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Abstract
Background: The structure of molecular networks derives from dynamical processes on
evolutionary time scales. For protein interaction networks, global statistical features of their
structure can now be inferred consistently from several large-throughput datasets. Understanding
the underlying evolutionary dynamics is crucial for discerning random parts of the network from
biologically important properties shaped by natural selection.

Results: We present a detailed statistical analysis of the protein interactions in Saccharomyces
cerevisiae based on several large-throughput datasets. Protein pairs resulting from gene duplications
are used as tracers into the evolutionary past of the network. From this analysis, we infer rate
estimates for two key evolutionary processes shaping the network: (i) gene duplications and (ii) gain
and loss of interactions through mutations in existing proteins, which are referred to as link
dynamics. Importantly, the link dynamics is asymmetric, i.e., the evolutionary steps are mutations
in just one of the binding parters. The link turnover is shown to be much faster than gene
duplications. Both processes are assembled into an empirically grounded, quantitative model for
the evolution of protein interaction networks.

Conclusions: According to this model, the link dynamics is the dominant evolutionary force
shaping the statistical structure of the network, while the slower gene duplication dynamics mainly
affects its size. Specifically, the model predicts (i) a broad distribution of the connectivities (i.e., the
number of binding partners of a protein) and (ii) correlations between the connectivities of
interacting proteins, a specific consequence of the asymmetry of the link dynamics. Both features
have been observed in the protein interaction network of S. cerevisiae.

Background
Molecular interaction networks are ubiquitous in biologi-
cal systems. Examples include transcription control [1],
signal transduction, and metabolic pathways [2]. These
networks have become a focus of recent research, because
of their important roles in metabolism, gene expression,
and information processing. Data on such networks are

rapidly accumulating, massively aided by high-through-
put experiments. Some of these networks are suffciently
complex that their characterization requires statistical
analysis, an area of considerable recent interest [3-5]. One
key issue in this area is the distinction between structures
reflecting biological function and those arising by chance.
To address this issue requires an understanding of the
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biological processes that shape the network on evolution-
ary time scales. More precisely, one has to identify the sta-
tistical observables containing specific information about
the evolutionary dynamics that shape a network.

In this paper we focus on protein interaction networks,
whose nodes correspond to proteins, and whose links cor-
respond to physical interactions between two proteins.
Several complementary experimental techniques have
been used to analyze pairwise protein and domain inter-
actions, as well as protein complexes, in genome-scale
assays [6-13]. Common to these approaches is a high rate
of individual false negative and false positive interactions
[14,15]. Different protein interaction data sets thus differ
in many ways, but they also reveal similar aggregate (or
global) network features, such as the fraction of nodes
with a given connectivity. This implies that only large-
scale statistical features of protein interaction networks
can currently be reliably identified by high-throughput
approaches. We here present an empirically grounded
model that explains empirically observed statistical fea-
tures of such networks.

The currently best characterized protein interaction net-
work is that of the baker's yeast Saccharomyces cerevisiae.
On evolutionary time scales, this network changes
through two processes, illustrated by figure 1. These are (i)
modifications of interactions between existing proteins
and (ii) the introduction of new nodes and links through
gene duplications. Duplications of a single gene result in a
pair of nodes with initially identical binding partners. Seg-
mental and global duplications of the genome lead to the
simultaneous duplication of many genes. On the other
hand, processes affecting the interactions between existing
proteins are referred to as link dynamics. Link dynamics
results primarily from point mutations leading to modifi-
cations of the interface between interacting proteins [16].
Both kinds of processes, link dynamics and gene duplica-
tions, can be inferred from a statistical analysis of the net-
work data, and their rates can be estimated consistently
with independent information.

Of course, proteome function in vivo is influenced by fur-
ther factors, notably gene regulation, which determines
the concentrations of the proteins interacting in a living
cell. The very definition of a bound state depends on the
concentrations of the binding partners: A pair of proteins
which binds at high concentrations may no longer form a
bound state at lower concentrations. Here we concentrate
on protein interactions at constant concentrations as they
can be inferred from high-throughput datasets.

Previous work by others [17-19] shows how structural fea-
tures of the network can in principle be explained through
mathematical models of network evolution based on gene

duplications alone. (For similar duplication-based mod-
els of regulatory and metabolic networks, see [20,21].)
However, the overall rate of link dynamics has been esti-
mated from empirical data in [22] and is at least an order
of magnitude higher than the growth rate of the network
due to gene duplications. It must therefore be included in
any consistent evolutionary model.

In this paper, we present a model of network evolution
that is based on observed rates of link and duplication
dynamics. At these rates, the model predicts that impor-
tant structural features of the network are shaped solely by
the link dynamics. Hence, the evolutionary scenario of
our model is quite different from the duplication-based
models [17-19]. The statistical network structure pre-
dicted by the model is in accordance with empirical obser-
vations, see the discussion below.

This paper has two parts. In the first part, we estimate the
rates of link attachment and detachment from empirical
data. Specifically, we do not just estimate average rates of
link dynamics for the whole network, because this has
been done previously [22], but we show how the depend-
ence of link attachment and detachment rates depends on
the connectivities of both nodes (proteins) involved. (The
connectivity of a protein is defined as the number of its
interaction partners). We find evidence that the basic rate
of link attachment is asymmetric. That is, this rate increases
with the connectivity of only one of two the nodes
involved. This reflects an asymmetry in the underlying
biological process: a new protein-protein interaction is
typically formed through a mutation in only one of two
proteins.

In the second part of the paper, we assemble the estimated
rates of link dynamics into a model of network evolution.
Unlike for most other cases studied so far [3,4], the
dynamics of these networks cannot be written as a closed
equation dependent on the connectivity distribution, i.e. the
fraction of nodes with a given number of neighbors.
Instead, the analysis of networks under asymmetric link
dynamics involves the link connectivity distribution, defined
as the fraction of links connecting a pair of nodes with
given connectivities.

The model has only one free parameter, the average con-
nectivity of nodes in the network. Its stationary solution
correctly predicts statistical properties observed in the
data. Central properties of this solution are connectivity
correlations between neighboring vertices, in accordance
with recent observations in high-throughput protein
interaction data [23]. These correlations are a conse-
quence of the asymmetric link attachment process.
Page 2 of 12
(page number not for citation purposes)



BMC Evolutionary Biology 2004, 4:51 http://www.biomedcentral.com/1471-2148/4/51
Results and discussion
Estimates of evolutionary rates
Two kinds of processes contribute to the evolutionary
dynamics of protein interaction networks. The first con-
sists of point mutations in a gene affecting the interactions
of the encoded protein. As a result, the corresponding
node may gain new links or loses some of the existing
links to other nodes, as illustrated in fig. 1(a) and 1(b),
respectively. We refer to these attachment and detachment
processes, which leave the number of nodes fixed, as link
dynamics. The second kind of process consists of gene
duplications followed by either silencing of one of the
duplicated genes or by functional divergence of the dupli-
cates [24-26]. In terms of the protein interaction network,
a gene duplication corresponds to the addition of a node
with links identical to the original node, followed by the

divergence of some of the now redundant links between
the two duplicate nodes; see fig. 1(c).

Individual yeast genes have been estimated to undergo
duplication at a rate of the order of 10-2 per gene and per
million years [27]. Some 90% of single gene duplicates
become silenced shortly after the duplication, leading to
an effective rate g of duplications one order of magnitude
lower, i.e., ~ 10-3 per million years [22,25,27,28]. Only a
fraction of the yeast proteome is part of the protein inter-
action network, and gene duplicates involving proteins
that are not part of the network do not contribute to its
growth. Hence, g ~ 10-3 per million years should be con-
sidered an upper bound for the growth rate of the protein
interaction network by gene duplications. A crude lower
bound for the link attachment rate is a ~ 10-1 new

The elementary processes of protein network evolutionFigure 1
The elementary processes of protein network evolution. The progression of time is symbolized by arrows. (a) Link 
attachment and (b) link detachment occur through nucleotide substitutions in the gene encoding an existing protein. 
These processes affect the connectivities of the protein whose coding sequence undergoes mutation (shown in black) and of 
one of its binding partners (shown in gray). Empirical data shows that attachment occurs preferentially towards partners of 
high connectivity, cf. fig. 3. (c) Gene duplication usually produces a pair of nodes (shown in black) with initially identical bind-
ing partners (shown in gray). Empirical data suggests duplications occur at a much lower rate than link dynamics and that 
redundant links are lost subsequently (often in an asymmetric fashion), which affects the connectivities of the duplicate pair and 
of all its binding partners [22,25,38].
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interaction partners per node and million years. For
instance, [22] estimated the rate at which new interactions
were formed as no less than 294.5 new interactions per
million years and approximately 1000 proteins. (These
estimates are based on the formation of physical interac-
tions between products of duplicate genes, and the
approximately known age of the duplicates [22]. Impor-
tantly, most of these new interactions form between old
duplicates, duplicates that are no longer under the relaxed
selection pressure that is characteristic of young dupli-
cates.) The above estimate gives a number of new interac-
tion partners per protein per million years of a = 2 ×
294.5/1000 = 0.589, five times greater than the lower
bound of 0.1. To maintain an average network connectiv-
ity at the empirically observed value κ ≈ 2.5 interaction
partners per protein [25,29], the link detachment rate d
has to be close to a, thus d ~ a ~ 10-1 per million years. This
rate of link attachment and detachment is much larger
than the duplication rate of g ~ 10-3 per protein and mil-
lion years. Hence, the link dynamics is decoupled from
the much slower duplication dynamics. On intermediate
evolutionary time-scales, the network reaches a stationary
state of the link dynamics, while its number of nodes does
not change significantly. This stationary state determines
the structural statistics of the network, in particular the
distribution of connectivities. On long time-scales, how-
ever, the network may grow through duplications. We
emphasize that all these evolutionary rates are order-of-
magnitude estimates, and that such estimates are suffcient
for our model and the conclusions we derive from it.

One basic but important empirical observation about link
dynamics is the fast loss of connectivity correlations of
proteins encoded by duplicate genes. Fig. 2(a) shows this
loss, as estimated from empirical data. Specifically, the fig-
ure shows the average relative connectivity difference |k -
k'|/(k + k') of duplicate protein pairs as a function of the
time since duplication, parameterized by the fraction Ks of
synonymous (silent) nucleotide substitutions per silent
site. (As an order of magnitude estimate, a value of Ks = 0.1
corresponds to a duplication age of 10 million years
[25,27].) In the shortest time interval after duplication,
the connectivities are still measurably similar. Soon there-
after, however, the relative connectivity difference
becomes statistically indistinguishable from that of a ran-
domly chosen pair of nodes, indicated by the horizontal
line in fig. 2(a). Hence, diversification after duplication is
a rapid process, with a time constant of the order of sev-
eral 10 million years, consistent with the fast rate of link
dynamics discussed above. An additional empirical obser-
vation underscores the minor importance of gene duplica-
tion in shaping the observed network structure. In models
of network evolution based on gene duplication [17-19],
a protein acquires new links through duplications of its
neighbors (see, for example, the grey nodes in fig. 1(c)), at

a rate proportional to its connectivity. This mechanism
would generate an abundance of high-connectivity nodes.
In addition, it would also generate a high fraction of pairs
of neighbors that are products of a gene duplication. This
is also true for intermediate models, incorporating both
gene duplications and link dynamics, provided the dupli-
cation rate is comparable to the rate of link dynamics, or
exceeds it. However this prediction of models based on
gene duplications is not supported by the data. Fig. 2(b)
shows the fraction of duplicate protein pairs among the
k(k - 1)/2 neighbor pairs of a node of connectivity k. This
fraction is small and it does not increase significantly with
k. The data in this figure are also consistent with the earlier
observation that the majority of duplicate pairs have few
or no interaction partners in common [25].

We note that in our discussion of node dynamics we have
not separately considered the effects of ancient genome
duplications [39,40]. The conclusion that gene duplica-
tions do not shape the statistical features of the protein
interaction network applies both to single gene duplica-
tions and to genome duplications. Indeed, the analysis of
duplicates presented in figure 2 includes both pairs of
genes resulting from single duplications and those stem-
ming from genome duplications. Furthermore, the evolu-
tionary dynamics of individual duplicated genes is similar
for the products of single genome and whole genome
duplications. For example, individual gene duplicates are
lost with approximately the same probability in single
duplications and in whole genome duplications. For this
reason we do not, at this stage, include genome duplica-
tions separately in our model.

Dependency of attachment rates on connectivities
The total rates a and d at which links are attached and
detached in a protein interaction network allow no infer-
ence of how these processes shape the statistical proper-
ties of the network. To make such an inference, one must
also know how the link dynamics depends on the connec-
tivities of the nodes involved. The simplest possibility is
that link attachment rates a and detachment rates d are
functions of a node's connectivity k. The rates ak and dk at
which links are attached or detached from a node of con-
nectivity k have been estimated previously using interac-
tions between products of duplicate genes [22]. They
increase approximately linearly with k.

In representing attachment and detachment rates (a, d) as
functions of connectivity k (ak, dk), one assumes implicitly
that that the mechanism of link attachment and detach-
ment is identical (symmetric) for the two nodes involved
in a changed link. Previous analyses of protein network
evolution [22] as well as models of network evolution
[30] were based on such a symmetric process. However,
the biological mechanism underlying link dynamics is
Page 4 of 12
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(a) Duplicate protein pairs lose their connectivity correlations over timeFigure 2
(a) Duplicate protein pairs lose their connectivity correlations over time. The average relative connectivity differ-
ence |k - k'|/(k + k') of duplicate pairs with connectivities k, k' > 0 is plotted against the time since duplication, parameterized by 
the synonymous (silent) nucleotide divergence Ks. The horizontal line indicates the value expected for two randomly chosen 
nodes. The average number of duplicate pairs per bin was 16 (from low values of Ks to high ones the number of duplicate pairs 
per bin were 12, 5, 3, 6, 6, 8, 13, 27, 44 respectively). (b) Duplications do not strongly influence network structure. 
The histogram shows the fraction of duplicate pairs among the k(k - 1)/2 neighbor pairs of a node of connectivity k plotted ver-
sus k. A high number of duplicate pairs would be expected if duplications were a significant mechanism of link gain, see text. 
The mean and the standard error of this fraction were determined using proteins which are products of duplicate genes with 
sequence similarity Ka < 1. The number of vertices used per column ranges from 374 for k = 2 to 8 for k = 12.
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intrinsically asymmetric. When a new link is formed,
typically only one node undergoes a mutation, whereas
the other node remains unchanged. This asymmetry
means that the rate of link dynamics will generically
depend in one way on the connectivity of the node under-
going mutation, and in another way on that of the
unchanged node. As a result the rates ak and dk of link
attachment and detachment are insuffcient to describe the
dynamics of the network, since these rates will be different
depending on whether the node is undergoing a mutation
or not. This observation motivates the following estimate
of the dependency of the link dynamics rate on node
connectivities.

We define ak,k' as the probability per unit time that a given
non-interacting pair of proteins with respective connectivi-
ties k and k' will acquire a link, multiplied by the number
of proteins N. Analogously, we define the detachment rate
dk,k' as the probability per unit time that a given interacting
pair of proteins with respective connectivities k and k' will
lose their link. The scaling convention of both rates is cho-
sen such that the average connectivity of the network
remains constant as the number of nodes N increases: the
number of nodes pairs (where a link may be added) is
proportional to N2, whereas the total number of links
(which may be deleted) is proportional to N. We refer to
the special case where the rates factorize, i.e. ak,k' ~ akak', as
symmetric attachment (and analogously for the detach-
ment rates dk,k'). The specific form of these rates assumes
that link dynamics is a local process, so the probability for
the formation or destruction of a link depends on the con-
nectivities of only the two proteins involved in this
process.

We now explain how one can estimate the dependency of
ak,k' on its arguments, k and k'. As described earlier [22],
one can use the observed number of physical interactions
among duplicate gene products (cross-interactions) to
estimate attachment rates. Briefly, such cross-interactions
may arise in two ways. First, a protein that forms
homodimers (a self-interacting protein) may undergo
duplication, leading to two identical self-interacting pro-
teins which also interact with each other. If both self-inter-
actions are subsequently lost independently, yet the
interaction between the nodes is retained, a cross-interac-
tion is formed. This scenario does probably not account
for the majority of cross-interactions, because it is incon-
sistent with data suggesting that self-interactions do not
get lost overly frequently after duplication [22]. The sec-
ond avenue of forming interactions between duplicate
gene products involves a non-homodimerizing protein
that undergoes duplication. Subsequently, an interaction
between the duplicate proteins may form. If this mecha-
nism is dominant, as we argue, one may use the number
of cross-interactions to obtain order-of-magnitude esti-

mates of the attachment rate [22]. From the number of
interactions that each of the two involved proteins has
with other proteins, one can estimate how the attachment
rate depends on k and k'. The main caveat of this approach
is that the connectivity of the duplicates may have
changed since the time the link between them was
formed.

The result of this procedure is shown in fig. 3. The sample
size of 38 cross-interactions is extremely limited, but suf-
fcient to demonstrate an increase of the attachment rate
along the diagonal k = k', and no systematic change along
other directions. A different representation of the same
data in fig. 3b) also shows an increase of the attachment
rate consistent with k + k'.

An attachment process where one node with connectivity

k is chosen with a probability , and a second one is cho-

sen with probability , gives an attachment rate

. The attachment rate akk' ~ k + k' which
we observe empirically is thus explained by an asymmetric
attachment process where one node is chosen uniformly at

random (  = constant), and the other node is chosen

with a probability proportional to its connectivity (  ~
k). Note that the rate ak,k' itself is symmetric under inter-
change of the labels k and k', since either of the two nodes
may take on the role of being preferentially chosen. How-
ever, the rate ak,k' does not factorize, exactly as required for
an asymmetric attachment process.

We now present an additional, complementary approach,
based on maximum likelihood analysis, which validates
the functional form of ak,k'. The probability that out of nkk'

pairs of duplicates with given connectivities k and k', mkk'

pairs interact is , where gkk'

gives the probability for a cross-interaction.

 are the binomial coefficients. The
probability p for observing for each pair k ≤ k' mkk' interac-
tions in nkk' pairs of duplicates is then given by

. Symmetric

and asymmetric attachment differ in how the probability
of a cross-interaction gkk' depends on k and k'. In the sym-
metric case, gkk' = gkgk'. In the asymmetric case where one
node is chosen uniformly, the other with a probability fk,
we have gkk' = fk + fk'. Using simulated annealing [31] we
have calculated the (maximal) likelihoods p that the con-
nectivity correlation pattern shown in fig. 3a resulted
from either an asymmetric process, or a symmetric proc-
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Link attachment occurs preferentially towards proteins of high connectivityFigure 3
Link attachment occurs preferentially towards proteins of high connectivity. (a) The color-coded plot shows the 
fraction of duplicate pairs with connectivities (k, k') that have gained a mutual interaction (cross-interaction) since duplication, 
as a function of k and k'. Points where all duplicate pairs have cross-interactions are shown in white, points where none carry a 
cross-interactions are shown black. Points (particularly at high connectivities) where no data is available are also shown in 
black. The number of duplicate pairs with given connectivities ranges from 2 to 39. Points in the k, k'-plane where only a single 
pair of duplicates exists are excluded. (b) For this histogram the data from a) are binned for low, medium, and high k + k' and 
the average for each bin is shown against k + k'. The number of k, k' values contributing to each bin are 10, 14, and 11, from left 
to right. Error bars give the standard error. (c) Assuming the functional form fk + fk' for the probability of a cross-interaction 
between nodes with connectivities k and k' (asymmetric attachment), the most likely values of fk may be deduced from the data 
(see text). The maximum-likelihood result shows an approximately linear increase of fk with k. The alternative scenario, sym-
metric attachment, yields a smaller maximum likelihood. Only duplicate pairs with Ka ≤ 0.4 were used in this analysis in order 
to avoid overcounting of cross-interactions of duplicates of even older duplicates.
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ess, respectively, by maximizing p with respect to fk and gk.
We find that the maximal likelihood for asymmetric
attachment exceeds that for symmetric attachment by a
factor pasym/psym ~ 4. The data thus favor an asymmetric
attachment process, consistently with the biological inter-
pretation given above. In addition, in the maximum like-
lihood analysis of the asymmetric model, fk shows an
approximately linear increase with k (see figure 3c).
Although this result is by no means conclusive, the data
shows there is no reason to a priori consider only symmet-
ric processes.

Thus far, we have only discussed the link attachment rate.
For the detachment of links, we analogously assume that
links are lost due to mutations at one of two linked nodes,
and that the rate of this process does not depend on the
properties of the other node that is unaffected by a muta-
tion. The simplest mechanism reflecting these assump-
tions is one where a protein loses on average d links per
unit time. A protein is chosen in an equiprobable manner
from all nodes for removal of one of its links. The link to
be removed is chosen at random from all its links. (An
alternative detachment process consists in the loss of a
certain fraction of links and leads to very similar results.)
The resulting detachment rate is dk,k' ~ (1/k) + (1/k'), where
the inverse terms stem from nodes (rather than links)
being chosen uniformly.

Dynamical model of network evolution
The rates of the link dynamics discussed above, together
with a slow growth of the network due to duplications,
define a simple model for the evolution of protein inter-
action networks. Unlike previous models of the evolution
of protein interaction networks [17-19] which emphasize
the role of gene duplications, our model is based on the
asymmetric link dynamics deduced from empirical data
in the preceding section. By analytical solution or by
numerical simulation one may investigate the networks
generated by our model and compare their statistical
properties to those of the empirical data on protein-inter-
action networks. This will be done in the present section.
Before analyzing this model in the limit of large networks,
we discuss the specific values of model parameters we
used, and present the results of numerical simulations of
a finite network.

We chose the initial network size such that after a suffcient
waiting time, when a stationary state has been reached,
the size of the simulated network matches that of the pro-
tein interaction data set we used (see methods). Duplica-
tion of nodes is modeled simply by adding new nodes
with connectivity zero to the network at a rate of g = 10-3

per node per million years, as motivated above. Using this
simplistic growth mechanism is appropriate since, as
shown above, the link dynamics will quickly alter the ini-

tial connectivity of a new node, as well as connectivity cor-
relations with its neighbors. We begin with a total number
of 4600 nodes, uniformly linked at random (giving a Pois-
sonian connectivity distribution) such that the average
connectivity of nodes with non-zero connectivity is κ =
2.5, the average connectivity found in the data set we
used. After a waiting time of 25 million years there are
4696 nodes in total, of which 1872 nodes have non-zero
connectivity. This is the size of the pooled protein interac-
tion data set we used. The waiting time of 25 million years
is of the same order of magnitude as the time scale on
which connectivity correlations of duplicate nodes decay
in figure 2a) of a few 10 million years.

New links are added at a rate of a = 0.59 new interactions
per node per million years, using the asymmetric prefer-
ential linking rule we motivated above. Specifically, to
form a new link we chose one node uniformly and a sec-
ond node preferentially (i.e., with a probability propor-
tional to its connectivity k) and link the two nodes. We
removed links at a rate that keeps the average connectivity
constant.

Specifically, at each time-step a link is deleted by choosing
a node uniformly for link deletion if the average network
connectivity exceeds κ = 2.5. The link to be deleted is cho-
sen equiprobably from the links of this node. The connec-
tivity distribution of a network whose evolution was
simulated in this manner is shown in figure 4a) (open cir-
cles, °). This distribution is robust with respect to changes
in the ratio of duplication to link dynamics g/a over at
least an order of magnitude (results not shown).

We now turn to the consequences of this evolutionary
dynamics for the statistical properties of the network.
Since the link dynamics places and removes a link with a
rate depending only on the connectivities of the nodes at
either end, the evolutionary dynamics of the network can
be represented in terms of the link connectivity distribu-
tion qk,k'. This distribution is defined as the fraction of net-
work links that connect vertices of connectivities k and k',

where cij = 1 if node i is linked to j and 0 otherwise. For
convenience, a factor κ has been included in the normali-
zation, i.e., ∑k,k' qk,k' = κ. The link connectivity distribution
qk,k' captures correlations between the connectivities of
neighboring vertices [23,32-34]. It is related to the single-
vertex connectivity distribution by

q
N

ck k k k
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ij k ki j, ,
,

, , ( )′ ′= ∑1
1δ δ
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for k > 0 and p0 = 1 - ∑k > 0 pk. The rates ak,k' and dk,k' are
related to the total rates a and d of link detachment per
unit time by the normalization

For a network of infinite size, link and growth dynamics
result in a deterministic differential equation for the evo-
lution of the link connectivity distribution qk,k'

The terms Jk,k' arise from links that are not added or
removed but that change their values (k,k'),

These are the links joining a mutated protein or its bind-
ing partner with third vertices, shown as open circles in
fig. 1. The parameter g accounts for a uniform increase of
the number of nodes caused by gene duplications.

In writing eq. (4), we have assumed that next-nearest
neighbor connectivity correlations vanish. This assump-
tion is self-consistent since the stationary solution has
indeed only nearest-neighbor correlations. Truncating all
correlations and writing down an evolution equation for
the connectivity distribution pk turns out to be inconsist-
ent since asymmetric link dynamics generates non-trivial
connectivity correlations. This distinguishes the present
model from simpler models of network growth, which
can be self-consistently formulated at the level of the dis-
tribution pk.

We solved equation eq. (4), which describes the evolution
of the connectivity correlations numerically for its steady
state. For initial conditions we use a Poissonian connec-
tivity distribution where the average connectivity of con-
nected nodes is 2.5, and connectivity correlations which
factorize qk,k' ~ kk'pkpk'. We followed the time evolution of
qk,k' defined by eq. (4) until a steady state was reached
using the parameters a and g given above and choosing d
such that the average connectivity of connected nodes
remains at a constant κ = 2.5. This procedure leads to a sta-

tionary link connectivity distribution  and a resulting

connectivity distribution  independent of initial condi-
tions. Because the evolution equation is a rate-equation
that applies to a network of infinite size, the parameters
determining the stationary state are the ratio between

(a) The asymmetric link dynamics produces a broad connec-tivity distributionFigure 4
(a) The asymmetric link dynamics produces a broad 
connectivity distribution. The model prediction of the 
connectivity distribution of nodes with non-zero connectivity 
agrees well with yeast protein interaction data (filled dia-
monds). The solution of the rate equation (4) is shown as a 
solid line, the result of a computer simulation emulating the 
link dynamics encapsulated in (4) for a network of finite size 
is shown as circles (°). Nodes with the highest k (lower right) 
occur only once in the network. (b) High-connectivity 
vertices are preferentially connected to low-connec-
tivity vertices, as also observed empirically. The figure 

shows the relative likelihood of the link distribution  

and the 'null distribution'  of an uncorrelated random 

network, see text.

qk k, ′

qk k, ′
0

a p p a

d q d

k k
k k

k k

k k
k k

k k

,
,

,
,

( )

, .

′
′

′

′
′

′

∑

∑

=

=

3

dq dt a p p d g q

J J
k k k k k k k k k k

k k k k

, , , ,

, ,

/ ( )

(
′ − ′− − ′− ′ ′

′ − ′

= − +
− −

1 1 1 1

1 )) ( ) . ( ), ,− −′ ′−J Jk k k k1 4

J a q p d
q q

p

k
k k k k

k
k k k k k

k k k k

k
, , , ,

, ,
′ ′′

′′
′ ′′ + ′′+

+ ′ + ′′+

+
= −∑ 1 1

1 1 1

1 kk +1
5. ( )

qk k, ′

pk
Page 9 of 12
(page number not for citation purposes)



BMC Evolutionary Biology 2004, 4:51 http://www.biomedcentral.com/1471-2148/4/51
growth and attachment rate, the functional form of the
attachment and detachment rates, and the average con-
nectivity. The stationary state turns out to be asymptoti-
cally independent of the duplication rate for small
duplication rates. In fact, if we solve eq. (4) numerically
for any ratio g/a < 10-1, the results are statistically indistin-
guishable from that for g = 0, implying great robustness
against errors in the rate estimates discussed above.

The statistical properties of our model in its stationary
state may now be compared with the corresponding quan-
tities in the protein-interaction network. The connectivity

distribution  agrees well with the empirical data as
shown in fig. 4(a) along with the results of numerical sim-
ulations. The distribution is broad but not scale free.
(From the empirical data with connectivities distributed
over little more than a single decade the scale-free
property of protein networks – meaning that connectivi-
ties are distributed according to a power law – can not be
confidently ascertained. Furthermore the empirical data
shown in fig. 4 distinctly deviates from a power-law.) This
also holds for uniform detachment, where dkk' = constant,
and it is a crucial difference to models with symmetric
attachment, where preferential attachment leads to scale-
free networks, both at constant network size [30], and in
growing networks [3,35].

For the connectivity correlations, we find that vertices of
high k are more frequently linked to vertices of low k' than
in an uncorrelated random network with the same con-

nectivity distribution . Fig. 4(b) shows the relative like-

lihood  is the link

connectivity distribution of the network with no connec-
tivity correlations. Correlations with this property have
recently been reported for the protein interaction network
in yeast [23], but a quantitative comparison with the pre-
diction of our model will have to await a greater amount
of reliable protein interaction data. We note that connec-
tivity correlations are a specific property of networks
shaped by asymmetric dynamics, and are absent in the
case of symmetric dynamics, as discussed in the appendix.
In other words, the empirically observed non-trivial con-
nectivity correlations require asymmetric link dynamics.
This is an a posteriori reason for considering asymmetric
link dynamics.

A further consequence of asymmetric attachment is that
our model does not obey detailed balance (as is the case
of symmetric link dynamics, where attachment and
detachment rates do factorize, see [30]). Asymmetric
attachment or detachment rules violate the condition,
necessary for detailed balance, that the product of transi-
tion probabilities along a circular trajectory in the space of

networks is independent of the direction of this tour. This
may be demonstrated easily by considering, e.g. four
nodes labeled 1 – 4 to be connected linearly and discon-
nected again. Starting and ending with a single link
between nodes (1, 2), say, the product of the rates of add-
ing a link between (2, 3), then (3, 4) before removing the

links between (2, 3) and then (3, 4) is , that for

the same tour in reverse is , which are generally
equal only if the rates facorize in their arguments.

Conclusions
We have presented a stochastic evolution model for pro-
tein networks, which is based on fast link dynamics due to
mutations of the coding sequence of existing proteins and
a slow growth dynamics through gene duplications. The
crucial ingredient of the link dynamics is an asymmetric
preferential attachment rule, which is supported by
empirical data. The asymmetry has a simple biological
interpretation, namely that mutations in one gene may
lead to a new interaction of its product with that of
another, unchanged, gene. Such a mechanism, where the
two nodes involved in the generation of a new link play
different roles, is probably the norm, rather than the
exception, in biological networks. This holds particularly
for regulatory networks, where a new interaction between
two genes is formed by changes in the regulatory region of
only one of them.

Asymmetric link dynamics leads to a network model,
where the aggregate variables necessary to describe net-
work structure are the connectivity correlations qk,k', which
give the fraction of links with connectivities k and k'. In
our case, the model successfully reproduces the connectiv-
ity distribution found in empirically available protein
interaction data. The asymmetry of the link dynamics also
leads to connectivity correlations between interacting pro-
teins, which have been observed empirically [23]. A
model with symmetric link dynamics, on the other hand,
produces no such correlations. Higher order correlations
of this kind [33] are of particular interest for future work
as they may be a quantitative signature of natural selec-
tion on the level of the network as a whole.

Methods
Data processing
The protein interaction data in this paper was pooled
from three sources. The first of these sources is a large-
scale high-throughput experiment using the yeast two-
hybrid assay [13] (data available from [41]). It comprises
899 pairwise interactions among 985 proteins. The sec-
ond source is also a high-throughput two-hybrid experi-
ment, from which we used a "core" set of 747 interactions
between 780 proteins, interactions that had been con-
firmed through replicated experiments [9,42]. The third

pk

pk

q q q kk p pk k k k k k k k, , ,/ , /′ ′ ′ ′= ′0 0where κ

a d d01
2

22 11
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source is the public MIPS database [36,43] of May 2001.
From this database, we included only pairwise interac-
tions that were not produced by the two-hybrid assay, but
instead by other techniques such as cross-linking or co-
purification of two proteins. This resulted in 899 interac-
tions between 680 proteins After pooling the three data-
sets and eliminating redundant interactions, we were left
with a network of 2463 interactions and 1893 proteins.

While enormously valuable in their own right, analyses of
protein complexes do not identify pairwise protein inter-
actions, and were thus not suitable for our analysis [7,8].
We also excluded interaction data derived from experi-
ments identifying domain-specific rather than whole-pro-
tein interactions [10-12]. For all three data sets taken
separately, the connectivity distributions are statistically
indistinguishable [22]. Moreover, the observations on
link addition we use here [22], as well as the patterns in
Fig. 2 hold qualitatively for each data set individually.

Data on yeast gene duplicates, generated as described in
[27], was kindly provided by John Conery (University of
Oregon, Department of Computer Science). Briefly,
gapped BLAST [37] was used for pairwise amino acid
sequence comparisons of all yeast open reading frames as
obtained from GenBank. All protein pairs with a BLAST
alignment score greater than 10-2were retained for further
analysis. Then, the following conservative approach was
taken to retain only unambiguously aligned sequences:
Using the protein alignment generated by BLAST as a
guide, a sequence pair was scanned to the right of each
alignment gap. The part of the sequence from the end of
the gap to the first "anchor" pair of matched amino acids
was discarded. The remaining sequence (apart from the
anchor pair of amino acids) was retained if a second pair
of matching amino acids was found within less than six
amino acids from the first. This procedure was then
repeated to the left of each alignment gap (see [27] for
more detailed description and justification). The retained
portion of each amino acid sequence alignment was then
used jointly with DNA sequence information to generate
nucleotide sequence alignments of genes. For each gene
pair in this data set, the fraction Ks of synonymous (silent)
substitutions per silent site, as well as the fraction Ka of
replacement substitutions per replacement site were esti-
mated using the method of Li [28].

Asymmetric link dynamics and connectivity correlations
The existence of non-trivial correlations may be attributed
directly to the asymmetry of the link dynamics. Symmetric
link dynamics, which is a standard mechanism in models
of networks at constant size [30], leads to networks with
uncorrelated connectivities: Generalizing the approach of
[30] to include connectivity-dependent detachment, one
obtains for symmetric link dynamics with rates ak and dk

an equilibrium distribution giving the probability of find-
ing the network in the state given by adjacency matrix cij

of . This results in a con-

nectivity distribution  and

trivial connectivity correlations , which

factorize in the connectivities. This results ina constant

. A model with sym-

metric link dynamics can thus produce any empirically
observed connectivity distribution, but no networks with
statistically significant connectivity correlations.
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