
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Alignment of the refined Ciona β chain sequences with representative human orthologues (residues 543 to the C-terminus based on the human β1 integrin chain)Figure 7
Alignment of the refined Ciona β chain sequences with representative human orthologues (residues 543 to the C-terminus 
based on the human β1 integrin chain). Protein domains and conserved motifs are annotated. Levels of sequence conservation 
are indicated (>50% identical, red; conservative substitutions, blue). EGF domains 2–4, transmembrane (TM) domain, interac-
tion and phosphotyrosine binding (PTB) motifs are indicated.
Page 11 of 18
(page number not for citation purposes)



BMC Evolutionary Biology 2005, 5:31 http://www.biomedcentral.com/1471-2148/5/31
Phylogenetic relationship of Ciona α integrin chains with representative protostome and vertebrate orthologuesFigure 8
Phylogenetic relationship of Ciona α integrin chains with representative protostome and vertebrate orthologues. Maximum 
Likelihood tree is shown with supporting Neighbor Joining bootstrap replicates (red) and Bayesian clade credibility values 
(green). Horizontal scale is amino acid replacements per site.
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Phylogenetic relationship of Ciona β integrin chains with representative deuterostome orthologuesFigure 9
Phylogenetic relationship of Ciona β integrin chains with representative deuterostome orthologues. Maximum Likelihood tree 
is shown with supporting Neighbor Joining bootstrap replicates (red) and Bayesian clade credibility values (green). Horizontal 
scale is amino acid replacements per site.
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Table 2: Expression profiles of A-domain containing α-integrins in Ciona intestinalis. Data has been obtained from the TIGR Gene 
Indices database http://www.tigr.org/tdb/tgi/.

Ciona Integrin JGI Acc Code TIGR cDNA Index Acc Code Tissue specific expression from EST data

Ci_a1 Ci0100131118 BW029582 Blood cells
Ci_a2 Ci0100149446 TC42900 Blood cells
Ci_a3 Ci0100130596 TC56905 Heart, neural complex, digestive gland
Ci_a4 Ci0100130838 TC66015 (Whole embryo only)
Ci_a5 Ci0100152002 TC6115, TC63051, TC63231 Blood cells, heart, hemocytes
Ci_a6 Ci0100131399 TC73566, TC69775 Blood cells, heart, neural complex
Ci_a7 Ci0100152615 TC59274 Blood cells, digestive gland, gonad
Ci_a8 Ci0100130149 TC75204 Blood cells, neural complex, gonad

Prediction of dimerisation patterns for novel integrin chains based on a combination of known interactions and phylogenyFigure 10
Prediction of dimerisation patterns for novel integrin chains based on a combination of known interactions and phylogeny. A. 
Schematic phylogenies of α and β chains with established heterodimer pairing indicated by adjoining solid colored lines. B. Het-
erodimer pairings predicted (dashed lines) on the basis of the data presented in A. The color coding in B related to the known 
parings in A used to make the prediction.
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Ci_a2_I-Do
Hr_a1
Ci_a1_I-Do

Ci_b4

Ci_b3

Hr_b2
Ci_b2

Hr_b1
Hs_b3

Hs_b5

Hs_b6
Hs_b8

Hs_b7

Hs_b2
Hs_b1

Ci_b1
Hs_b4

Ci_b5

Hs_aV
Hs_a5
Hs_a8
Hs_aIIb
Hr_a2
Ci_a11
Hs_a6
Hs_a7
Hs_a3
Ci_a9
Ci_a10
Hs_a9
Hs_a4
Hs_a11
Hs_a10
Hs_a2
Hs_a1
Hs_aX
Hs_aD
Hs_aM
Hs_aL
Hs_aE
Ci_a8_I-Do
Ci_a5_I-Do
Ci_a6_I-Do
Ci_a7_I-Do
Ci_a4_I-Do
Ci_a3_I-Do
Ci_a2_I-Do
Hr_a1
Ci_a1_I-Do

Ci_b4

Ci_b3

Hr_b2
Ci_b2

Hr_b1
Hs_b3

Hs_b5

Hs_b6
Hs_b8

Hs_b7

Hs_b2
Hs_b1

Ci_b1
Hs_b4

Ci_b5

}

}

} }
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As phylogenetic relationships between novel α and β
chains become defined, it is possible to start predicting
likely interactions based on the known dimerisation part-
ners of close relatives (Fig. 10). For instance, the vertebrate
β1 chain dimerises with the laminin (PS1) and RGD
(PS2) clade α chains. It is therefore probable that the
Ciona β1 clade orthologue (Ci_β1) dimerises with the
Ciona PS1 and PS2 clade α chains (Ci_α9, α10 & α11; see
Fig. 10). Likewise, it has been established that the 2 β
chains from H. roretzi (Hr_ β1 & β2) dimerise with Hr_α1
[15] and it is therefore probable that the related Ciona β2–
4 chains partner Ciona α chains in the ascidian αA-
domain clade (Ci_α1–8; Fig. 10). In H. roretzi, the β1, β2

and α1 chains are expressed on hemocytes [15] and it is
noteworthy that the Ciona orthologues (Ci_α1–8 & β2–4)
are also expressed predominantly in blood tissues based
on EST analysis (data not shown).

The phylogenetic relationships of integrin genes within
the vertebrate and invertebrate branches of the chordate
phylum provides new insights into the evolution of both
of these divergent lineages. The integrin gene complement
of the ascidian genome gives a strong indication of the
numbers and classes of integrin chains available to
organisms at the very start of vertebrate evolution. For α
integrins, it would appear that there was a minimum of

Table 3: Summary of α integrins used in phylogenetic analysis.

Lineage Species Database Acc Code Gene

Chordate H. sapiens Swiss-Prot P56199 Hs_α1
Chordate H. sapiens Swiss-Prot P17301 Hs_α2
Chordate H. sapiens Swiss-Prot P08514 Hs_αIIb
Chordate H. sapiens Swiss-Prot P26006 Hs_α3
Chordate H. sapiens Swiss-Prot P13612 Hs_α4
Chordate H. sapiens Swiss-Prot P08648 Hs_α5
Chordate H. sapiens Swiss-Prot P23229 Hs_α6
Chordate H. sapiens Swiss-Prot Q13683 Hs_α7
Chordate H. sapiens Swiss-Prot P53708 Hs_α8
Chordate H. sapiens Swiss-Prot Q13797 Hs_α9
Chordate H. sapiens Swiss-Prot O75578 Hs_α10
Chordate H. sapiens Swiss-Prot Q9UKX5 Hs_α11
Chordate H. sapiens Swiss-Prot Q13349 Hs_αD
Chordate H. sapiens Swiss-Prot P38570 Hs_αE
Chordate H. sapiens Swiss-Prot P20701 Hs_αL
Chordate H. sapiens Swiss-Prot P11215 Hs_αM
Chordate H. sapiens Swiss-Prot P06756 Hs_αV
Chordate H. sapiens Swiss-Prot P20702 Hs_αX
Urochordate C. intestinalis JGI Ci v1.0 See Fig. S1 Ci_α1
Urochordate C. intestinalis JGI Ci v1.0 ci0100149446 Ci_α2
Urochordate C. intestinalis JGI Ci v1.0 See Fig. S1 Ci_α3
Urochordate C. intestinalis JGI Ci v1.0 See Fig. S1 Ci_α4
Urochordate C. intestinalis JGI Ci v1.0 See Fig. S1 Ci_α5
Urochordate C. intestinalis JGI Ci v1.0 See Fig. S1 Ci_α6
Urochordate C. intestinalis JGI Ci v1.0 See Fig. S1 Ci_α7
Urochordate C. intestinalis JGI Ci v1.0 See Fig. S1 Ci_α8
Urochordate C. intestinalis JGI Ci v1.0 See Fig. S1 Ci_α9
Urochordate C. intestinalis JGI Ci v1.0 See Fig. S1 Ci_α10
Urochordate C. intestinalis JGI Ci v1.0 ci0100154687 Ci_α11
Urochordate H. roretzi Genbank AB048261 αHr1
Urochordate H. roretzi Genbank AB048262 αHr2
Arthropod D. melanogaster Swiss-Prot Q24247 Dm_aPS1
Arthropod D. melanogaster Swiss-Prot P12080 Dm_aPS2
Arthropod D. melanogaster Swiss-Prot U76605 Dm_aPS3
Arthropod D. melanogaster Swiss-Prot AAF58154 Dm_a16827
Arthropod D. melanogaster Swiss-Prot AAF47029 Dm_a5372
Nematode C. elegans Swiss-Prot P34446 Ce_a1
Nematode C. elegans Swiss-Prot Q03600 Ce_a2
Echinoderm S. purpuratus Swiss-Prot AF177914 Sp_aP
Porifera G. cydonium Swiss-Prot X97283 Gc_alpha
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one laminin binding (PS1), one RGD binding (PS2) and
one αA-domain containing chain (Fig. 8). The novel
Ciona data therefore clearly indicate that radiation of ver-
tebrate α chain genes took place after the divergence of
urochordates. The β chain phylogeny (Fig. 9) indicates
that the common progenitor of urochordates and
vertebrates had a minimum of one β1-like gene (that sub-
sequently radiated in vertebrates) and a single Hs_β4/Ci_
β5 progenitor that radiated in neither lineage (Fig. 9). The
origins of the ascidian and vertebrate-specific β clades is
not resolved.

The ascidian lineage exhibits amplifications of subsets of
integrin genes to produce ascidian-specific classes of novel
integrins (Fig. 8,9,10). In particular, these novel integrins
appear to be expressed in blood (see above) and may be
involved in mechanisms associated with innate immu-
nity. It has been proposed that the major metamorphic
transformations between ascidian larval and adult body
forms may be dependent upon innate immune responses
[23]. This suggestion would provide a plausible explana-
tion of the requirement for an expanded set of urochor-
date hemocyte integrins although more generic
explanations, such as the preparation for a sessile life-style
under attack by pathogens, are also possible.

Methods
The complete sequences of the 26 known human integrin
genes were used to probe the Ciona intestinalis genome
and TIGR cDNA gene index (http://genome.jgi-psf.org/
ciona4/ciona4.home.html and http://www.tigr.org/tdb/
tgi/cingi using TBLASTN and PSI-BLAST with cut-off
expectancy values of E = 1) to identify homologous genes
[16,24]. Ciona gene models were also detected using the
orthologue detection program InParanoid using a key-
word search using 'integrin' as the query http://abi.mar
seille.inserm.fr/cgi-bin/karine/inparanoid-para[25]. To
identify all the integrin genes, reciprocal BLAST searches
of the Ciona, human and non-redundant databases were
used. Frequently, EST for the Ciona genes contradicted the
proposed gene models from JGI. In instances where an
EST clearly demonstrated the misplacement of exons in
the recovered JGI model, the protein sequence was cor-
rected to reflect this. To detect missing exons not sup-
ported by EST data, genomic DNA flanking the sequence
of interest was retrieved and analysed using the GENES-
CAN [26]http://genes.mit.edu/GENSCAN.html and
GENEWISE [27]http://www.ebi.ac.uk/Wise2 gene predic-
tion programmes. Modified sequences were checked by
aligning with respective human integrin profiles using
CLUSTAL X [28] and corrected coding sequences used for

Table 4: Summary of β integrins used in phylogenetic analysis

Lineage Species Database Acc code Gene

Chordate H. sapiens Swiss-Prot P05556 Hs_b1
Chordate H. sapiens Swiss-Prot P05107 Hs_b2
Chordate H. sapiens Swiss-Prot P05106 Hs_b3
Chordate H. sapiens Swiss-Prot P16144 Hs_b4
Chordate H. sapiens Swiss-Prot P18084 Hs_b5
Chordate H. sapiens Swiss-Prot P18564 Hs_b6
Chordate H. sapiens Swiss-Prot P26010 Hs_b7
Chordate H. sapiens Swiss-Prot P26012 Hs_b8
Urochordate C. intestinalis JGI Ci v1.0 ci0100141446 Ci_b1
Urochordate C. intestinalis JGI Ci v1.0 ci0100143908 Ci_b2
Urochordate C. intestinalis JGI Ci v1.0 See Fig. S1 Ci_b3
Urochordate C. intestinalis JGI Ci v1.0 ci0100131678 Ci_b4
Urochordate C. intestinalis JGI Ci v1.0 ci0100143050 Ci_b5
Urochordate H. roretzi Genbank AB154831 Hr_b1
Urochordate H. roretzi Genbank AB154832 Hr_b2
Echinoderm S. purpuratus NCBI AF0559607 Sp_bC
Echinoderm S. purpuratus NCBI NP_999732 Sp_bG
Echinoderm S. purpuratus NCBI NP_999731 Sp_bL
Arthropod D. melanogaster Swiss-Prot P11584 Dm_bPS
Arthropod D. melanogaster Swiss-Prot L13305 Dm_bv
Nematode C. elegans Swiss-Prot Q27874 Ce_b-pat3
Mollusc B. glabraba Swiss-Prot AF060203 Bg_beta
Cnidaria A. millepora Swiss-Prot AF005356 Am_beta
Porifera G. cydonium Swiss-Prot O97189 Gc_beta
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subsequent analyses. Expression profiles for the Ciona
genes were obtained from the TIGR database (see above).

The α and β integrin sequences were aligned separately
using CLUSTAL X. The variable domain structure amongst
α integrins necessitated subdivision of the alignment
groups based on the presence/absence of an αA-domain.
Subgroups were aligned and then combined so that the
final alignment contained all the α integrins with a 200-
residue (approx) gap region corresponding to the αA-
domain.

For phylogenetic analysis, gap-containing sites were
removed from each alignment and Maximum Likelihood
trees were inferred using PROML from the PHYLIP
package [29]. The JTT model of amino acid substitutions
was used with and without global rearrangements and
correction for rate heterogeneity (α value obtained from
TREEPUZZLE [30]). The topologies of the trees were
tested using two independent methods: Neighbour-join-
ing bootstrap replicates and Bayesian tree inference using
PHYLIP and Mr Bayes programmes respectively [31]. The
accession numbers for protein sequences used in this
study are presented in Tables 3 &4.
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