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Abstract

Background: As key regulators of mitotic chromosome segregation, the Aurora family of serine/threonine kinases play
an important role in cell division. Abnormalities in Aurora kinases have been strongly linked with cancer, which has lead
to the recent development of new classes of anti-cancer drugs that specifically target the ATP-binding domain of these
kinases. From an evolutionary perspective, the species distribution of the Aurora kinase family is complex. Mammals
uniquely have three Aurora kinases, Aurora-A, Aurora-B, and Aurora-C, while for other metazoans, including the frog,
fruitfly and nematode, only Aurora-A and Aurora-B kinases are known. The fungi have a single Aurora-like homolog.
Based on the tacit assumption of orthology to human counterparts, model organism studies have been central to the
functional characterization of Aurora kinases. However, the ortholog and paralog relationships of these kinases across
various species have not been rigorously examined. Here, we present comprehensive evolutionary analyses of the
Aurora kinase family.

Results: Phylogenetic trees suggest that all three vertebrate Auroras evolved from a single urochordate ancestor.
Specifically, Aurora-A is an orthologous lineage in cold-blooded vertebrates and mammals, while structurally similar
Aurora-B and Aurora-C evolved more recently in mammals from a duplication of an ancestral Aurora-B/C gene found
in cold-blooded vertebrates. All so-called Aurora-A and Aurora-B kinases of non-chordates are ancestral to the clade of
chordate Auroras and, therefore, are not strictly orthologous to vertebrate counterparts. Comparisons of human
Aurora-B and Aurora-C sequences to the resolved 3D structure of human Aurora-A lends further support to the
evolutionary scenario that vertebrate Aurora-B and Aurora-C are closely related paralogs. Of the 26 residues lining the
ATP-binding active site, only three were variant and all were specific to Aurora-A.

Conclusions: In this study, we found that invertebrate Aurora-A and Aurora-B kinases are highly divergent protein
families from their chordate counterparts. Furthermore, while the Aurora-A family is ubiquitous among all vertebrates,
the Aurora-B and Aurora-C families in humans arose from a gene duplication event in mammals. These findings show the
importance of understanding evolutionary relationships in the interpretation and transference of knowledge from studies
of model organism systems to human cellular biology. In addition, given the important role of Aurora kinases in cancer,
evolutionary analysis and comparisons of ATP-binding domains suggest a rationale for designing dual action anti-tumor
drugs that inhibit both Aurora-B and Aurora-C kinases.
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Background

The Auroras are a conserved family of serine/threonine
kinases which have essential functions in cell division
[1,2]. In mitosis, Aurora kinases are required for chromo-
some segregation, condensation and orientation in the
metaphase plate, spindle assembly, and the completion of
cytokinesis.

Model organism studies have played a pivotal role in
functional characterization of Aurora kinases. Aurora
kinases were first identified as mutant alleles in Drosophila
melanogaster (fruitfly) that caused defective spindle-pole
formation [3]. Subsequently, Drosophila was found to
have a second Aurora homolog [4], and the nematode,
Caenorhabditis elegans, similarly has two Aurora-like genes
[5,6]. The fungi, Saccharomyces cerevisiae and Schizosaccha-
romyces pombe, have a single Aurora, known as increase-in-
ploidy 1 (Ipl1) [7] and Aurora-related kinase 1 (Ark1) [8],
respectively. Among cold-blooded vertebrates, Aurora
kinases have been most widely studied in the frog, Xenopus
laevis, which has two kinases; Aurora-A and Aurora-B
[9,10]. More recently discovered is a third Aurora kinase
called Aurora-C in rodents and humans [11].

The Aurora kinases are mitotic kinases that generally asso-
ciate with chromosomes, often in complexes with other
proteins, and interact with cytoskeletal components in
cell division. The three mammalian Aurora kinases appear
at specific locations during mitosis. Aurora-A, the "polar
kinase", primarily associates with the separating centro-
somes while Aurora-B, the "equatorial kinase", is a chro-
mosomal passenger protein [1]. The least studied Aurora
kinase, Aurora-C, appears to be localized to the centro-
some from anaphase to telophase and is highly expressed
in the testis [11,12].

Recent studies indicate that all three Aurora kinases have
strong associations with cancer. Aurora-A has been
mapped to a region in the human chromosome (20q13.2-
13.3) that is amplified in cancer cell lines and primary
tumors [13,14]. Transfected mouse cell lines with Aurora-
A have been shown to cause tumors when injected into
nude mice [14,15] and a polymorphic variant (amino
acid substitution Phe31Ile) has been associated with
human colon tumors [16]. Expression levels of Aurora-B
[17] and Aurora-C [12] were elevated in several cancer cell
lines relative to normal fibroblasts. Aurora-C is located on
chromosome 19q13.2 to 13.4, a region associated with
loss of heterozygosity in ovarian cancer [18] and pancre-
atic carcinomas [19]. Thus, the inhibition of one or more
Aurora kinases might be a novel chemotherapeutic strat-
egy against cancer [20]. Recently, several reports by
research groups in pharmaceutical and biotechnology
companies describe small molecules that target the ATP-
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binding domain of Aurora kinases, and have effects in
human tumor cell lines [21-23].

Despite the importance of model organisms in under-
standing Aurora kinase function, the evolutionary rela-
tionships among these variants are unclear. Two previous
phylogenetic analyses of Aurora kinases were incomplete
because the contemporary complement of Aurora kinases
was unavailable [4] or certain family members, namely
the Aurora-C kinases, were excluded [1]. Here, we present
an evolutionary analysis of all known Aurora kinases. We
show that vertebrate Aurora kinases evolved through a
series of gene duplication events from a chordate ancestor,
and that they are highly distinct from invertebrate
homologs. Moreover, the recent divergence, thus high
level of sequence similarity, of human Aurora-B and
Aurora-C suggests a novel anti-cancer strategy which
might simultaneously target the ATP-binding domains of
this kinase pair with dual action inhibitors.

Results and discussion

Aurora Evolution in Chordates

In order to construct a comprehensive phylogenetic tree,
GenBank was searched for all possible Aurora kinases. In
addition to previously published Aurora kinase
sequences, further chordate and urochordate Aurora
homologs were found by using mammalian Aurora-A,
Aurora-B and Aurora-C protein sequences as queries in
BLASTP or TBLASTN [24] searches of the genomes of the
pufferfish, Takifugu rubripes [25], the zebrafish, Danio rerio
[26], and the ascidian, Ciona intestinalis [27].

Multiple sequence alignments show that the Aurora
kinase family is highly conserved among species (Fig. 1).
Pairwise sequence comparisons estimate that the mean
proportion of similar amino acids (based on the
Blosum62 matrix) is much higher among all the different
families of Aurora-A, Aurora-B and Aurora-C of verte-
brates (0.84 + 0.5) than within the same family (Aurora-A
or Aurora-B) between vertebrates and invertebrates spe-
cies (0.69 + 0.3 for both families). This would suggest a
recent evolutionary radiation of Aurora families within
vertebrates.

Phylogenetic trees constructed using four methodologies,
all rooted using polo-like kinases type 4 (PLK4), show
that all vertebrate Auroras form a clade distinct from those
of invertebrates (Fig. 2). The phylogenetic tree constructed
by the neighbour-joining distance method shows moder-
ate boot-strap support (67%) for the evolution of all ver-
tebrate Auroras from a urochordate ancestor, represented
by the ascidian, C. intestinalis. The use of alternative kinase
families, other than PLK4, to root the tree did not alter the
internal topology of the Aurora clade. Although its
genome sequence is incomplete, C. intestinalis likely has
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Multiple sequence alignment of representative Aurora-A (AurA), Aurora-B (AurB), and Aurora-C (AurC)
kinases, and their homologs (Airl, Air2, ARKI and Ipll). N-terminal regions which are species-specific and could not
be accurately aligned are excluded, although the numbering of residues begins at the starting amino acid for that particular pep-
tide. Progressive darker shading indicates conservation of amino acid residues in 60%, 80% and 100% of the sequences, respec-
tively. Dark line at the top of the sequence blocks indicates those regions used in the phylogenetic analyses (Also see additional
file | and 2). Species include Homo sapiens (hosa), Mus musculus (mus), Danio rerio (dare), Takifugu rubripes (taru), Xenopus laevis
(xela), Ciona intestinalis (ciin), Drosophila melanogaster (drme), Caenorhabditis elegans (cael), Saccharomyces cerevisiae (sace) and
Schizosaccharomyces pombe (scpo). The program CLUSTALW [41] was used to constructed the initial alignment which was

subsequently refined manually.
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Figure 2

Phylogenetic tree of Aurora-A, Aurora-B, and Aurora-C kinases rooted by PLK4 kinases. Major organism groups
(with colours, fonts) are mammals (red, bold italic), cold-blooded vertebrates (deep blue, italic), urochordates (orange, italic),
invertebrates, (purple, italic), plants (green, italic), fungi (black, italic) and protists (light blue, italic). "Original" indicates the first
Aurora identified from Drosophila melanogaster [3]. Plant sequences are identified by their Genbank accession number. Stacks of
numbers show, in descending order, the percent occurrence of nodes in greater than 50% of 1000 bootstrap replicates of
neighbor joining (plain text) and maximum parsimony (italicized text) analyses or greater than 50% of 10000 quartet puzzling
steps of maximum likelihood analysis (in curved parentheses) or Bayesian posterior probability (only 0.90 or greater, in square
parentheses). Asterisks ("*") indicate those nodes supported 70% or greater by the first three tree-building methods and 0.90
Bayesian posterior probability. Nodes with one or two values less than 50% have dashes ("-") while values less than 50% are
unmarked. Scale bar represents 0.1 expected amino acid residue substitutions per site.
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only a single Aurora homolog since other probable kinase
open reading frames associated with the next top five
BLASTP [24] hits did not cluster with Auroras from other
species in phylogenetic trees.

Among true vertebrates, our phylogenetic tree shows that
the Aurora kinases underwent two major gene duplication
events. The first split in cold-blooded vertebrates lead to
the formation of two Aurora subfamilies. One branch
encompasses all known vertebrate Aurora-A sequences in
a single orthologous lineage that includes fishes, amphib-
ians and mammals. This family includes previously iden-
tified Aurora-A kinases in Xenopus laevis, rodents and
humans as well as a new putative ortholog in T. rubripes.

The second family, previously known as Aurora-B [2,28]
consists of cold-blooded vertebrate and mammalian
Aurora-B as well as mammalian Aurora-C. Mammalian
Aurora-B and Aurora-C are similarly related to the cold-
blooded vertebrate Aurora presently known as "Aurora-B"
in amphibians (X. laevis) and fish (D. rerio and T.
rubripes). Searches of T. rubripes and D. rerio protein and
DNA sequence databases detected several other putative
serine/threonine kinase homologs but none were Auroras
according to phylogenetic analyses. Thus, cold-blooded
vertebrates appear to have only a single Aurora-A
ortholog, a single Aurora-B-like homolog, and lack an
Aurora-C ortholog. Conversely, Aurora-A, Aurora-B and
Aurora-C appear to be ubiquitous to mammals (at least
placentals) where they are encoded by separate chromo-
somal loci. It would appear that mammalian Aurora-B
and Aurora-C evolved from a duplication event involving
the ancestral Aurora-B found in cold-blooded vertebrates.
This depiction of the evolutionary relationships of verte-
brate Auroras was consistently determined by four differ-
ent phylogenetic methods with high bootstrap or
Bayesian posterior probability values (Fig. 2).

Comparisons of human Aurora-B and Aurora-C
sequences to the resolved 3D structure of human Aurora-
A [29] lends further support to the evolutionary scenario
that vertebrate Aurora-B and Aurora-C are closely related
paralogs (Fig. 3a). Of the 26 residues lining the ATP-bind-
ing active site, only three vary among the different human
Aurora kinases; Leu215, Thr217 and R220 (numbering
and residue identity based on Aurora-A), and all of these
variants were specific to Aurora-A (Fig. 3b). Aurora-B and
Aurora-C did not vary in their active site residues. Further-
more, all three Auroras have a carboxy-terminal destruc-
tion box (D-box) but only Aurora-A has the necessary
amino-terminal A-box (also known as the D-box activat-
ing-domain) for its functional activation [30,31]. Collec-
tively, these comparisons of structure and motifs support
the phylogeny depicting an early divergence of Aurora-A
from an Aurora-B / Aurora-C clade.

http://www.biomedcentral.com/1471-2148/4/39

Non-chordate Evolution

The Aurora kinases of plants and invertebrates are all out-
group lineages to chordates / urochordates (Fig. 2).
Although all phylogenetic methods strongly support the
monophyly of chordate Aurora kinases, the exact ordering
among nodes leading to the various plant and inverte-
brate clusters were not resolved with similarly high boot-
strap or probability values. Placement of plant Aurora
kinases between chordates and invertebrates might be an
artifact of tree construction methods. (Plant, protist, fun-
gal and invertebrate lineages were all highly diverged from
vertebrate Aurora kinases as witnessed by their longer
branch lengths.) The earliest lineages of the Aurora tree
are those fungal model organisms with a single Aurora-
like homolog S. cerevisiae (Ipl1) and S. pombe (Arkl).
Other basal branches are the amitochondrial fungi,
Encephalitozoon cuniculi, and the kinetoplast protist, Leish-
mania major [32].

Invertebrate Aurora kinases, including those of the model
organisms C. elegans and D. melanogaster, occupy separate
early branches and are not, as their current names suggest,
orthologs to either Aurora-A or Aurora-B of vertebrates.
An unrooted phylogenetic tree with only model organism
species shows the same topology of vertebrate Auroras as
the more species-rich tree rooted by PLK4 kinases (Fig. 4).
However, similar kinases from C. elegans and D. mela-
nogaster now cluster together. The unrooted tree suggests
that the invertebrate Aurora-B kinase family evolved prior
to the invertebrate Aurora-A kinase family although fur-
ther examples from other species are desirable to confirm
this hypothesis. The consensus scenario in both rooted
and unrooted trees is that vertebrate Aurora kinases are
paralogous, rather than orthologous, to their invertebrate
counterparts.

Model Organisms in Context

Aurora-B and Aurora-C, as specific innovations in mam-
mals, might have distinct protein-binding partners and
cellular functions from those of Aurora-B kinases in
amphibians. The perturbation of Aurora-B function in dif-
ferent systems suggests variable kinetochore-microtubule
interactions [33]. Transfection of normal rat kidney cells
with a kinase-inactive, dominant negative form of Aurora-
B caused multiple defects in mitosis [34] while an Aurora-
B kinase inactivating antibody seemed to have milder
effects in Xenopus tissue culture cells [35]. Xenopus Aurora-
A functions in the extrusion of the first polar body [36]
while in C. elegans Aurora B plays a similar role [5]. Also,
C. elegans Aurora-B binds to a protein CSC-1 which has no
homolog in other studied systems [37]. While these stud-
ies used different experimental methods, the lack of direct
orthology among vertebrate and invertebrate Aurora-A
and Aurora-B might also account for functional differ-
ences in these systems.
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Figure 3

Comparisons of the catalytic domains of human Aurora-A, Aurora-B and Aurora-C kinases. A. Crystal structure
of the catalytic domain of Human Aurora kinase with an adenosine molecule shown in the binding pocket (PDB ID ImuoA)
[29]. Residues lining the active site are colored purple when invariant and red when variant. B, Multiple sequence alignment of
Auroras. Using the same color scheme as the structure in panel A, residues identified to be lining the active site are identified
with invariant residues among all three Auroras marked with an asterisk. Of the 26 residues lining the active site, only three
vary among the different human Aurora kinases; Leu215, Thr217 and R220 (numbering and residue identity based on Aurora-

A), and all of this variation was found in Aurora-A.

The evolutionary analysis presented here also suggests
revisiting the present Aurora nomenclature. Adams et al.
[28] proposed a naming scheme where, irrespective of
species, the original Aurora is known as Aurora-A (also
called AIRK1, Aurora, Aurora-2, AIK, BTAK, human
STK15, mouse STK6 and others), followed by Aurora-B
(also known as AIRK-2, AL, Aurora-1, AIK2, STK12 and
others) and Aurora-C (or STK13). However, the proposed
nomenclature fails to reflect evolutionary, and possibly
functional, relationships among the Auroras. We suggest
that Aurora-A be retained as the name for all orthologs in
mammals and cold-blooded vertebrates. While Aurora-B
and Aurora-C seem appropriate for mammalian versions,
the ancestral cold-blooded vertebrate "Aurora-B" might
be renamed "Aurora-BC". As for invertebrates, the so-
called Aurora-A or Aurora-B genes are clearly not
orthologs to their respective vertebrate counterparts.
However, introducing a new nomenclature here might
simply add further confusion to the field.

Evolution of an Anti-Cancer Target

There have been several recent reports of Aurora kinase
inhibitors that are under development by pharmaceutical
or biotechnology companies for cancer treatment. The
compounds Hesperadin (Boehringer Ingelheim [21]) and
ZM447439 (AstraZeneca [22]) are suggested to be tar-
geted to Aurora-B. While both studies show lesser levels of
compound inhibition of Aurora-A as well as several other
kinases, neither report included Aurora-C in their kinase
profile. Selective inactivation of multiple kinases is not an
undesirable pharmaceutical profile for a small molecule
inhibitor and, in fact, could be the best strategy to achieve
maximal clinical efficacy of an anti-cancer agent [38].
Indeed, an intense area of anti-cancer research is the
development of small molecular ATP analogues that gen-
erally target the kinase domain of protein kinases [39]. For
example, Gleevec (also known as imatinib and made by
Novartis) for chronic myelogenous leukemia, is a small-
molecule inhibitor that targets BCR-ABL, c-Kit and
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Unrooted phylogenetic tree of Aurora kinases from human and model organisms. Tree was constructed using the
maximum likelihood quartet puzzling method [43]. Scale bar represents 0.1 expected amino acid residue substitutions per site.
Confidence estimates of nodes, fonts, and colours of species names correspond to Fig. 2.

platelet-derived growth factor receptor kinases [40].
Recently, a selective inhibitor of all three Aurora kinases,
VX-680 (made by Vertex Pharmaceuticals), was reported
to inhibit cell-cycle progression and induce apoptosis in
various human tumor cell types and in vivo xenograft
models [23]. Interestingly, although VX-680 is a potent
inhibitor of all three Aurora kinases, its apparent inhibi-
tion constant is much lower for Aurora-A (0.6 nM) than
for either Aurora-B (18 nM) or Aurora-C (4.6 nM). Again,
the compound's greater affinity for Aurora-A, relative to
Aurora-B and Aurora-C is compatible with the proposed
evolutionary scenario of mammalian Auroras.

Conclusions

Evolutionary analysis shows that cell division Aurora
kinases, while consistent in theme throughout eukaryotes,
have undergone lineage-specific expansions and speciali-
zation in metazoans. Aurora-C is the least known of the

Aurora kinases. Yet as an evolutionary innovation in
mammals, further studies are very much warranted from
the perspectives of better understanding its potential roles
in both cell replication and tumor progression. A better
functional understanding of Aurora-C would help clarify
the evolutionary relationships of Aurora-B and Aurora-C
in mammals relative to the ancestral Aurora-BC in cold-
blooded vertebrates. Additionally, the close evolutionary
and structural relationships between mammalian Aurora-
B and Aurora-C offers the tantalizing opportunity to
design dual kinase inhibitors that might circumvent
potential tumor cell resistance to mono-target
chemotherapeutics.

Methods

Database searches
All Aurora kinase orthologs and paralogs were initially
collected from GenBank nonredundant protein database
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by performing separate searches using BLASTP [24] with
human Aurora-A, Aurora-B and Aurora-C proteins as
query sequences and a cut-off E-value of 1.0e-10. Since
this dataset included additional kinases to the Auroras,
preliminary multiple sequence alignments and phyloge-
netic analysis using program CLUSTALW v1.7 [41] served
to identify the clade of all known Aurora kinases. Takifugu
rubripes, Danio rerios and Ciona intestinalis homologs were
obtained by BLASTP and TBLASTN [24] of species-specific
protein and DNA sequence databases, respectively. The
top five homologs from each species retrieved from sepa-
rate searches with human Aurora-A, Aurora-B and Aurora-
C were entered into a preliminary phylogenetic analysis
using all retrieved Aurora kinases from Genbank. These
analyses revealed that T. rubripes and D. rerios had
orthologs to X. laevis Aurora-A and Aurora-B but not
mammalian Aurora-C. C. intestinalis had a single Aurora-
like kinase.

Phylogenetic and structure analysis

PLK4 kinases were selected as the outgroup for phyloge-
netic analyses because they were the most similar non-
Aurora kinases to either human Aurora-A, Aurora-B or
Aurora-C in multiple BLASTP [24] searches of the non-
redundant protein database of GenBank. Using alterna-
tive kinases as outgroups made no difference to the topol-
ogy of the Aurora clade. Initial multiple sequence
alignments were performed using the program CLUS-
TALW v1.7 [41] with default settings and subsequently,
refined manually using the program SEQLAB of the GCG
Wisconsin Package v11.0 software package (Accelrys, San
Diego, CA, USA). We removed regions with residues that
could not be unambiguously aligned or that contained
insertions or deletions. The final multiple sequence align-
ment was 240 amino acids in length. Pairwise compari-
sons for the proportion of similar residues were estimated
from the length of the shortest sequence without gaps and
the Blosum62 weighting matrix as implemented in the
program OLDDISTANCES in GCG.

We constructed phylogenetic trees using distance neigh-
bor-joining (NJ), maximum parsimony (MP), maximum
likelihood quartet puzzling (QP), and Bayesian posterior
probabilities (BP). NJ trees were based on pair wise dis-
tances between amino acid sequences using the programs
NEIGHBOR and PROTDIST (Dayhoff option) of the
PHYLIP 3.6 package [42]. The programs SEQBOOT and
CONSENSE were used to estimate the confidence limits of
branching points from 1000 bootstrap replications. ML
tree topologies were constructed using the software PUZ-
ZLE 4.0 [43], employing 1000 puzzling steps, the JTT sub-
stitution matrix, estimation of rate heterogeneity using the
gamma distribution model with eight rate categories, and
the gamma-parameter estimation from the dataset. MP
analysis was performed using PAUP4.0b5 software [44]
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where the number and lengths of minimal trees were esti-
mated from 100 random sequence additions, while confi-
dence limits of branch points were estimated by 1000
bootstrap replications. BP trees were constructed using the
software MrBayes v3.0B4 [45,46]. Bayesian analysis used
the mixed model of sequence evolution with random
starting trees. Markov chains were run for 10° generations,
burn-in values were set for 104 generations, and trees sam-
pled every 100 generations. All trees were visualized using
the program TREEVIEW v1.6.6 [47].

For the Aurora kinase phylogeny rooted with PLK4
kinases shown in Fig. 2, the log likelihood of the final ML
tree was -8059.78. Four minimal length MP trees were
recovered, 1522 steps in length with a consistency index
(CI) of 0.5802 and a retention index (RI) of 0.6016. The
variable branch arrangements were terminal nodes
(human, pig and cow Aurora-B) which did not affect the
central findings.

For the unrooted phylogeny of Aurora kinases of model
organisms shown in Fig. 3, the log likelihood of the final
ML tree was -4469.20. A single minimal length MP trees
were recovered, 779 steps in length with a consistency
index (CI) of 0.7214 and a retention index (RI) of 0.2786.

The SwissPDBviewer program [48] was used to obtain the
surface representation of human Aurora-A kinase (PDB ID
1muoA). The active site residues, defined as being within
5A of the ADP cofactor, were identified using the program
CAST [49]. The multiple sequence alignment for the three
human Aurora kinase proteins was obtained using CLUS-
TALW [41]. Multiple sequence alignment and sequence
GenBank accession numbers are available as Supplemen-
tary Information [see additional file 1 and 2].
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