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Abstract
Background: The size distribution of gene families in a broad range of genomes is well approximated by
a generalized Pareto function. Evolution of ensembles of gene families can be described with Birth, Death,
and Innovation Models (BDIMs). Analysis of the properties of different versions of BDIMs has the potential
of revealing important features of genome evolution.

Results: In this work, we extend our previous analysis of stochastic BDIMs.

In addition to the previously examined rational BDIMs, we introduce potentially more realistic logistic
BDIMs, in which birth/death rates are limited for the largest families, and show that their properties are
similar to those of models that include no such limitation. We show that the mean time required for the
formation of the largest gene families detected in eukaryotic genomes is limited by the mean number of
duplications per gene and does not increase indefinitely with the model degree. Instead, this time reaches
a minimum value, which corresponds to a non-linear rational BDIM with the degree of approximately 2.7.
Even for this BDIM, the mean time of the largest family formation is orders of magnitude greater than any
realistic estimates based on the timescale of life's evolution. We employed the embedding chains technique
to estimate the expected number of elementary evolutionary events (gene duplications and deletions)
preceding the formation of gene families of the observed size and found that the mean number of events
exceeds the family size by orders of magnitude, suggesting a highly dynamic process of genome evolution.
The variance of the time required for the formation of the largest families was found to be extremely large,
with the coefficient of variation >> 1. This indicates that some gene families might grow much faster than
the mean rate such that the minimal time required for family formation is more relevant for a realistic
representation of genome evolution than the mean time. We determined this minimal time using Monte
Carlo simulations of family growth from an ensemble of simultaneously evolving singletons. In these
simulations, the time elapsed before the formation of the largest family was much shorter than the
estimated mean time and was compatible with the timescale of evolution of eukaryotes.

Conclusions: The analysis of stochastic BDIMs presented here shows that non-linear versions of such
models can well approximate not only the size distribution of gene families but also the dynamics of their
formation during genome evolution. The fact that only higher degree BDIMs are compatible with the
observed characteristics of genome evolution suggests that the growth of gene families is self-accelerating,
which might reflect differential selective pressure acting on different genes.
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Background
An extremely broad variety of phenomena in physics,
biology, and the social sphere is described by power law
distributions. The power laws apply to the distribution of
the number of links between documents in the Internet,
the population of towns, the number of species that
become extinct within a year, the number of sexual and
other contacts between people, and numerous other
quantities [1-4]. In the field of genomics, the "dominance
by a selected few" [5] encapsulated in the power laws
applies to the distribution of the number of transcripts per
gene, the number of interactions per protein, the number
of genes in coexpressed gene sets, the number of genes or
pseudogenes in paralogous families, the number of con-
nections per node in metabolic networks, and other quan-
tities that can be obtained by genome analysis [5-9].

Mathematically, these distributions are described by the
formula: P(i) ≈ ci-γ where P(i) is the frequency of nodes
with exactly i connections or sets with exactly i members,
γ is a parameter which typically assumes values between 1
and 3, and c is a normalization constant. Obviously, in
double-logarithmic coordinates, the plot of P as a func-
tion of i is close to a straight line with a negative slope.
Recently, it has been shown that the distributions of sev-
eral genome-related quantities are best described by the
so-called generalized Pareto function: P(i) = c(i + a)-γ

where γ > 0, a are parameters [10-13]. At large i (i >>a),
this distribution is indistinguishable from a power law,
but at small i, it deviates substantially, with the magnitude
of the deviation depending on a.

Power law distributions and the associated scale-free net-
works are compatible with the intuitively plausible mech-
anism of evolution by preferential attachment although
other modes of evolution are also possible [9,14]. Under
preferential attachment, a network or a mathematically
analogous object, such as an ensemble of gene families,
grows via attachment of new nodes to the pre-existing
ones with a probability that is proportional to the degree
(number of connections) of the latter.

However, preferential attachment or other general evolu-
tionary principles associated with power law type distri-
butions and scale-free phenomena do not actually explain
the emergence of these phenomena in biologically mean-
ingful terms. A biological explanation involves, at a mini-
mum, identifying the elementary events underlying the
evolutionary process and the simplest models of evolu-
tion that include these events and are compatible with the
observations. Under this logic, families of paralogous
genes represent a perfect object for evolutionary mode-
ling. Indeed, for these families, elementary evolutionary
processes are defined naturally. By definition, paralogous
families evolve by gene duplication. It has been long sus-

pected and, with the advent of genomics, established
beyond reasonable doubt that genome evolution pro-
ceeds largely by duplication of genes or portions thereof,
and even long genomic segments or entire genomes [15-
20]. All sequenced genomes contain numerous paralo-
gous genes, and in more complex genomes, the majority
of genes have at least one paralog [21,22]. Duplication is
followed by mutational diversification and gradually
leads to functional differentiation of the paralogs. It is
thought that such differentiation occurs via the routes of
neofunctionalization (emergence, in one of the paralogs,
of a new function non-existent in the ancestral gene) [16]
and, probably most often, subfunctionalization, i.e., par-
titioning of subfunctions of the ancestral gene among the
paralogs [23,24]. Hence, duplication obviously is the first
elementary process of genome evolution. Genomes and
gene families not only grow but often shrink or, probably
most of the time, persist in equilibrium. Therefore, dupli-
cation must be counter-balanced by the opposite elemen-
tary process, gene loss. Again, comparative genomics has
shown that gene loss occurs in all species and seems to be
extensive in certain lineages, particularly in parasites [25-
27]. Finally, genes new to a given lineage may emerge
either as a result of a dramatic change after duplication
obliterating all "memories" of a gene's origin, or via hori-
zontal gene transfer, or by evolution of a protein-coding
gene from a non-coding sequence (rare as this latter proc-
ess might be). Collectively, the contribution of these proc-
esses to genome evolution may be termed innovation.
Gene duplication, gene loss, and innovation seem to com-
prise a reasonable minimal set of elementary events for
modeling genome evolution. The only potential major
addition could be rearrangement of the gene structure
whereby genes accrete or lose domains. However, at least
for first approximation modeling, these changes could be
covered either by duplication, if they do not yield new
genes without detectable relationships to pre-existing
families, or by innovation if they do. We should further
note that evolutionary analysis of paralogous gene fami-
lies can be reasonably viewed as a study of the evolution
of genomes themselves if all genes are viewed as members
of paralogous families, ranging in size (number of mem-
bers) from 1 to N (the size of the largest family). Of
course, one must keep in mind that describing genome
evolution in terms of gene duplication, loss, and innova-
tion represents a high level of abstraction, whereby a gene
is considered an atomic unit of evolution, and mutation
processes occurring within a gene are ignored. However,
numerous comparative-genomic studies have shown the
utility of the gene-level abstraction both for systematic
prediction of the functions of uncharacterized genes using
the patterns of their distribution in diverse genomes [28-
31] and for understanding general evolutionary trends. A
striking recent example of the latter type of achievement is
the demonstration that different functional categories of
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genes scale differently with genome size, with the steepest
ascent of regulatory genes offering a plausible explanation
for the observed limits of genome size in prokaryotes [32].

A natural framework for modeling evolution of gene fam-
ilies is a birth-and-death process, a concept well explored
in many physical and chemical contexts [33]. Duplication
constitutes a gene birth, and gene loss is a death event;
innovation also can be readily incorporated in this con-
text. The birth-and-death approach has been applied to
modeling the evolution of paralogous genome family
sizes [6,12,34], the distribution of folds and families in
the entire protein universe [35], and protein-protein inter-
action networks [36,37]. For over a century since the pub-
lication of Darwin's seminal work [38], biologists
believed that evolution at all levels is largely driven by nat-
ural selection [39]. However, the advent of molecular evo-
lution shifted the perspective by demonstrating, largely
through the work of Kimura and his school, that many, if
not most, of the fixed nucleotide substitutions are effec-
tively neutral [40]. Recent comparative analyses of gene
expression led to the expansion of the neutral evolution
concept beyond the genome sequence, at least to the level
of the transcriptome [41,42]. Perhaps the principal
importance of the neutral theory is that it leads to a
change of the prevailing null hypothesis of evolutionary
biology: neutrality should be taken as the null hypothesis,
and selection should be invoked only when this hypo-
thesis can be rejected. Birth and death models naturally fit
this paradigm because they do not include the notion of
selection (at least not explicitly). It is therefore of consid-
erable interest to determine whether or not simple models
of this class can be rejected as the explanation for various
observed features of genomes.

In the previous work [12], we examined in detail simple
deterministic models of genome evolution, which we
dubbed BDIMs, after birth (duplication), death (elimina-
tion), and innovation (de novo emergence or acquisition
via horizontal gene transfer) models. We showed that the
power law asymptotic of the size distribution of gene fam-
ilies appears if, and only if, birth and death rates of
domains in families of sufficiently large size are balanced
(asymptotically equal up to the second order) and that
any power asymptotic with γ ≠ 1 appears only if the per
gene birth/death rates depend on the size of the gene fam-
ily. We showed that the simplest model that adequately
approximates the empirical data on gene (domain) family
size distributions is the linear 2nd order balanced BDIM.

Subsequently, we expanded the BDIM framework by
introducing stochastic BDIMs, which account not only for
the stationary state of the gene ensemble but also for the
characteristics of evolution of the system, such as the
probability of the formation of a family of the given size

before extinction and the mean times of formation and
extinction of a family of a given size [43]. We first investi-
gated these issues for the linear 2nd order balanced sto-
chastic BDIM. Given the published estimates of the rates
of gene duplication and loss [24], we found that this ver-
sion of BDIM, which gives a good approximation of the
stationary distributions of family sizes for different
genomes, predicts completely unrealistic mean times for
reaching the observed sizes of the largest domain families.
In computer simulations with a large ensemble of genes,
even the minimum time required for the formation of the
largest family was shown to be unrealistically long. Thus,
the linear BDIM is incompatible with the estimates of the
rate of genome size growth derived from the empirical
data. Therefore we performed a preliminary examination
of non-linear, higher degree BDIMs and showed that the
rate of genome size growth increases with the degree of
the model, rendering non-linear BDIMs more realistic
models of genome evolution [43].

Here, we present a detailed analysis of the properties of
different non-linear stochastic BDIMs, including polyno-
mial, rational, and logistic ones, which were obtained by
the appropriate transformations of the original linear
model. These models generated the same stationary fam-
ily size distribution, but the stochastic properties of the
higher order models were dramatically different from
those of the linear BDIM. The mean number of elemen-
tary events, duplications and deletions, which are
required for the formation of the largest family, decrease
monotonically with the increase of the model degree. By
contrast, the mean time of formation of a gene family of
the given size under a fixed average duplication rate went
through a minimum depending on the model degree; typ-
ically, the model degree corresponding to this minimum
was between 2 and 3. However, even with this optimal
degree, the mean times of formation of the largest families
in different genomes were unrealistically long.

The times of formation and extinction of gene families are
random variables with unknown distributions. Therefore
it was important to determine the variance of these times
and the number of elementary events preceding the for-
mation and extinction of the largest families. We found
that the coefficients of variation were very large such that
the extreme values of the formation times for the largest
family could differ from the mean time by at least two
orders of magnitude. Thus, for assessing the feasibility of
the formation of the largest families under a given model,
the relevant value is not the mean but the minimal time
of family formation over the entire ensemble of genes.
Using Monte Carlo simulations, we show that the mini-
mal time required for the formation of families of the
expected size under BDIMs of the orders between 2–3 is
compatible with the timescale of genome evolution.
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Results and discussion
1. Definitions and empirical data
The basic BDIM definitions and assumptions
We treat a genome as a "bag" of genes (or, more precisely,
portions of genes) encoding protein domains (or simply
domains for brevity; see [12] for details). Domains are
treated as independent evolving units disregarding co-
occurrence of domains in multidomain proteins. Each
domain is considered to be a member of a family, which
may have one or more members. In this work, we inter-
changeably refer to domain families or gene families.
Three types of elementary events are postulated: i) birth,
which yields a new member in the same domain family as
a result of gene duplication, ii) death, i.e., inactivation
and/or deletion of a domain, and iii) innovation, which
generates a new, single-member family. Innovation may
occur via domain evolution from a non-coding sequence
or a non-globular protein sequence, via horizontal gene
transfer from another species, or via radical change of a
domain after duplication. The rates of elementary events
are defined as the probabilities of the respective events
during an infinitesimally short time interval [44] and is
postulated to be independent of time (all analyzed mod-
els are homogeneous) and of the structure, biological
function, and other features of individual domain fami-
lies. Clearly, these assumptions are simplifications made
in order to avoid prohibitively complex models; the justi-
fication is that, over large (genome-wide) ensembles of
families and long time intervals, the existing non-homo-
geneities are likely to cancel out, making homogeneous
models realistic. It may be useful to emphasize that
homogeneity of the models does not imply constancy of
the number of events during any finite time interval,
which is a random variable.

The data on the size of domain families in sequenced
genomes were obtained as described previously [12].
Briefly, the domains were identified by comparing the
CDD library of position-specific scoring matrices (PSSMs)
for domains extracted from the Pfam and SMART data-
bases, to the protein sequences from completely
sequenced eukaryotic and prokaryotic genomes http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db =Genome
using the RPS-BLAST program [45].

In a finite genome, the maximum number of domains in
a family cannot exceed the total number of domains and,
in reality, is probably much smaller. Let N be the maxi-
mum possible number of domain family members (this
limit is introduced for technical reasons; however, this
should not be perceived as a biologically unrealistic
assumption because N can be made extremely large, e.g.,
to exceed the number of genes in the largest known
genome by several orders of magnitude; furthermore,
almost all of the results below are valid with N = ∞ under

certain well defined conditions, which ensure the exist-
ence of the ergodic distribution of the birth-and-death
process). We also consider virtual, "empty" families that
consist of 0 domains. In the stochastic BDIMs, newborn
domains are extracted from this class and dead domains
return to it. Originally, we examined exclusively the deter-
ministic version of the BDIMs [12]. Introduction of the 0
class "closes" the model and allows us to transform it into
a Markov process, which provides for the possibility to
explore the stochastic properties of the system [43]. In
these stochastic models, innovation was not introduced
explicitly as it was in the deterministic models, but was
implied in the emergence of domains from the 0 class.

Let pi(t) be the frequency of a domain family of size i.
Then pi(t) satisfy a system of forward Kolmogorov equa-
tions for birth-and-death process (e.g., [44,46]):

dp0(t)/dt = -λ0p0(t) + δ1p1(t),

dpi(t)/dt = λi-1pi-1(t) - (λi + δi)pi(t) + δi+1pi+1(t) for 0 <i <N,
 (1.1)

dpN(t)/dt = λN-1pN-1(t) - δNpN(t).

Mathematically, (1.1) defines the state probabilities of a
birth-and-death process with the finite number of states
{0,1,...N} and reflecting boundaries in 0 and N. The evo-
lution of individual trajectories of the birth-and-death
process X(t), whose state probabilities satisfy the system
(1.1), can be described as follows. At the starting time, the
system is situated in some initial state x0. The time axis {t
≥ 0} can be divided into intervals [0,τ1), [τ1, τ2), [τ2, τ3) ...
such that X(t) is a constant on each interval. If, at the
moment τn, the system was situated in the point xn = i,
then, in the moment τn+1, the system moves either into the
state i+1 with the probability βi = λi/(λi + δi) or into the
state i-1 with the probability µi = δi/(λi + δ i). The sojourn
time ti = τn+1 - τn between the arrival at the point xn = i and
the exit from this point is a random variable independent
of the previous history of the system and is distributed
exponentially: P{ti ≥ x} = exp(-(λi + δi)x). Note that the
random variables ti are independent, and the mean
sojourn time, E(ti), in the state i is E(ti) = 1/(λi + δi).

Process (1.1) has a unique stationary ergodic distribution
p0,...,pN defined by the equalities dpi(t)/dt = 0 for 0 ≤ i ≤ N.
Let J(i, t) = δipi(t) - λi-1pi-1(t) be the current through the
state i in t time moment, J(i) = δipi - λi-1pi-1 be the current
in the stationary state. Then the equation for the station-
ary distribution can be written as J(i+1) - J(i) = 0. As the
system is closed, J(0) = 0 and hence J(i) = 0 for all i, such
that

pi / pi-1 = λi-1/δi.
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We will consider also the variant of this model with states
{1,...N} and reflecting boundaries in states 1 and N:

dp1(t)/dt = -λ1p1(t) + δ2p2(t),

dpi(t)/dt = λi-1pi-1(t) - (λi + δi)pi(t) + δi+1pi+1(t) for 1 <i <N,
 (1.3)

dpN(t)/dt = λN-1pN-1(t) - δNpN(t).

This model describes the evolution of the size of a domain
family that includes an indispensable (essential) gene and
is not allowed to go extinct. Similarly, for model (1.3), the
ergodic distribution is:

The ergodic distribution (1.2) (or 1.4) is globally stable
and is approached exponentially with respect to time
from any initial state. The asymptotic of the ergodic distri-
bution is completely defined by the asymptotic behavior
of the function χ(i) ≡ λi-1/δi. Let us suppose that, for large
i, the following expansion is valid:

χ(i) ≡ λi-1/δi = is θ (1-γ/i + O(1/i2))  (1.5)

Then, the asymptotical behavior of the stationary distribu-
tion of model (1.1) is completely defined by three param-
eters: s, θ and γ ([12]). In particular, if the birth-and-death
process is the 1st order balanced, i.e. if, by definition, s = 0
in (1.5), then, asymptotically, pi ~ θii-γ . If the process is 2nd

order balanced, i.e. s = 0 and θ = 1, then pi ~ i-γ.

The complete description of all possible asymptotics of
the ergodic distributions of model (1.1) under condition
(1.5) is given in Mathematical Appendix, Theorem 1
(hereinafter all references of the form (A.m.n) refer to the
corresponding formula in the Mathematical Appendix

[see Additional file 1]). It asserts that a large class of mod-
els, namely the second order balanced BDIMs, provide
any given power asymptotic of the stationary frequency
distributions of family sizes.

2. Classification of BDIMs
Linear BDIM
The simplest model that shows the generalized Pareto dis-
tribution is the linear BDIM with

λi = λ(i+a), δi = δ(i + b) for i > 0, λ, δ, a and b are constants.
 (2.1)

The equilibrium distribution of domain family sizes is
defined by:

So, if λ = δ (θ = 1), the resulting 2nd order balanced linear
BDIM has a power asymptotics with γ = 1 + b - a.

Polynomial BDIM
Informally, polynomial BDIMs can be introduced as fol-
lows. Under the linear BDIM, the dependence of the birth
and death rates on family size is very weak; although each
gene "senses" the size of the family (as reflected in the
non-zero parameters a and b), this dependence cannot be
interpreted as a specific form of interaction between fam-
ily members. If such interactions are postulated, λi ~ Pn(i)
and/or δi ~ Qm(i), where Pn(i), Qm(i) are polynomials on i
of the n-th and m-th degrees. The ergodic distribution of
the stochastic polynomial BDIM of the form (1.1) and
(1.3) is asymptotically the same as that of the originally
described deterministic polynomial BDIM [12], see
Appendix (A.1.4), (A.1.5) [see Additional file 1] and Prop-
osition 2 for details. We show here that non-linear poly-
nomial 2nd order balanced BDIM predict evolution rates
that are dramatically greater than those for the linear
BDIM.

As an example, let us consider the quadratic BDIM in
more detail. It takes into account the simplest, pairwise
interaction between family members, which leads to λi ~
i2 and/or δi ~ i2, i.e., one or both rates are polynomials on
i of the second degree. If the polynomial degrees of the
birth and death rates are different (e.g., λi ~ i and δi ~ i2),
the corresponding BDIM is non-balanced, and equilib-
rium frequencies have no power asymptotics. Thus, let

λi = λ (i2 + r1i + r2), δi = δ(i2 + q1i + q2),  (2.3)

where λ, δ, rk, qk, k = 1,2 are constants (such that λi, δi are
positive for all i); equivalently,
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λi = λ (i + a)(i + a2), δi = δ (i + b)(i + b2).

Then, r1 = a + a2, q1 = b + b2, and

χ(i) = λi-1/δi = θ (1 + (r1 - q1 - 2)/i + O(1/i2)), where θ = λ/δ.

The quadratic BDIM has equilibrium sizes of domain
families (see A.1.6)

pi ≈ c2p0 λ0/λθiiρ-2

where ρ = r1 - q1, c2 = p0 [(Γ (1 + b) Γ (1 + b2)] / [Γ(1 + a) Γ
(1 + a2)], and

Thus, if the quadratic BDIM is 2nd order balanced, then pi
~ iρ-2. Note that the asymptotic behavior frequencies pi do
not depend on free coefficients r2 and q2 in (2.3), but only
on θ and r1 - q1, although the constant c2 could depend on
the free coefficients r2, q2.

Rational BDIM
Rational models comprise a rather general class of BDIMs,
for which the asymptotic behavior of the equilibrium fre-
quencies and equilibrium sizes of domain families are
fully tractable. The ergodic distribution of the stochastic
rational BDIM is asymptotically the same as that of the
deterministic rational BDIM [12]. In particular, if the
model is 2nd order balanced, then pi ~ i-γ, (see A.1.2 and
Proposition 1 in the Appendix for details [see Additional
file 1]).

The rational BDIMs can describe a substantially wider
class of birth and death rates compared to polynomial
models. In particular, birth rate can have a maximum at
some specific value of family size and then decrease with
further growth of the size, e.g., as shown in Fig. 1. This
dependence of rates on family size can be described by the
rational model with λi = λ(i + a1)/(i + a2)2, δi = δ(i + b1)/(i
+ b2)2.

Logistic BDIM
Evidently, the number of size classes of protein families,
N, should be finite, although intrinsic features that could
determine the value of N so far have not been considered
(the impossibility of an infinite genome is self-evident but
one would expect a much tighter bound based, e.g., on the
limited time and resources available for genome replica-
tion and expression). Under the BDIMs described above,
birth rate grows monotonically as the family size increases
from 1 to N and then abruptly drops to 0 (since families
of size N+1 or greater are not allowed). However, this
behavior is an arbitrary simplification of the model and
hardly can reflect the actual process of genome evolution.

In population dynamics models, the finiteness of a popu-
lation size typically results from the "saturation type" of
growth: the growth rate tends to 0 as the population size
tends to the maximal possible value (see, e.g., [47]). It
seems likely that, during genome evolution, gene duplica-
tion (and death) rate also tends to 0 as duplications lead-
ing to increase in gene number become deleterious when
the size of some paralogous families becomes prohibi-
tively large. The simplest formalism, which yields this type
of population growth, is the logistic form of the birth rate.
Logistic-like stochastic models have been investigated in
various applications (e.g., [48,49]), which considered a
birth-and-death process with the rates

λ (i) = c3(c1 + i)(N-i), δ(i) = c3i(c2-i), ck > 0, k = 1,2,3, c2 >N.

This model produces log-normal and log-series distribu-
tions; with the appropriate values of parameters, power
low distributions of frequencies also appear, but only for
intermediate values of i, namely, 1 <<i <<N and N >> 1.

Non-linear transformation of BDIM
We have shown previously [43] that the following modi-
fication of any form of BDIM:

λ*i = λig(i), δ*i = δig(i-1)  (2.4)

where g(i), i = 0,...N, is a positive function, g(0) = 1, results
in a BDIM with the same ergodic distribution of the
family sizes as the original one. In particular, modifica-
tions of a linear BDIM with g(i) = (i + 1)d-1 or g(i) = (i +
1)d-1(1 - i/(N + c)) define, respectively, wide classes of

Dependence of the birth rate (λi = (i + c1)/(i + c2)2) on the family sizeFigure 1
Dependence of the birth rate (λi = (i + c1)/(i + c2)2) on the 
family size.
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rational or logistic BDIMs with the same stationary distri-
bution as the original linear BDIM, but with manifestly
different dynamic properties.

3. Probability of formation of a family of the given size 
before extinction and mean and variance of extinction 
time
In is known [44] that the probability for the birth-and-
death process to reach state n before reaching state 0 from
an initial state i> 0 is given by formula (A.2.2). In terms of
BDIM (1.1), this means that the probability of formation
of a family of size n starting from a family of size i before
getting to extinction is given by (A.2.2).

The random birth-and-death process (1.1) certainly visits
state 0 in the course of time; this means that any domain
family will eventually get extinct (and then, formally, can
be "reborn", returning from the 0-class). Below we com-
pute the mean time to extinction of a family of the given
size for different versions of BDIM; the mean time to
extinction of the largest family in the given genome is of
particular interest.

Let us denote S(n)=inf{t:X(t) = 0|X(0)=n} the time to the
first passage of state 0 from the initial state n; S(n) is a ran-
dom variable for each n. The mean time to extinction of
the family of initial size n, E(S(n)), is given by the general
formula A.3.2.

Linear BDIM
We have shown previously that, for the linear 2nd order
balanced BDIM, the probability that a singleton expands
to a family of size n before dying, P(1)(1,n) has the power

asymptotics for large n (A.2.5). The values of probabilities
P(1)(1,n) for different species are shown in Table 1; these
probabilities are no greater than ~10-4 - 10-5. The mean
time to extinction, E(S(n)), can be calculated using the
relation E(S(n)) = 1/λE(1)

n, where E(1)
n, the mean time to

extinction expressed in the 1/λ time units, is given by for-
mula A.3.3 (see Table 1 for some numerical data and Figs.
1,2 in [43]).

The variance of extinction time Var(S(n)) for the linear 2nd

order balanced BDIM is Var(S(n)) = 1/λ2W(1)
n, where

W(1)
n can be calculated using the formula (A.3.7). The plot

of the coefficient of variation s(1)
n = (W(1)

n)1/2/E(1)
n versus

n for different species is shown in Fig. 2 (see also Table 1
for some numerical data). Clearly, the extinction time can
vary within an extremely broad range of values. 

Non-linear polynomial and rational BDIM
The stochastic behavior of the system and its characteris-
tics also can be investigated within the broader framework
of rational BDIMs. We will examine models represented
as transformed linear BDIM (2.1), with

λi = λ(i + a)(i + 1)d-1, δi = λ(i + b)id-1,  (3.1)

where d ≥ 1 is the model degree. Let us recall that Theorem
1 (Mathematical Appendix [see Additional file 1]) shows
that the highest degrees and the corresponding coeffi-
cients of the birth and death rates at id must be equal to
provide for the power asymptotics of the stationary distri-
bution, P(i) ~ i-γ. The power γ of this distribution is
completely determined by the degree d and the coeffi-
cients at id-1. Thus, the model (1.1), (3.1) is representative

Table 1: Family evolution under the linear BDIM (d=1)

N P(d)(1,N) *102 e(d)
N E(d)

N f(d)
N M(d)

N M(d)
N/E(d)

N
c(d)

du T(d)
N

Sce 130 0.284 295267 47.46 260080 20381.6 429.5 1.903 1939.3
Dme 335 0.227 778830 153.74 734725 37409.9 243.3 1.784 3337.0
Cel 662 0.160 1.866*106 347.76 1.803*106 68709.6 197.6 1.523 5232.2
Ath 1535 0.016 2.150*107 702.65 2.087*107 529639. 753.8 2.382 63080.0
Hsa 1151 0.026 1.329*107 505.26 1.29*107 300665. 595.1 2.721 40905.5
Tma 97 0.060 681356 31.47 513450 80677.3 2563.6 1.109 4473.6
Mth 43 1.125 37131.5 14.91 28570 4707.04 315.9 1.091 256.8
Sso 81 0.461 129115 30.14 98440 12853.5 426.5 1.253 805.3
Bsu 124 0.284 237343 48.89 202150 22921.0 468.8 1.320 1512.8
Eco 140 0.155 440665 51.67 375943 37959.8 734.7 1.544 2930.5

For the linear BDIM (d = 1) and for the largest family of size N in each genome, the table shows the probability of formation P(d)(1,N), mean number 
of events before extinction of the largest family e(d)

N; mean number of events before formation of the largest family from a singleton, f(d)
N; mean 

times of formation M(d)
N and extinction E(d)

N (in 1/λ units); the value of coefficient c(d)
du = rdu/λ; mean times of formation T(d)

N in Ga (109 yrs) under 
rdu = 2 × 10-8. The model parameters were genome-specific as determined previously [12]. and were the same for all model degrees according to 
(2.4). Species abbreviations: Sce, Saccharomyces cerevisiae, Dme, Drosophila melanogaster, Cel, Caenorhabditis elegans, Ath, Arabidopsis thaliana, Hsa, 
Homo sapiens, Tma, Thermotoga maritima, Mth, Methanothermobacter thermoautotrophicum, Sso, Sulfolobus solfataricus, Bsu, Bacillus subtilis, Eco, 
Escherichia coli.
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of all rational BDIMs of the degree d with a given power
asymptotic (γ = b - a + 1) of the stationary distribution.
Besides, according to Proposition 1, this distribution for
model (3.1) is exactly the same as for the corresponding
linear model with λi = λ (i + a), δi = λ (i + b), which was
studied in detail in [12].

We applied formula (A.2.6) 

with g(i) = (i + 1)d-1, to calculate the probability of forma-
tion of a family of the given size from a singleton before
getting to extinction for the BDIM of degree d, P(d)(1,n).
For example, the probabilities P(2)(1,n) and P(3)(1,n) for
the quadratic and cubic BDIMs, respectively, are given by
this formula with g(i) = i + 1 and g(i) = (i + 1)2, respec-
tively. Figures 3 and 4 show the dependence of the proba-
bilities P(2)(1,n) and P(3)(1,n) on the family size n for
different species. The dependence of the probability
P(d)(1,N) of the formation of the largest family on the
model degree is shown in Fig. 5.

The mean time to extinction for the rational BDIM (1.1),
(3.1) with a fixed d is calculated using the formula (A.3.4)

 where 

Here E*
n is the mean time to extinction in the 1/λ time

units. Figures 6 and 7 show the dependence of E(2)
n and

E(3)
n on n for the quadratic and cubic BDIMs, respectively.

Fig. 8 shows the mean times of extinction of the largest
family, E(d)

N, for different species, depending on the
model degree d. Some numerical values of the mean time
to extinction for quadratic and cubic BDIMs and different

Coefficient of variation of the extinction time versus the fam-ily size for the linear BDIMFigure 2
Coefficient of variation of the extinction time versus the fam-
ily size for the linear BDIM. The model parameters are for D. 
melanogaster (blue), C. elegans (purple), H. sapiens (red), A. 
thaliana (green) (Table 1 in [43]).

Probability of family formation starting from a singleton, P(2)(1,n), versus the family size (n) for the quadratic BDIM (in double logarithmic scale)Figure 3
Probability of family formation starting from a singleton, 
P(2)(1,n), versus the family size (n) for the quadratic BDIM (in 
double logarithmic scale). The model parameters are for D. 
melanogaster (blue), C. elegans (purple), H. Sapiens (red), Ara-
bidopsis thaliana (green).

Probability of family formation from a singleton, P(3)(1,n), ver-sus the family size (n) for the cubic BDIMFigure 4
Probability of family formation from a singleton, P(3)(1,n), ver-
sus the family size (n) for the cubic BDIM. The model param-
eters are for D. melanogaster (blue), C. elegans (purple), H. 
Sapiens (red), Arabidopsis thaliana (green).
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species are given in Tables 2 and 3. The variance of the
extinction time of a family of size n, Var(S(n))= 1/
λ2W(d)(n), d = 2, 3 for the quadratic and cubic BDIMs, and
the coefficient of variation s(d)

n = (W(d)
n)1/2/E(d)

n are calcu-
lated using the formulas (A.3.8). The results are shown in
Figs. 9 and 10. Some numerical values of the coefficient of
variation of the extinction time for different species are
given in Table 4.

Logistic BDIM
Let us consider the logistic modification of the rational
BDIM; specifically, we will examine models with the birth
and death rates of the form

λi = λ(i + a)(i + 1)d-1(1 - i/(N + c)), δi = δ (i + b)id-1(1 - (i -
1)/(N + c)).  (3.2)

We will refer to the parameter c as saturation boundary.
The shape of λi essentially depends on the value of c (Fig.
11).

Probability of formation of the largest family starting from a singleton, P(d)(1,N), for rational BDIMs depending on the model degree dFigure 5
Probability of formation of the largest family starting from a 
singleton, P(d)(1,N), for rational BDIMs depending on the 
model degree d. The model parameters are for D. mela-
nogaster (blue), C. elegans (purple), H. Sapiens (red), Arabidop-
sis thaliana (green).

Mean time to extinction (in 1/λ units) depending on the fam-ily size for the quadratic BDIMFigure 6
Mean time to extinction (in 1/λ units) depending on the fam-
ily size for the quadratic BDIM. The model parameters are 
for D. melanogaster (blue), C. elegans (purple), H. Sapiens 
(red), Arabidopsis thaliana (green).

Mean time to extinction (in 1/λ units) depending on the fam-ily size for the cubic BDIMFigure 7
Mean time to extinction (in 1/λ units) depending on the fam-
ily size for the cubic BDIM. The model parameters are for D. 
melanogaster (blue), C. elegans (purple), H. Sapiens (red), Ara-
bidopsis thaliana (green).

Mean time to extinction (in 1/λ units) of the largest family for the rational BDIM depending on the model degree dFigure 8
Mean time to extinction (in 1/λ units) of the largest family for 
the rational BDIM depending on the model degree d. The 
model parameters are for D. melanogaster (blue), C. elegans 
(purple), H. Sapiens (red), Arabidopsis thaliana (green).
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The logistic model (1.1), (3.2) is a transformation (2.9) of
the linear BDIM using the function:

g(i) = (i + 1)d-1(1 - i/(N + c), c = const ≥ 0.  (3.3)

The stationary distribution of family size frequencies for
the logistic model (1.1), (3.2) is exactly the same as that
for corresponding linear BDIM but the stochastic proper-
ties are different and close to the rational models, and
essentially depend on the boundary c. With a large c, the
model is very close to the corresponding rational model
with λi = λ(i + a)(i + 1)d-1, δi = δ (i + b)id-1, but with small
c, we can observe some new effects when the family size
approaches N.

The probability of formation of a family of a given size
from a singleton before getting to extinction for the logis-
tic BDIM is calculated using the general formula (A.2.6)
where the function g(i) is given by (3.3). The dependence
of this probability on the model degree d under a fixed
large value of the boundary c~N is similar to that for the
corresponding rational models but differs under a small c;
Fig. 12 shows this dependence for c = 1.

The mean times of extinction for the logistic BDIMs are
calculated using formula (A.3.4). Fig. 13 shows the mean
times of extinction of the largest family, E(d)

N, depending
on the model degree d for different values of saturation
boundary c. Fig. 14 shows the dependence of E(d)

N on the
saturation boundary c for different values of d.

4. Mean and variance of formation time for a family of the 
given size
Let us denote T(j, n) = inf{t: X(t) = n|X(0) = j} the time to
the first passage of state n from the initial state j; T(j, n) is
a random variable for each j, n. The mean time to the first
passage for BDIM (1.1), m(j, n) = E(T(j, n)), can be calcu-
lated using the formula m(j, n) = m0(j, n) + m1(j, n). Here
the term m0(j,n) is the mean time elapsed before the sys-
tem leaves the 0 state for the last time, and the term
m1(j,n) is the mean time of formation of a family of size n
from a singleton after its last "resurrection" (see formulas
(A.4.1) for details). Below we examine only the mean
family formation time from an essential singleton (model
(1.3)).

Linear BDIM
Previously, we determined the mean time of formation of
a family of size n from a singleton for different species
[43]. For the linear BDIM, the value of the mean forma-
tion time from an essential singleton is given by formula
M(1)(1,n) = 1/λ M(1)

n, where M(1)
n, the mean formation

time in 1/λ units is calculated using the formula (A.4.6)

The transition from the 1/λ time units to years is consid-
ered in s.6 of the Mathematical Appendix [see Additional
file 1]. The mean formation time E(T(1, n)) in years is cal-
culated using the formula (A.6.4) and the current
empirical estimates of the gene duplication rate [24]. Plots
of E(T(1, n)) for different species are shown in Fig. 15.

Coefficient of variation of the time to extinction depending on the family size for the quadratic BDIMFigure 9
Coefficient of variation of the time to extinction depending 
on the family size for the quadratic BDIM. The model param-
eters are for D. melanogaster (blue), C. elegans (purple), H. 
Sapiens (red), Arabidopsis thaliana (green).

The coefficient of variation of extinction time versus family size for the cubic BDIMFigure 10
The coefficient of variation of extinction time versus family 
size for the cubic BDIM. The model parameters are for D. 
melanogaster (blue), C. elegans (purple), H. Sapiens (red), Ara-
bidopsis thaliana (green).
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Once we computed the mean time of formation of a fam-
ily of size n for different species, the question arises how
accurately is the time T(i, n) of the first random passage
through the threshold n predicted by the mean value. To
address this problem, we estimated the variance of the
time of family formation, Var(T(i, n)) using the general
formulas (A.5.2) for model (1.1) and (A.5.3) for model
(1.3), respectively. For the linear BDIM, the variance of
the formation time for a family of size n from an essential
singleton, V(1)

n, is given by the formula (A.5.5). A more
important and informative characteristic, which is inde-

pendent on the model parameter λ, is the coefficient of

variation, which is equal to . The

coefficient of variation of the formation time of a family
of size n from a singleton, σ(d)

n = (V(d)
n)1/2/M(d)(1;n) for

the BDIM of degree d is the most relevant value. The plots
of σ(1)

n versus n for the linear model and for different spe-
cies are shown in Fig. 16.

The coefficients of variation were very large for all species
(see numerical values in Table 4). To summarize the

Table 2: Family evolution under the linear BDIM (d = 1)

N P(d)(1,N) *102 e(d)
N E(d)

N f(d)
N M(d)

N M(d)
N/E(d)

N c(d)
du T(d) 

N

Sce 130 0.230 33206.9 2.82 32772 249.80 88.58 7.56 94.4
Dme 335 0.404 127814. 4.72 127567 206.26 43.71 11.67 120.4
Cel 662 0.498 394794. 6.61 394593 215.36 32.58 15.80 170.2
Ath 1535 0.131 2.768*106 5.98 2.77*106 638.27 106.73 22.50 718.1
Hsa 1151 0.166 1.555*106 5.37 1.68*106 468.84 87.31 24.48 573.9
Tma 97 0.039 38872.6 2.25 36306 1231.3 547.26 3.27 201.3
Mth 43 0.315 4539.9 2.03 4234 166.47 77.09 3.33 27.7
Sso 81 0.233 13281.1 2.61 12852 252.47 97.11 4.33 54.7
Bsu 124 0.212 26441.0 3.10 25969 304.97 98.38 5.09 77.6
Eco 140 0.135 34970.6 2.90 40270 431.85 148.91 5.74 123.9

For the quadratic BDIM (d = 2) and for the largest family of size N in each genome, the table shows the probability of formation P(d)(1,N), mean 
number of events before extinction of the largest family e(d)

N; mean number of events before formation of the largest family from a singleton,f(d)
N; 

mean times of formation M(d)
N and extinction E(d)

N (in 1/λ units); the value of coefficient c(d)
du = rduvλ; mean times of formation T(d)

N in Ga (109 yrs) 
under rdu = 2 × 10-8. The model parameters were the same as for the linear model according to (2.4). Species abbreviations: Sce, Saccharomyces 
cerevisiae, Dme, Drosophila melanogaster, Cel, Caenorhabditis elegans, Ath, Arabidopsis thaliana, Hsa, Homo sapiens, Tma, Thermotoga maritima, Mth, 
Methanothermobacter thermoautotrophicum, Sso, Sulfolobus solfataricus, Bsu, Bacillus subtilis, Eco, Escherichia coli.

Table 3: Family evolution under the cubic BDIM (d = 3).

N P(d)(1,N) e(d) 
N E(d) 

N f(d) 
N M(d)

N M(d)
N/E(d)

N c(d)
du = rduvλ T(d)

N

Sc e 130 0.105 12315.7 0.944 12306 4.60 4.84 92.46 21.3
Dme 335 0.222 60759.4 1.390 60755 2.45 1.76 549.65 67.3
Cel 662 0.283 208472 1.804 208469 2.10 1.17 2020.37 212.1
Ath 1535 0.255 1.29*106 1.390 1.29*106 1.93 1.39 3754.83 362.3
Hsa 1151 0.254 756242 1.291 756238 1.65 1.27 2938.07 242.4
Tma 97 0.019 9442.5 0.781 9390 24.5 31.4 18.84 23.1
Mth 43 0.061 1530.2 0.848 1514 7.85 9.24 18.26 7.2
Sso 81 0.073 4799.6 0.960 4786 7.21 7.51 36.71 13.2
Bsu 124 0.088 10265.3 1.059 10254 6.40 6.04 63.38 20.3
Eco 140 0.071 14459.9 0.957 14446 7.34 7.67 65.06 23.9

For the cubic BDIM (d = 3) and for the largest family of size N in each genome, the table shows the probability of formation P(d)(1,N), mean number 
of events before extinction of the largest family e(d)

N; mean number of events before formation of the largest family from a singleton, f(d)
N; mean 

times of formation M(d)
N and extinction E(d)

N (in 1/λ units); the value of coefficient c(d)
du = rduvλ; mean times of formation T(d)

N in Ga (109 yrs) under 
rdu = 2 × 10-8. The model parameters were the same as for the linear model according to (2.4). Species abbreviations: Sce, Saccharomyces cerevisiae, 
Dme, Drosophila melanogaster, Cel, Caenorhabditis elegans, Ath, Arabidopsis thaliana, Hsa, Homo sapiens, Tma, Thermotoga maritima, Mth, 
Methanothermobacter thermoautotrophicum, Sso, Sulfolobus solfataricus, Bsu, Bacillus subtilis, Eco, Escherichia coli.

Var T i n E T i n( ( , )) / ( ( , ))
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results obtained for the stochastic characteristics of the
linear BDIM, we found that: i) under this model, the
mean time to extinction of the largest families in most
genomes was much shorter than the mean time of
formation of these families, and ii) using the current esti-
mates of duplication rates in eukaryotic genomes (rdu ≈ 2
× 10-8 duplications/gene/year [24]) to express the mean
family formation times in real time units instead of the
dimensionless 1/λ units, we obtain M(1)(1;N) ~ 1013 -
1014 yrs, a completely unrealistic time estimate. The mean
family formation times given by the linear BDIM would
become realistic only if the recent analyses underesti-
mated the gene duplication rate by a factor of ~104, which
does not seem plausible. Thus, the linear BDIM cannot
provide an adequate description of genome evolution, at
least when only the mean time of family formation is con-
sidered. The variance of the family formation time is
extremely large (the coefficient of variation is ~102), and,
accordingly, large deviations from the mean time, more to
two orders of magnitude, are possible. However, even
taking this into account, the family formation times pre-
dicted by the linear BDIM are far longer than the time

allotted for life's evolution of earth. In the next section, we
consider non-linear, higher order models that have the
potential to yield shorter mean times of family formation.

Polynomial BDIMs
The mean time of formation of families from an essential
singleton (or after the last "resurrection" of a family)
depending on the family size n for the polynomial BDIMs
is E(T(1,n)) = 1/λ M*n where M*n, the mean time of for-
mation in 1/λ units can be calculated using the formulas
(A.4.9)

Table 4: Coefficients of variation of the extinction and formation 
times for the BDIMs of different degrees

N s(1)
N σ(1)

N s(2)
N σ(2)

N s(3)
N σ(3)

N

Dme 335 194.11 81.79 304.96 126.90 766.29 184.70
Cel 662 413.30 195.73 460.31 277.24 481.65 391.25
Ath 1535 885.78 421.03 1016.85 583.56 1042.86 886.95
Hsa 1151 649.77 308.40 746.56 425.21 768.04 647.23

The table shows coefficient of variation s(d)
N of extinction time for the 

largest family; coefficient of variation σ(d)
N of formation time for the 

largest family; d = 1,2,3 for the linear, quadratic and cubic BDIM, 
respectively. Species abbreviations: Dme, Drosophila melanogaster, Cel, 
Caenorhabditis elegans, Ath, Arabidopsis thaliana, Hsa, Homo sapiens.

Table 5: Coefficients of variation of the number of events before 
formation of the largest family for the BDIMs of different degrees

N Σ(1)
N Σ(2)

N Σ(3)
N

Dme 335 87.00 86.60 79.91
Cel 662 177.99 168.73 154.81
Ath 1535 402.66 399.03 366.50
Hsa 1151 296.42 299.31 276.23

Coefficient of variation Σ(d)
N of the number of events before 

formation of the largest family; d = 1 for the linear BDIM, d = 2 for the 
quadratic BDIM, d = 3 for the cubic BDIM. Species abbreviations: 
Dme, Drosophila melanogaster, Cel, Caenorhabditis elegans, Ath, 
Arabidopsis thaliana, Hsa, Homo sapiens.

Dependence of λi (3.2) at d = 2 on i with different boundary value, c = 1, c = 100, c = 1000 (from bottom to top)Figure 11
Dependence of λi (3.2) at d = 2 on i with different boundary 
value, c = 1, c = 100, c = 1000 (from bottom to top). The 
model parameters are for Drosophila melanogaster.

Dependence of the probability P(d)(1,n) on the family size n for the logistic model with c = 1 for d = 1, 2 and 3 (from bot-tom to top)Figure 12
Dependence of the probability P(d)(1,n) on the family size n 
for the logistic model with c = 1 for d = 1, 2 and 3 (from bot-
tom to top). The model parameters are for Drosophila 
melanogaster.
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Fig. 17 shows the dependence of the mean time of family
formation on the family size for the quadratic BDIM in
years, calculated using the formula (A.6.4). The values of
mean times of formation for this BDIM are given in Table 2.

The variance of formation time of a family of the size n
can be calculated using the formula (A.5.6), with g(j)=j+1
for the quadratic BDIM and g(j) = (j + 1)2 for the cubic
BDIM, respectively. The dependence of the coefficient of
variation σ(2)

n = (V(2)(1,n))1/2/M(2)(1;n) on the family size
for the quadratic BDIM is shown in Fig. 18, and some
numerical data are given in Table 4.

Although the variance of family formation times for the
quadratic BDIM is approximately 5 orders of magnitude
less than that for the linear BDIM, the values of the coeffi-
cient of variation for quadratic BDIM are about 1.3–1.5
times greater than those for the linear BDIM. Thus, the
actual formation time for the largest family could differ
from the mean value by several orders of magnitude with
a high probability. Figures 19 and 20 show the depend-
ence of the mean and the coefficients of variation of fam-
ily formation time on family size for the cubic BDIM.

We have shown previously that the cubic model shows
extremely high evolution rate comparatively with the lin-
ear and even quadratic models under the same value of the

parameter λ [43]. On the contrary, the mean formation
times in years for the quadratic and cubic models are of
the same order (Tables 2 and 3). The polynomial models
bring the mean time required for the formation of fami-
lies of the observed size closer to realistic values but these
times still remain far too long. Specifically, with the
empirical estimates of the duplication rates used above for
the linear BDIM, the quadratic model gives the mean fam-
ily formation times ~1011 yrs. This value is close to the
minimum possible time of family formation that can be
calculated using the duplication rate estimates of Lynch
and Conery [24] and non-linear rational BDIMs.

Non-linear rational BDIMs
Let us investigate the dependence of the dynamics of the
mean time of family formation on the model degree and

Mean time to extinction (in 1/λ units) of the largest families for the logistic BDIM depending on the model degree d for c = 1, c = 100 and c = 1000 (from top to bottom, in double log-arithmic scale)Figure 13
Mean time to extinction (in 1/λ units) of the largest families 
for the logistic BDIM depending on the model degree d for c 
= 1,c = 100 and c = 1000 (from top to bottom, in double log-
arithmic scale). The model parameters are for Drosophila 
melanogaster.
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Mean time to extinction (in 1/λ units) of the largest families for the logistic BDIM, dependently on the boundary value c for d = 1 (left) and d = 2 (right)Figure 14
Mean time to extinction (in 1/λ units) of the largest families 
for the logistic BDIM, dependently on the boundary value c 
for d = 1 (left) and d = 2 (right). The model parameters are 
for Drosophila melanogaster.

Mean time to formation (in years, Ga, with rdu = 2*10-8) depending on family size for the linear BDIM (double logarith-mic scale)Figure 15
Mean time to formation (in years, Ga, with rdu = 2*10-8) 
depending on family size for the linear BDIM (double logarith-
mic scale). The model parameters are for D. melanogaster 
(blue), C. elegans (purple), H. Sapiens (red), Arabidopsis thaliana 
(green).
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the family size. The mean time of formation of a family of
size n from a singleton under a fixed model degree d,
M(d)(1;n), for the rational BDIM (1.1),(3.1), is calculated
using the formula (A.4.9). A comparison of the mean time
of formation and extinction for rational BDIMs reveals an
interesting property of non-linear BDIMs: for any given
family size n, there exists such a model degree that the
times of family formation and extinction are equal (as it
becomes obvious from the intersection of the respective
curves in Fig. 21). Accordingly, at higher model degrees,

the mean time of formation becomes shorter than the
mean time to extinction. The model degree that corre-
sponds to the point of intersection in Fig. 21 obviously
depends on the size of the considered family. Tables 2 and
3 show that the mean time of formation is about 100
times more than the mean time to extinction for the
largest families of different species for the quadratic BDIM
and only about 10 times more for the cubic model.

As shown previously, increasing the degree (the "order of
interaction") d results in indefinite decrease of the family

The coefficient of variation σ(1)
n of family formation time depending on n for the linear BDIMFigure 16

The coefficient of variation σ(1)
n of family formation time 

depending on n for the linear BDIM. The model parameters 
are for D. melanogaster (blue), C. elegans (purple), H. Sapiens 
(red), Arabidopsis thaliana (green).

Mean time of formation (in years, Ga, with rdu = 2*10-8) depending on family size n for the quadratic BDIM (in double logarithmic scale)Figure 17
Mean time of formation (in years, Ga, with rdu = 2*10-8) 
depending on family size n for the quadratic BDIM (in double 
logarithmic scale). The model parameters are for D. mela-
nogaster (blue),C. elegans (purple),H. Sapiens (red),Arabidopsis 
thaliana (green).

The coefficient of variation σ(2)
n of formation time versus family size for the quadratic BDIM and speciesFigure 18

The coefficient of variation σ(2)
n of formation time versus 

family size for the quadratic BDIM and species. The model 
parameters are for D. melanogaster (blue), C. elegans (purple), 
H. Sapiens (red), Arabidopsis thaliana (green).

Mean time of formation (in years, Ga, with rdu = 2*10-8) depending on family size n for the cubic BDIMFigure 19
Mean time of formation (in years, Ga, with rdu = 2*10-8) 
depending on family size n for the cubic BDIM. The model 
parameters are for D. melanogaster (blue), C. elegans (purple), 
H. Sapiens (red), Arabidopsis thaliana (green).
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formation time expressed in 1/λ time units ([43] and Fig.
22). However, we have also shown that this effect is offset
by the rapid increase of the average duplication rate in the
model. Assuming the gene duplication rate of ~2*10-8

year-1 [24], the evolution time in years, calculated
according to the formula (A.6.5), does not decrease indef-
initely, but has a minimum at the model degree between
2 and 3 (Fig. 23). Even the minimum mean time of the

largest family formation achievable with the rational
BDIMs is on the order of 1011 years (see Table 6), which is
incompatible with the age of life on Earth [43]. Thus, a
rational BDIM of any degree cannot provide an adequate
description of genome evolution, at least when only the
mean time of family formation is considered. Accord-
ingly, for assessing the feasibility of the formation of the

The coefficient of variation σ(3)
n of formation time versus family size for the cubic BDIMFigure 20

The coefficient of variation σ(3)
n of formation time versus 

family size for the cubic BDIM. The model parameters are for 
D. melanogaster (blue), C. elegans (purple), H. Sapiens (red), 
Arabidopsis thaliana (green).

Mean times (in 1/λ units) of formation (upper curve before the point of intersection) and extinction (upper curve after the point of intersection) of the largest family depending on the model degree (semi-logarithmic scale)Figure 21
Mean times (in 1/λ units) of formation (upper curve before 
the point of intersection) and extinction (upper curve after 
the point of intersection) of the largest family depending on 
the model degree (semi-logarithmic scale). The model 
parameters are for Homo sapiens.

Mean time of formation of the largest family (in 1/λ units), M(d)
N, for the rational BDIM depending on the model degree d (double logarithmic scale)Figure 22

Mean time of formation of the largest family (in 1/λ units), 
M(d)

N, for the rational BDIM depending on the model degree 
d (double logarithmic scale). The model parameters are for 
D. melanogaster (blue), C. elegans (purple), H. Sapiens (red), 
Arabidopsis thaliana (green).

Dependence of the time (in years, Ga) required for the for-mation of the largest family on the model degree d for the rational BDIM (semi-logarithmic scale)Figure 23
Dependence of the time (in years, Ga) required for the for-
mation of the largest family on the model degree d for the 
rational BDIM (semi-logarithmic scale). The model parame-
ters are for D. melanogaster (blue), C. elegans (purple), H. Sapi-
ens (red), Arabidopsis thaliana (green).
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largest families under a given model, the variance of the
formation time should be investigated.

Generally, the variance of the formation time of the family
of the given size is given by the formulas (A.5.3) and
(A.5.6). Although the variance of formation times for the
quadratic and, especially, for the cubic BDIM is several
orders of magnitude less than that for the linear BDIM, the
coefficients of variation for both formation and extinction
time increase with the model degree (Table 4). These
coefficients are so large that the actual formation time of
the largest family could differ from its mean value by sev-
eral orders of magnitude with a high probability.

Logistic BDIM
The mean time of formation (in 1/λ units) of a family of
size n from an essential singleton for the logistic BDIM
(1.3), (3.2) under fixed d is calculated using formula
(A.4.9). Fig. 24 shows the dependence of mean times of
family formation, M(d)(1;n), on the family size n for
different model degrees d under the fixed saturation
boundary c = 1, and Fig. 25 shows the dependence of
mean times of family formation on the boundary value
(see Tables 7 and 8 for some numerical data). Similarly to
the rational BDIM, increasing the degree (the "order of
interaction") of the logistic model results in faster family
evolution under a fixed value of the parameter λ. How-
ever, when this inner model parameter is excluded and the
mean time of family formation is expressed in years
according to formula (A.6.5), then we again face a restric-

tion that does not allow indefinite shortening of the fam-
ily formation time, T(d)

N. Specifically, T(d)
N for the logistic

model with a fixed N has a minimum over d. We identi-
fied the model degrees yielding the minimum mean time
of formation of the largest family for the logistic-rational
BDIM. Fig. 26 and Table 9 show the dependence of T(d)

N
on d for the logistic model with fixed saturation
boundary.

Table 6: Rational BDIM yielding the shortest mean time of family 
formation

N D R(D)(N) T(D)
N

Sce 130 3.13 416.0 20.8
Dme 335 2.67 1131.0 56.55
Cel 662 2.44 2317.7 115.9
Ath 1535 2.65 5553.8 277.7
Hsa 1151 2.71 4079.5 204.
Tma 97 3.56 317.8 15.9
Mth 43 2.40 125.2 6.3
Sso 81 2.19 254.2 12.7
Bsu 124 2.05 404.4 20.
Eco 140 2.16 460.4 23.

For each genome, D is the value of the model degree d, 
which results in the minimum of the mean time of formation 
of the largest family, T(d)

N = R(d)(N)/rdu (in Ga, under indicated 
value of d and rdu = 2 × 10-8) are shown. Species abbreviations: 
Sce, Saccharomyces cerevisiae, Dme, Drosophila melanogaster, 
Cel, Caenorhabditis elegans, Ath, Arabidopsis thaliana, Hsa, 
Homo sapiens, Tma, Thermotoga maritima, Mth, 
Methanothermobacter thermoautotrophicum, Sso, Sulfolobus 
solfataricus, Bsu, Bacillus subtilis, Eco, Escherichia coli.

Mean time of formation (in 1/λ units) of a family of the given size depending on the size for the logistic BDIM with the boundary value c = 1 for d = 1, d = 2, d = 3 (from top to bot-tom, semi-logarithmic scale)Figure 24
Mean time of formation (in 1/λ units) of a family of the given 
size depending on the size for the logistic BDIM with the 
boundary value c = 1 for d = 1, d = 2, d = 3 (from top to bot-
tom, semi-logarithmic scale). The model parameters are for 
Drosophila melanogaster..

Mean time of formation (in 1/λ units) of the largest family for the logistic BDIM, depending on the model degree d for c = 1, c = 100 and c = 1000 (from top to bottom, double loga-rithmic scale)Figure 25
Mean time of formation (in 1/λ units) of the largest family for 
the logistic BDIM, depending on the model degree d for c = 
1, c = 100 and c = 1000 (from top to bottom, double loga-
rithmic scale). The model parameters are for Drosophila 
melanogaster.
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Thus, as in the case of rational BDIMs, increase of the
degree of logistic BDIMs under a fixed value of average
duplication rate rdu cannot yield mean family formation
times < 1011 years. Furthermore, the "saturation effect"
seen in the logistic models increases the mean time of
family formation compared to the corresponding rational
models (compare Tables 5 and 7).

5. The mean number of elementary events before family 
extinction and formation
Comparing the mean family formation and extinction
times predicted by BDIMs with the actual evolutionary
timescale allow us to choose the most appropriate version
from the examined class of models. The number of ele-
mentary evolutionary events namely, duplication and

deletion of domains, predicted by these models is of
potential interest in itself as an approximation of an
important characteristic of genome evolution.

To calculate the mean number of elementary events dur-
ing evolution of gene families, we employed the so-called
embedding chains {Y(n)} instead of the original BDIM.

Table 7: Evolution of gene families under the logistic BDIM with c = 1 and different d.

P(d)(1,N) E(d)
N M(d)

N M(d)
N/ E(d)

N c(d)
du = rduvλ T(d)

N

d = 1 0.24*10-7 314.72 351042. 1115.4 1.7545 30795.2
d = 2 0.68*10-3 5.66 1247.3 220.37 10.073 628.20
d = 3 0.113 1.41 6.14 4.35 297.29 91.27

Model parameters are for D. melanogaster.

Table 8: Evolution of gene families under the logistic BDIM with c = 100 and different d.

P(d)(1,N) E(d)
N M(d)

N M(d)
N/E(d)

N c(d)
du = rduvλ T(d)

N L(d)

d = 1 0.94*10-5 227.19 90107.4 396.62 1.7612 7934.9 32.62
d = 2 0.2*10-2 5.24 412.45 78.71 10.437 215.24 193.34
d = 3 0.178 1.40 3.39 2.42 354.72 25.25 6571.04

Model parameters are for D. melanogaster.

Table 9: Logistic BDIM yielding the shortest mean time of family 
formation under c = 1

N D R(D)(N) T(D)
N

Dme 335 3.18 1726.8 86.34
Cel 662 2.92 3749.5 187.5
Ath 1535 3.11 10234.5 511.7
Has 1151 3.19 7433.9 371.7

For each genome, D is the value of model degree d, which 
results in the minimum of the mean time of formation of the 
largest family, T(d)

N = R(d)(N)/rdu (in Ga), is indicated. Species 
abbreviations: Dme, Drosophila melanogaster, Cel, 
Caenorhabditis elegans, Ath, Arabidopsis thaliana, Hsa, Homo 
sapiens.

Dependence of the mean time (in years, Ga) required for the formation of the largest family for the logistic BDIM under fixed saturation boundary c = 1 on the model degree d (semi-logarithmic scale)Figure 26
Dependence of the mean time (in years, Ga) required for the 
formation of the largest family for the logistic BDIM under 
fixed saturation boundary c = 1 on the model degree d (semi-
logarithmic scale). The model parameters are for D. mela-
nogaster (blue), C. elegans (purple), H. Sapiens (red), Arabidop-
sis thaliana (green).
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The embedding chain {Yn} for a particular BDIM is a ran-
dom walk with discrete time on the same set of states and
transition probabilities pi,i+1 = βi = λi/(λi + δi), pi,i-1 = µi = δi/
(λi + δi) and pij = 0 for all other cases (see s.7 of Mathemat-
ical Appendix for details [see Additional file 1]).

The transition from the state i to the state i+1 (or i-1) cor-
responds to the duplication (or deletion) of a domain in
a family of size i. The only difference between the original
birth-and-death process and the embedding chain is that
the sojourn time for the embedding chain is equal to 1 for
any state i instead of 1/(λi + δi). The ratio βi/µi (= λi/δi)
characterizes the trend of family evolution from the state
i, i.e., is the family more likely to grow or to shrink; for a
symmetric random walk, βi/µi = 1 for all i. The dependence
of the ratio βi/µi on i for different rational and logistic
embedded chains is shown in Figures 27 and 28. For the
rational models, βi/µi ≈ 1 for large i; for the logistic mod-
els, βi/µi ≈ 1 for 0 <<i <<N (however, this ratio signifi-
cantly deviates from 1 at both ends of the interval of
states). Thus, the behavior of the embedding chain is sim-
ilar to the behavior of the symmetric random walk in the
corresponding subsets of states. Informally, the plots in
Figures 27 and 28 indicate that small families may
preferentially grow (under higher degree models) or
shrink (under low degree models) whereas the evolution
of large families tends to a symmetrical random walk.

The mean number of elementary events before the forma-
tion of a family of the given size, fn, is computed using for-
mulas (A.7.5)-(A.7.7). The plots in Figures 29 and 30
show the dependence of fn on the family size for different
species for the linear and quadratic models, respectively.
The mean number of elementary events before the
extinction of a family of the given size, en, is computed
using formulas (A.7.13)-(A.7.15) and Figures 31 and 32
show the corresponding dependences for family
extinction. Some numerical data for the mean number of
elementary events for polynomial BDIMs are shown in
Tables 1,2,3 and, for coefficients of variation, in Table 5.
Given that all the analyzed BDIMs are balanced, i.e., the
birth and death rates are asymptotically equal, it was not
unexpected that the mean number of events required for
the formation of a large family (or the number of events
preceding the extinction of such a family) was orders of
magnitude greater than the size of the family. This sug-
gests a highly dynamic picture of genome evolution
whereby numerous duplications counterbalanced by gene
losses are typically involved in the evolution of large fam-
ilies. However, the number of events required for the for-
mation of a family of the given size quickly drops with the
increase of a model degree (Fig. 33), which may be con-
strued as reflection of positive selection leading to ampli-
fication of family members.

6. Monte Carlo simulation of evolution of gene family 
ensembles under BDIMs of different degrees
As noticed previously [43], it is the minimum rather than
the mean evolution time that is important for modeling
the dynamics of evolution of genomes consisting of many
gene families. Due to the large variance of the family for-
mation time estimates (see the detailed discussion
above), this value is likely to be much less than the mean.
Although an analytical solution to this problem is hard to
obtain, it can be examined in detail by Monte Carlo sim-
ulation analysis. As described previously [43], we

The ratio β i/µ i against family size i for the rational BDIM depending on the model degree d:d = 1, d = 1.6, d = 2 (from bottom to top), in double logarithmic scaleFigure 27
The ratio β i/µ i against family size i for the rational BDIM 
depending on the model degree d:d = 1, d = 1.6, d = 2 (from 
bottom to top), in double logarithmic scale. The model 
parameters are for Drosophila melanogaster.

The ratio β i/µ i against family size i for the logistic BDIM (3.2) with c = 1 depending on the model degree d:d = 1, d = 1.6, d = 2 (from bottom to top)Figure 28
The ratio β i/µ i against family size i for the logistic BDIM (3.2) 
with c = 1 depending on the model degree d:d = 1, d = 1.6, d 
= 2 (from bottom to top). The model parameters are for 
Drosophila melanogaster
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employed for this analysis model parameters estimated
for the human proteome. The simulated evolution started
from 3000 families of size one (singletons) and continued
until the largest family reached 1024 members (a conven-
ient arbitrary number to approximate the size of the larg-
est family in eukaryotic genomes); the simulation was run
from 10 to several hundred times depending on the
model degree (the time required for the simulation
showed a complex, non-linear dependence on the model
degree). In the course of the simulation, the number of
families fluctuated due to stochastic births, deaths, and

innovations of genes but, generally, tended toward the
equilibrium number of ~1700, which is close to the
empirically determined number of families in the human
genome and is pre-determined by the choice of model
parameters (the initial number of singletons did not have
much impact on the model's dynamics). The time scale
was adjusted such that rdu = 2 × 10-8 duplications/gene/
year [24]. A series of simulations was performed for non-
linear rational BDIMs with different degrees d.

Mean number of events before the formation of a family of the given size for the linear BDIM (double logarithmic scale)Figure 29
Mean number of events before the formation of a family of 
the given size for the linear BDIM (double logarithmic scale). 
The model parameters are for D. melanogaster (blue), C. ele-
gans (purple), H. Sapiens (red), Arabidopsis thaliana (green).

Mean number of events before the formation of a family of the given size for the quadratic BDIM (double logarithmic scale)Figure 30
Mean number of events before the formation of a family of 
the given size for the quadratic BDIM (double logarithmic 
scale). The model parameters are for D. melanogaster (blue), 
C. elegans (purple), H. Sapiens (red), Arabidopsis thaliana 
(green).

Mean number of events before extinction of a family of the given size for the linear BDIMFigure 31
Mean number of events before extinction of a family of the 
given size for the linear BDIM. The model parameters are for 
D. melanogaster (blue), C. elegans (purple), H. Sapiens (red), 
Arabidopsis thaliana (green).

Mean number of events before extinction of a family of the given size for the quadratic BDIMFigure 32
Mean number of events before extinction of a family of the 
given size for the quadratic BDIM. The model parameters are 
for D. melanogaster (blue), C. elegans (purple), H. Sapiens 
(red), Arabidopsis thaliana (green).
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As shown in Fig. 34, the time at which the family size of
1024 members is reached for the first time depends on d
in a similar fashion as the mean time for a single family,
i.e., there is clear minimum at a particular value of d. At
the optimal value of d ≈ 2.2, the model reaches this family
size in 2.2 ± 0.5 Ga, which is comparable to the time of
evolution of eukaryotes. Compared to the minimal evolu-
tion time predicted by BDIMs of different degrees for a
single family, the genome-size ensemble of gene families
reached the threshold size much faster (by 1.5–2.5 orders
of magnitude), and the optimum values of d was lower by
~0.5 (Fig. 35). The much faster formation of large families
from an ensemble of singletons was predictable due to the
large variation coefficient of the family formation and
extinction times, but the simulation was necessary in the
absence of knowledge of the exact distribution of these
values.

7. General discussion
Here and in the previous publications [12,43,50], we
describe a general class of models, which are based on the
classical concept of a birth-and-death process and seem to
naturally apply to the genome evolution process. Similar,
although not identical and apparently less general, mode-
ling approaches have been considered by others [6,34,51].
Even earlier, evolution of gene families has been modeled
within the distinct mathematical framework of multipli-
cative processes [52]. The utility of birth-and-death type
models in evolutionary genomics in itself is not a trivial
matter but rather stems from fundamental features of
genome evolution. As captured in the title of Ohno's
famous book [16], although foreseen even in the early
days of genetics [15,53], gene duplication probably is the

principal mechanism of genome evolution. Of course,
genomes cannot grow ad infinitum and, through most of
the evolutionary history, the number of genes within a
given phylogenetic lineage probably remains roughly con-
stant. Hence duplication is intrinsically coupled to gene
loss. The results of comparative genomics further show
that many genes in each lineage cannot be obviously
linked to other genes through duplication. Without neces-
sarily specifying the biological mechanisms (these could
involve rapid change after duplication, gene acquisition
via horizontal transfer, and possibly, birth of genes from
non-coding sequences), it is reasonable to view these

Mean number of events before the formation of the largest family against the model degree for the rational BDIM (dou-ble logarithmic scale)Figure 33
Mean number of events before the formation of the largest 
family against the model degree for the rational BDIM (dou-
ble logarithmic scale). The model parameters are for Dro-
sophila melanogaster

The time required for the formation of a first family with 1024 members determined by Monte Carlo simulation start-ing from an ensemble of 3000 singletonsFigure 34
The time required for the formation of a first family with 
1024 members determined by Monte Carlo simulation start-
ing from an ensemble of 3000 singletons. The model parame-
ters are for Homo sapiens.

The time required for the formation of a first family with 1024 members starting from an ensemble of 3000 singletons (blue) compared to the mean time predicted by BDIMs of dif-ferent orders (magenta)Figure 35
The time required for the formation of a first family with 
1024 members starting from an ensemble of 3000 singletons 
(blue) compared to the mean time predicted by BDIMs of dif-
ferent orders (magenta). The model parameters are for 
Homo sapiens.
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unique genes as resulting from innovation. For genomes
to maintain equilibrium, the combined rates of
duplication and innovation over the entire ensemble of
gene families should equal the rate of gene loss, at least
when averaged over long time spans. The observed distri-
bution of family sizes, which asymptotically tends to a
power law, dictates a much more specific connection
between the gene birth and death rates, namely, the
second order balance. It should be noted that this form of
balance does not amount to particularly fine tuning of the
gene birth and death rates. The only requirement is that
these rates tend to the same value when the family size
tends to infinity according to the condition (1.5). In
contrast, for small families, the rates may substantially dif-
fer, without significantly changing the shape of equilib-
rium distribution.

The incentive to examine BDIMs in detail stems from at
least two fundamental questions: i) are the above elemen-
tary evolutionary mechanisms sufficient to account for the
empirically observed characteristics of genomes, ii) what
is the contribution of natural selection to the general,
quantifiable features of genomes, such as the size
distribution of gene families. The analysis of BDIMs starts
to provide some answers, albeit preliminary ones. The
critical observation made in the course of BDIM analysis
was that different versions of these models could be read-
ily distinguished on the basis of goodness of fit to the
empirical data. This being the case, we found that the sim-
plest possible model, in which all paralogs are considered
independent, is incompatible with the data. Thus, turning
to the first of the above questions, we had to conclude
that, in addition to the three elementary processes,
"something else" was required to model genome evolu-
tion. This "something" is the dependence or "interaction"
between gene family members which results in self-accel-
erating family growth. In order to account for the
observed stationary distribution of family sizes, it is suffi-
cient to introduce a very weak dependence as embodied in
the linear BDIM. However, when we switched from the
deterministic to the stochastic version of BDIMs, which
provide for the possibility of analysis of the dynamics of
the systems evolution, we found that evolution under the
linear BDIM was much too slow to account for the emer-
gence of the large families of paralogs found in all
genomes during the time of life's evolution. Only higher
order BDIMs, with degrees between 2 and 3, i.e., with
"strong interactions" between family members were
found to provide for sufficiently fast evolution to be com-
patible with the real biological timescale.

Obviously, these findings beg the question: what is the
nature of the mysterious "interactions" between paralogs?
Although, on some occasions, paralogous protein do
form physical complexes or interact functionally, the situ-

ation when such interaction does not exist is much more
common. Therefore, the "interactions" in our models
should not be perceived literally. This brings us to the sec-
ond of the above major problems. BDIMs do not explic-
itly include the notion of selection. However, the simplest
interpretation of the virtual interactions implied by the
higher order BDIMs seems to be that these reflect differen-
tial tendencies of genes to form paralogous families of
different sizes depending on the intensity of selection.
Recent studies have shown that evolutionary fixation of
gene duplications is linked to the evolutionary rates of
genes. Specifically, duplications of slowly evolving genes,
i.e., those that are subject to stronger purifying selection,
are fixed more often [54,55]. The strong dependence of
per gene duplication rates on family size in higher order
BDIMs could be an abstraction of this trend. Should that
be the case, we are justified to conclude that very weak
selection would suffice to explain the stationary distribu-
tion of family sizes, but much stronger selective pressure
is needed to account for the dynamics of genome
evolution. However, the interpretation of BDIM degree as
a manifestation of selection is, at this point, no more than
a guess. One of the further developments of genome evo-
lution modeling involves introducing selection explicitly
and determining whether the resulting more sophisticated
models will be equivalent to the higher order BDIMs
explored here.

Conclusions
In this work, we extended our analysis of stochastic Birth,
Death and Innovation Models (BDIMs) of gene family
evolution and showed that:

• the behavior of logistic BDIMs models, in which birth/
death rates are limited for the largest families, is essen-
tially the same as that of previously investigated BDIMs
that included no such limitation

• the mean time required for the growth of large families
is limited by the overall number of duplications and does
not increase indefinitely with the increase of the model
degree but instead passes through a minimum; even
under the best-case scenario, which corresponds to a non-
linear rational BDIM with d ≈ 2.7, the mean time of the
largest family formation is orders of magnitude greater
than any realistic estimates based on the timescale of life's
evolution;

• using the embedding chains technique, we estimated
the expected number of elementary evolutionary events
(gene duplications and deletions) preceding the forma-
tion of gene families of the observed size; the mean
number of events exceeds the family size by orders of
magnitude, suggesting a highly dynamic process of
genome evolution;
Page 21 of 23
(page number not for citation purposes)



BMC Evolutionary Biology 2004, 4:32 http://www.biomedcentral.com/1471-2148/4/32
• the variance of the time required for the formation of the
largest families is large (coefficient of variation >> 1),
which means that some families might grow much faster
than the mean rate; thus, the minimal time required for
family formation is more relevant for a realistic represen-
tation of genome evolution than the mean time;

• Monte Carlo simulations of family growth from an
ensemble of simultaneously evolving singletons show
that the time elapsed before the formation of the largest
family was much shorter than the estimated mean time
and approached realistic values (2.2 ± 0.5 Ga for the non-
linear rational BDIM with d ≈ 2.2).
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