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Abstract
Background: Power distributions appear in numerous biological, physical and other contexts,
which appear to be fundamentally different. In biology, power laws have been claimed to describe
the distributions of the connections of enzymes and metabolites in metabolic networks, the
number of interactions partners of a given protein, the number of members in paralogous families,
and other quantities. In network analysis, power laws imply evolution of the network with
preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs.
Exploration of different types of evolutionary models in an attempt to determine which of them
lead to power law distributions has the potential of revealing non-trivial aspects of genome
evolution.

Results: A simple model of evolution of the domain composition of proteomes was developed,
with the following elementary processes: i) domain birth (duplication with divergence), ii) death
(inactivation and/or deletion), and iii) innovation (emergence from non-coding or non-globular
sequences or acquisition via horizontal gene transfer). This formalism can be described as a birth,
death and innovation model (BDIM). The formulas for equilibrium frequencies of domain families
of different size and the total number of families at equilibrium are derived for a general BDIM. All
asymptotics of equilibrium frequencies of domain families possible for the given type of models are
found and their appearance depending on model parameters is investigated. It is proved that the
power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and
deletion rates are asymptotically equal up to the second order. It is further proved that any power
asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of
the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs,
namely simple, linear, polynomial and rational models, are considered in details and the
distributions of the equilibrium frequencies of domain families of different size are determined for
each case. We apply the BDIM formalism to the analysis of the domain family size distributions in
prokaryotic and eukaryotic proteomes and show an excellent fit between these empirical data and
a particular form of the model, the second-order balanced linear BDIM. Calculation of the
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parameters of these models suggests surprisingly high innovation rates, comparable to the total
domain birth (duplication) and elimination rates, particularly for prokaryotic genomes.

Conclusions: We show that a straightforward model of genome evolution, which does not
explicitly include selection, is sufficient to explain the observed distributions of domain family sizes,
in which power laws appear as asymptotic. However, for the model to be compatible with the data,
there has to be a precise balance between domain birth, death and innovation rates, and this is likely
to be maintained by selection. The developed approach is oriented at a mathematical description
of evolution of domain composition of proteomes, but a simple reformulation could be applied to
models of other evolving networks with preferential attachment.

Background
Sequencing of numerous genomes from all walks of life,
including multiple representatives of diverse lineages of
bacteria, archaea and eukaryotes, creates unprecedented
opportunities for comparative-genomic studies [1–3].
One of the mainstream approaches of genomics is com-
parative analysis of protein or domain composition of
predicted proteomes [2,4,5]. These studies often concen-
trate on domains rather than entire proteins because
many proteins have variable multidomain architectures,
particularly in complex eukaryotes (throughout this work,
we use the term domain to designate a distinct evolution-
ary unit of proteins, which can occur either in the stand-
alone form or as part of multidomain architectures; often
but not necessarily, such a unit corresponds to a structural
domain). As soon as genome sequences of bacteria be-
came available, it has been shown that a substantial frac-
tion of the genome of each species, from approximately
one third in bacteria with very small genomes, to a signif-
icant majority in species with larger genomes, consists of
families of paralogs, genes that evolved via gene duplica-
tion at different stages of evolution [6–9]. Again, a com-
prehensive analysis of paralogous relationships between
genes is probably best performed at the level of individual
protein domains, first, because many proteins share only
a subset of common domains, and second, because do-
mains can be conveniently and with a reasonable accuracy
detected using available collections of domain-specific se-
quence profiles [10–12]. Comparisons of domain reper-
toires revealed both substantial similarities between
different species, particularly with respect to the relative
abundance of house-keeping domains, and major differ-
ences [4,5]. The most notable manifestation of such dif-
ferences is lineage-specific expansion of protein/domain
families, which probably points to unique adaptations
[13,14]. Furthermore, it has been demonstrated that more
complex organisms, e.g. vertebrates, have a greater variety
of domains and, in general, more complex domain archi-
tectures of proteins than simpler life forms [1,2].

Lineage-specific expansions and gene loss events detected
as the result of comparative analysis of the domain com-
positions of different proteomes have been examined

mostly at a qualitative level, in terms of the underlying bi-
ological phenomena, such as adaptation associated with
expansion or coordinated loss of functionally linked sets
of genes [15]. A complementary approach involves quan-
titative comparative analysis of the frequency distribu-
tions of proteins or domains in different proteomes.
Several studies pointed out that these distributions ap-
peared to fit the power law: P(i) � ci-γ where P(i) is the fre-
quency of domain families including exactly i members, c
is a normalization constant and γ is a parameter, which
typically assumes values between 1 and 3 [16–19]. Obvi-
ously, in double-logarithmic coordinates, the plot of P as
a function of i is a straight line with a negative slope. Pow-
er laws appear in numerous biological, physical and other
contexts, which seem to be fundamentally different, e.g.
distribution of the number of links between documents in
the Internet, the population of towns or the number of
species that become extinct within a year. The famous
Pareto law in economics describing the distribution of
people by their income and the Zipf law in linguistics de-
scribing the frequency distribution of words in texts be-
long in the same category [20–29]. Recent studies
suggested that power laws apply to the distributions of a
remarkably wide range of genome-associated quantities,
including the number of transcripts per gene, the number
of interactions per protein, the number of genes or pseu-
dogenes in paralogous families and others [30].

Power law distributions are scale-free, i.e. the shape of the
distribution remains the same regardless of scaling of the
analyzed variable. In particular, scale-free behavior has
been described for networks of diverse nature, e.g. the
metabolic pathways of an organism or infectious contacts
during an epidemic spread [20,25–27]. The principal pat-
tern of network evolution that ensures the emergence of
power distributions (and, accordingly, scale-free proper-
ties) is preferential attachment, whereby the probability of
a node acquiring a new connection increases with the
number of connections this node already has.

However, a recent thorough study suggested that many bi-
ological quantities claimed to follow power laws, in fact,
are better described by the so-called generalized Pareto
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function: P(i) = c(i+a)-γ where a is an additional parameter
[31]. Obviously, although at i >> a, a generalized Pareto
distribution becomes indistinguishable from a power law,
at small i, it deviates significantly, the magnitude of the
deviation depending on the value of a. Furthermore, un-
like power law distributions, generalized Pareto distribu-
tions do not show scale-free properties.

The importance of the analysis of frequency distributions
of domains or proteins lies in the fact that distinct forms
of such distributions can be linked to specific models of
evolution. Therefore, by exploring the distributions, infer-
ences potentially can be made on the mode and parame-
ters of genome evolution. For this purpose, the
connections between domain frequency distributions and
evolutionary models need to be explored theoretically
within a maximally general class of models. In this work,
we undertake such a mathematical analysis using simple
models of evolution, which include duplication (birth),
elimination (death) and de novo emergence (innovation)
of domains as elementary processes (hereinafter BDIM,
birth- death- innovation models). All asymptotics of equi-
librium frequencies of domain families of different size
possible for BDIM are identified and their dependence on
the parameters of the model is investigated. In particular,
analytical conditions on birth and death rates that pro-
duce power asymptotics are determined. We prove that
the power law asymptotics appears if, and only if, the
model is balanced, i.e. domain duplication and deletion
rates are asymptotically equal up to the second order, and
that any power asymptotic with the degree not equal to -
1 can appear only if the assumption of independence of
the duplication/deletion rates on the size of a domain
family is rejected. We apply the developed formalism to
the analysis of the frequency distributions of domains in
individual prokaryotic and eukaryotic genomes and show
a good fit of these data to a particular version of the mod-
el, the second-order balanced linear BDIM.

Results and Discussion
Mathematical theory and model
Fundamental definitions and assumptions
A genome is treated as a "bag" of coding sequence for pro-
tein domains, which we simply call domains for brevity.
Domains are treated as independently evolving units dis-
regarding the dependence between domains that tend to
belong to the same multidomain protein. Each domain is
considered to be a member of a family (including single-
member families). We consider three types of elementary
evolutionary events: i) domain birth, which generates a
new member within a family; the principal mechanism of
birth is duplication with divergence but additional mech-
anisms may be considered, including acquisition of a
family member from a different species via horizontal
gene transfer [32], ii) domain death, which results from

domain inactivation and/or deletion, and c) domain in-
novation, which generates a new family with one member.
Innovation may occur via horizontal gene transfer from
another species, via domain evolution from a non-coding
sequence or a sequence of a non-globular protein, or via
major change of a domain from a pre-existing family after
a duplication, which makes the relationship between the
given domain and its family of origin undetectable (this
latter process formally combines domain birth, death and
innovation in a single event). The innovation rate (ν), is
considered constant for a given genome. The rates of ele-
mentary events are considered to be independent of time
(i. e. only homogeneous models are considered) and of
the nature (structure, biological function etc.) of individ-
ual families.

In a finite genome, the maximal number of domains in a
family cannot exceed the total number of domains and, in
reality, is probably much smaller; let N be the maximal
possible number of domain family members. We consider
classes of domain families, which have only one common
feature, namely the number of members (Fig. 1). Let fi be
the number of domain families in i-th class, i.e. families
that are represented by exactly i domains in the given ge-
nome, i = 1,2,...N. Birth of a domain in a family of class i
results in the relocation of this family from class i to class
i+1 (decrease of fi and increase of fi+1 by 1). Conversely,
death of a domain in a family of class i relocates the family
to class i-1; death of a domain in class 1 results in the elim-
ination of the corresponding family from the given ge-
nome, this being the only considered mechanism of
family death. We consider time to be continuous and sup-
pose it very unlikely that more than one elementary event
occur during a short time interval; formally, the probabil-
ity that more than one event occurs during an interval
∆t is o(∆t).

The formulation of the model
The simple BDIM
Let us formulate the following independence assump-
tion: i) all elementary events are independent of each oth-
er; ii) the rates of individual domain birth (λ) and death
(δ) do not depend on i (number of domains in a family).
Under this assumption, the instantaneous rate, at which a
domain family leaves class i, is proportional to i and the
following simple BDIM describes the evolution of such a
system of domain family classes:

df1(t)/dt = -(λ + δ) f1(t) + 2δf2(t) + ν

dfi(t)/dt = (i - 1)λfi-1(t) - i(λ + δ)fi(t) + (i + 1) δ fi+1(t) for
1<i<N,  (2.1)

dfN(t)/dt = (N - 1)λ fN-1(t) - Nδ fN(t).
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Similar models have been considered previously in sever-
al different contexts [33 v. 1, ch. 17, 34]. We will see in 3.2
that the solution of model (2.1) evolves to equilibrium,
with a unique distribution of domain family sizes, fi~(λ/
δ)i/i; in particular, if λ = δ, then fi~1/i. Thus, under the
simple BDIM, if the birth rate equals the death rate, the
abundance of a domain class is inversely proportional to
the size of the families in this class. When the observa-
tions do not fit this particular asymptotic (as observed in
several studies on distributions of protein family sizes), a
different, more general model needs to be developed.

The Master BDIM
A more general BDIM emerges when the independence as-
sumption is abandoned. Instead of constructing specific
hypotheses regarding the dependence between the ele-
mentary events, let us simply suppose that the domain
birth and death rates for a family of class i do not neces-
sarily show proportionality to i. For the general case, we
designate these rates, respectively, λi and δi; in the specific
case of the simple BDIM (2.1), λi = λi and δi = δi. Then we
have the following master BDIM:

df1(t)/dt = -(λ1 + δ1)f1(t) + δ2f2(t) + ν

dfi(t)/dt = λi-1fi-1(t) - (λi + δi)fi(t) + δi+1fi+1(t) for 1<i<N,
 (2.2)

dfN(t)/dt = λN-1fN-1(t) - δNfN (t).

Let F(t)= fi(t) be the total number of domain families

at instant t; it follows from (2.2) that

dF(t)/dt = ν - δ1f1(t)  (2.3)

The system (2.2) has an equilibrium solution f1,...fN de-
fined by the equality dfi(t)/dt = 0 for all i; this solution is
described below under Proposition 1. Accordingly, there
exists an equilibrium solution of equation (2.3), which
we will designate Feq (the total number of domain fami-
lies at equilibrium). At equilibrium, ν = δ1f1, i.e. the proc-
esses of innovation and death of single domains (more
precisely, the death of domain families of class 1, i.e. sin-
gletons) are balanced.

We can rewrite the model (2.2) in terms of the frequency
of a domain family of class i pi(t) = fi(t)/F(t). Let x(t) =
y(t)/Y(t); then

dx/dt = [dy/dt /y - dY/dt /Y] x.

Applying this identity to pi(t) and rewriting equation (2.3)
in the form

[dF(t)/dt]/F(t) = ν/F(t) - δ1p1(t)  (2.3')

we obtain the following model for frequencies of the do-
main family (master BDIM for frequencies), which is equiv-
alent to (2.2):

dp1(t)/dt = -(λ1 + δ1)p1(t) + δ2p2(t) + ν/F(t) - (ν/F(t) -
δ1p1(t))p1(t),  (2.4)

dpi(t)/dt = λi-1pi-1(t) - (λi + δi)pi(t) + δi+1pi+1(t) - (ν/F(t) -
δ1p1(t)) pi(t) for 1<i<N,

dpN(t)/dt = λN-1pN-1(t) - δNpN (t) - (ν/F(t) - δ1p1(t))] pN(t).

System (2.4) should be solved together with equation
(2.3).

The Master BDIM and Markov processes
Let us note that system (2.4) for frequencies is non-linear,
so it is not a system of Kolmogorov equations for state
probabilities of any homogeneous Markov process. Let us
further suppose that a genome had ample time to arrive at
an equilibrium with respect to the total number of do-
main families, such that F(t) = Feq. This does not imply
dpi(t)/dt = 0 or dfi(t)/dt = 0; in other words, the system
might rearrange the frequencies of individual families, al-
though the total number of families remains stable. If F(t)
= Feq, the master system (2.4) turns into

Figure 1
Domain dynamics and elementary evolutionary events under
BDIM.
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d p1(t)/dt = -(λ1 + δ1) p1(t) + δ2p2(t) + ν/Feq  (2.5)

d pi(t)/dt = λi-1pi-1(t) - (λi + δi) pi(t) + δi+1pi+1(t) for 1<i<N,

d pN(t)/dt = λN-1pN-1(t) - δNpN (t).

System (2.5) can be rewritten as a matrix equation

dp(t)/dt = p(t)Q,

where p(t) = {p1(t),...pN(t)} and the matrix Q = (qij) is de-
fined by equalities

q11 = -(λ1 + δ1) + ν/Feq, q21 = δ2 + ν/Feq, qs1 = ν/Feq for all
s > 2;

qi-1,i = λi-1, qi,i = -(λi + δi), qi+1,i = δi+1, qk,i = 0 for all k, |i-
k| > 1, i = 2,...N-1,

qN-1,N = λN-1, qN,N = -δN.

It is easy to see that the sum of elements of each row (ex-
cept for the first one) of the matrix Q is equal to ν/Feq > 0.
Therefore the matrix Q cannot be a matrix of transition
rates for any Markov process (the sum of elements of each
row of a matrix of transition rates for Markov process with
continuous time should be non-positive [33 v. 1, ch.17, s.
8, 35 v. 2, ch. 3, s. 2]; in other words, there is no Markov
process with continuous time and state space {1,2,...N}
whose state probabilities satisfy system (2.5).

Thus, neither the initial BDIMs (2.1) or (2.2) nor the equi-
librium model (2.5) can be described by any Markov
process with continuous time.

Remark. If, in system (2.5), ν = 0, then this system turns
into a system of state probabilities for a Markov birth and
death process with continuous time.

Equilibrium in BDIMs
Equilibrium sizes and frequencies of the domain family system
Let us suppose that the genome had ample time to arrive
at a complete equilibrium state, in which not only dF(t)/
dt = 0, but also dfi(t)/dt = 0 for all i. Thus, the equilibrium
sizes of domain families fi satisfy the system

-(λ1 + δ1) f1 + δ2f2 + ν = 0,

λi-1fi-1 - (λi + δi)fi + δi+1fi+1 = 0 for 1<i<N,  (3.1)

λN-1fN-1 - δNfN = 0.

It should be emphasized that the master model does not
assign a priori the value of Feq; this value has to be comput-
ed depending on the model parameters.

The following statement is central for further analysis.

Proposition 1. The master BDIM (2.2) has a unique equilib-
rium state (f1,...fN), which is the sole solution of system (3.1):

f1 = ν/δ1

fi = ν  λj /  δj for all i = 2,...N.  (3.2)

The unique equilibrium state (3.2) is globally asymptotically
stable.

In addition (formally assuming   λj = 1 for i = 1), 

Feq = ν (  λj /  δj  (3.3)

This proposition ascertains that all evolutionary trajecto-
ries of the system (2.2) exponentially (with respect to
time) approach the equilibrium state (3.2). The proof is
given in the Mathematical Appendix.

Remark. Let us denote the ratio of the birth rate to the in-
novation rate

G(N) ≡  λifi/ν,

and the ratio of the death rate to the innovation rate

I(N) ≡  δifi/ν.

Then, according to Proposition 1, for any BDIM in equi-
librium,

G(N) - I(N) =    λj / δj -  λj/δj - 1 = -1.

The principal goal of the treatment that follows is the
analysis of the asymptotic behavior of equilibrium fre-
quencies and sizes of domain families (f1,...fN) at large N.
We will differentiate two cases of asymptotic behavior ac-
cording to the following
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Definition. Let {qi}, {si} be sequences of real numbers;
let us denote qi si if lim qi/si = 1 and qi ~ si if lim qi/si = c
= const and 0<c<∞. We will also use this notation for finite
but sufficiently long sequences.

Equilibrium frequencies for the simple BDIM
Let us apply Proposition 1 to the simple BDIM (2.1) with
λi = λi, δi = δi.

Definition. A simple BDIM is balanced if θ = λ/δ = 1, i.e. if
the rates of individual domain birth and death are equal.

Let us recall that a random discrete variable ξ has the log-
arithmic distribution with parameter θ < 1 if

P(ξ = i) = θi/i [-ln(1-θ)]-1, i = 1,2,...

A random variable ξ has the truncated logarithmic distribu-
tion with parameter θ if

P (ξ = i) = Cn θi / i, i = 1,2,...n, Cn = 1/  θj/j.

Then, we have

Proposition 2.

1) For any simple BDIM (2.1)

fi = (ν/δ)θi-1/i = (ν/λ)θi/i,  (3.4)

Feq = fi = ν/δ  θj-1/j,  (3.5)

and

pi = (1/Feq)(ν/δ)θi-1/i = (θi/i) /  θj/j  (3.6)

that is, the equilibrium frequencies have the truncated logarith-
mic distribution if θ < 1.

2) If a simple BDIM is balanced, then

Feq = ν/δ  1/j,  (3.7)

and for all i = 1,2,...N

pi = ν/δFeq/i = (  1/j)-1 / i.  (3.8)

The proof is given in the Mathematical Appendix.

Thus, a simple BDIM can have equilibrium frequencies
only of the form pi = Cθi/i, where C = const and θ is the dis-
tribution parameter. In particular, the equilibrium fre-
quencies for a balanced simple BDIM have the power
distribution with the degree equal to -1.

Simple methods exist for preliminary graphical estima-
tion of the single distribution parameter θ [36 ch. 7, s. 7].
We will prove in the following section that, if we observe
a power asymptotic for empirically observed equilibrium
frequencies, then (assuming that the system can be de-
scribed by a BDIM), the rates λi and δi should be asymp-
totically equal at large i. If, additionally, the degree of the
asymptotic is not equal to -1, then the system dynamics
cannot be described by a simple BDIM. In this case, it is nec-
essary to consider more general models, such as the Mas-
ter BDIM (2.2).

Asymptotic behavior of equilibrium frequencies of a Master BDIM: 
Main Theorems
Let us consider the master BDIM (2.2); we showed in 3.1
that its equilibrium frequencies are the solution of the sys-
tem

-(λ1 + δ1)p1 + δ2p2 + ν/Feq = 0,  (3.9)

λi-1pi-1 - (λi + δi)pi + δi+1pi+1 = 0 for 1<i<N,

λN-1pN-1 - δNpN = 0.

The following theorem gives all possible types of asymp-
totic behavior of the equilibrium frequencies and defines
the connections between these asymptotics depending on
model parameters. In particular, if there is no information
on the exact form of dependence of the rates of birth and
death of domains on the size of a domain family, the the-
orem can be used to qualitatively describe the dynamics of
the asymptotic behavior of the equilibrium frequencies.

We will prove that the asymptotic behavior of a solution
of system (3.9) is completely defined by the asymptotic
relation between λi and δi. More precisely, let us define a
function χ (i)= λi-1/δi; we consider only functions of pow-
er growth, i.e. χ (i) ~ is at i→∞ for a real s. We will see that
this is not a serious restriction because the most realistic
situations correspond to the case of s = 0. So, let us sup-
pose that, for large i, the following expansion is valid:
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χ (i) ≡ λi-1/δi = is θ (1+a/i + O(1/i2))  (3.10)

where s, a are real numbers and θ > 0. Evidently, if s ≠ 0, χ
(i) tends either to 0 (s < 0) or to ∞ (s > 0) with the increase
of i.

Definition. Let us refer to a BDIM (2.2), (3.10) as

i. non-balanced, if s ≠ 0;

ii. first-order balanced, if s = 0 and θ ≠ 1, i.e.

λi-1/δi = θ (1+a/i + O(1/i2)) at large i;  (3.11)

iii. second-order balanced, if s = 0, θ = 1 and a ≠ 0, i.e.

λi-1/δi = 1 + a/i + O(1/i2)) for large i;  (3.12)

iv. high-order balanced, if s = 0, θ = 1 and a = 0, i.e.

λi-1/δi = 1 + O(1/i2)) for large i.

We will show that the first three coefficients, s, θ and a, of
asymptotic expansion (3.10) for χ (i) = λi-1/δI exactly
specify all possible asymptotic behaviors of BDIM equilib-
rium frequencies.

Theorem 1. The equilibrium frequencies pi of BDIM (2.2)
have the following asymptotics

i. if the model is non-balanced, then

pi ~ Γ (i)sθiia, where Γ (i) is the Γ-function;

ii. if the model is first-order balanced, then

pi ~ θiia;

iii. if the model is second-order balanced, then

pi ~ ia;

iv. if the model is high-order balanced, then

pi ~ 1

The proof is given in the Mathematical Appendix. The
classification of BDIM according to the order of balance is
illustrated in Fig. 2 and the asymptotics for different types
of BDIMs are shown in Fig. 3.

It follows from this theorem that, if a BDIM is non-bal-
anced, then its equilibrium frequencies pi (and equilibri-
um family sizes fi) increase or decrease extremely fast
(hyper-exponentially) with the increase of i. In contrast, if

a BDIM has a non-zero order of balance, asymptotic be-
havior is observed.

Let us recall that a random discrete variable ξ has the Pas-
cal (or negative binomial) distribution with parameters (r,q),
r > 0, 0 <q < 1, if P(ξ = k) = Γ(r+k)/[Γ(r) Γ(1+k)] (1-
q)rqk[36]. We will say that sequence {pi} follows (or as-
ymptotically has) a discrete probabilistic distribution {qi}
if pi ~ qi for large enough i.

Corollary 1.For a first-order balanced BDIM with θ < 1,

i. if a > -1, the equilibrium frequencies pi follow Pascal distri-
bution with parameters (a+1,θ);

Figure 2
Different orders of balance in BDIMs.

Figure 3
Asymptotics of equilibrium distributions for balanced BDIMs
of different orders.
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ii. if a = -1, the equilibrium frequencies follow truncated loga-
rithmic distribution with parameter θ;

iii. if a = 0, the equilibrium frequencies follow geometric distri-
bution with parameter θ.

The following implication of Theorem 1 is of principal in-
terest.

Corollary 2. Equilibrium frequencies of a BDIM have a power
asymptotic behavior if and only if the BDIM is second-order
balanced.

Corollary 3. For high-order balanced BDIM, if λi-1/δi = 1 for
all i, the only possible distribution of equilibrium frequencies is
uniform, pi = const for all i. Moreover, even if λi-1/δi = 1 +
O(1/i2), the equilibrium frequencies asymptotically tend to the
uniform distribution.

Rational BDIM
Rational models comprise a general class of BDIM (Fig. 4),
for which the asymptotic behavior of the equilibrium fre-
quencies and equilibrium sizes of domain families can be
completely investigated.

Let us suppose that the birth and death rates are of the
form

λi = λ P(i) = λ  (i + ak)^αk,  (4.1)

δi = δ Q(i) = δ  (i + bk)^βk

for i > 0, where λ, δ are positive constants, αk, βk are real
and ak, bk are non-negative for all k = 1,...N.

We will refer to BDIM (2.2.), (4.1) as rational BDIM.

It is known that a wide class of mathematical functions
can be well approximated by rational functions of the
form (4.1) (see, e.g. [37]).

Specific cases of the rational BDIM are simple BDIM with
P(i) = i, Q(i) = i, linear BDIM with P(i) = i + a1, Q(i) = i +
b1, where a1, b1 are constants, and polynomial BDIM, if
P(i) and Q(i) are polynomials on i.

The following theorem describes all possible asymptotic
behaviors of the equilibrium frequencies of a rational
BDIM. Let us denote

θ =λ/δ,

η =  αk -  βk,

ρ = akαk - bkβk,

β =  βk.

Theorem 2. The equilibrium sizes of domain families of a ra-
tional BDIM have the following asymptotics

fi Cν/λ Γ(i)η θiiρ-β  (4.2)

where the constant 

C =  (Γ(1 + bk)^βk/  Γ(1 + ak)^αk.  (4.3)

The proof is given in the Mathematical Appendix.

Corollary 1. If η = 0, then the rational BDIM is first-order
balanced and the sequence of equilibrium numbers of domain
families {fi} has a power-exponential asymptotics

fi Cν/λ θiiρ-β.  (4.4)

Figure 4
The hierarchy of BDIM types.
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In particular, if ρ - β > -1, the equilibrium frequencies pi follow
the Pascal distribution with parameters (ρ - β + 1, θ);

if ρ - β = -1, then frequencies pi follow the truncated logarith-
mic distribution;

if ρ - β = 0, then frequencies pi follow the geometric distribu-
tion.

Corollary 2. The equilibrium sizes of domain families fi and
equilibrium frequencies pi for a rational BMID have the power
asymptotics if and only if η = 0 and λ = δ, i.e. the BDIM is sec-
ond-order balanced, in which case

fi Cν/λ iρ-β.  (4.5)

Formula (4.4) gives the asymptotics for the equilibrium
sizes of domain families fi and, accordingly, for the total
number of families Feq. The exact expressions for these
quantities are given in the proofs of Theorem 2 and Lem-
ma (see Mathematical Appendix).

Proposition 3.

i. The equilibrium sizes of domain families fi of a balanced
(first or higher order) rational BDIM are

fi = Cν/δθi-1  [(Γ(i + ak))^αk]/  [(Γ(i + 1 +

bk))^βk] for all i = 1,2,...

where

C =  [(Γ(1 + bk))^βk]/  (Γ(1 + ak)^αk].

ii. The total number of domain families at equilibrium is

Feq = Cν/δ(  θj-1  (Γ(j + ak))^αk/  (Γ(j + 1 +

bk))^βk).

For the rational, second-order balanced BDIM, the ratio of
the birth rate to the innovation rate is

G(N) =  θi  [Γ(i + 1 + ak)/Γ(1 + ak)]^αk / [Γ(i +

1 + bk) / Γ(1 + bk)]^βk.

The asymptotic formulas for equilibrium frequencies of
rational BDIM could be considered as particular cases of
the corresponding formulas of general theorem 1. Propo-
sition 3 allows one to calculate the constants in the corre-
sponding asymptotic formulas for the sizes of domain
families for a rational BDIM. If only equilibrium frequen-
cies are analyzed, the values of these constants become ir-
relevant because they contract. However, if the actual
values of fi and Feq are of interest, the values of the con-
stants are required.

Properties of the main types of rational BDIM
Simple BDIM
As shown above, a simple BDIM can have equilibrium fre-
quencies only of the form pi = Cθi/i, C = const;in particular,
if the distribution parameter θ < 1, we get the (truncated)
logarithmic distribution. Logarithmic distributions are
seen in many biological contexts, e.g., the distribution of
species by the number of individuals in populations or,
what is more relevant, the distribution of protein folds by
the number of families per fold [38]. Thus, a simple BDIM
could be potentially used for modeling the dynamics of
biological systems with a logarithmic distribution of equi-
librium densities. We examine this possibility in greater
detail starting with the case λ = δ (second-order balanced
simple BDIM).

We can extract from Proposition 2 some additional infor-
mation, which could be helpful for estimating the model
parameters. It is known that

 1/i = lnN + CE + O (1/N), where CE is the Euler con-

stant, CE = 0.5772157...

More precisely, the approximation

  1/i = lnN + CE + N-1/2 - N-2/12 has an error less then

10-6 for N > 10. Thus, from (3.7), we obtain an interesting
formula

Feq  (ν/δ) [lnN + CE]  (5.1)

This means that, in the equilibrium state of the system,
the total number of domain families grows only slowly
(~ln N) with the increase of the maximal number (N) of
domains in a family (which is equal to the maximal pos-
sible number of domain family size classes).

Furthermore, according to equation (2.3), in the equilib-
rium state of a simple BDIM ν/δ = f1, so we have
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Feq / f1  lnN + CE  (5.2)

Formula (5.1) can be used for estimating the model pa-
rameters on the basis of empirical data.

In the more general case λ ≠ δ, we can also obtain an esti-
mate of the rate of innovation ν. If λ < δ (θ < 1), then the
series in the right part of (3.5) quickly converges,

 θi-1/i → -ln(1-θ)/θ,

so -ln(1-θ)/θ is a good approximation for the sum

  θi-1/i for large N. Then

Feq = (ν/δ)  θi-1/i = (ν/λ)  θi/i  ν/λ (-ln(1-θ)),

and

ν/δ = Feq θ/(-ln(1-θ)).  (5.3)

Taking into account that ν/δ = f1 (2.3), we have a relation

Feq/f1  -ln(1-θ)/θ,  (5.4)

which allows the parameter θ to be estimated on the basis
of empirical data.

If N can be estimated independently and is not very large,
we can use more exact relations:

 θi/i  -ln(1-θ) + Ei(-N(1-θ)) - N-1/2 + N-2/12.

where the function .

Further, if (1-θ)N is small (i.e., θ is very close to 1), then
the approximation

 θi/i CE - N(1-θ)

has an error less then [N(1-θ)]2/4 and, in this case,

Feq/f1  (CE - N(1 - θ))/θ.  (5.5)

If (1 - θ)N is large, then the following inequalities provide

simple bounds for Feq/f1 =  θi-1/i:

-(ln(1-θ)/θ-θN/[(N+1)(1-θ)] <  θi-1/i < -ln(1-θ)/θ-

θN[1/(N+1)-θ/(N+2)].  (5.6)

For the simple BDIM, the ratio of the rate of duplications
to the innovation rate is

G(N) =  λifi/ν =  θi = θ(1-θN-1)/(1-θ),

so G(N) → ∞ if θ > 1 and G(N) → 1/(1-θ) if θ < 1 at N→∞.

If the simple BDIM is the 2nd order balanced, θ = 1, then
G(N) = N - 1.

Thus, for the simple, second-order balanced BDIM, the
number of duplications per time unit is N-1 times greater
than the number of innovations.

The total number of domains in the equilibrium state for
the simple BDIM is

M(N) = ifi = ν/λθ(1-θN)/(1-θ).

If a simple BDIM is second-order balanced, then G(N) =
ν/λ N.

Linear BDIM
We saw that the assumption of independence of birth and
death rates of individual domains on each other and on
the size of domain families is incompatible with any pow-
er distribution of the equilibrium frequencies with the de-
gree not equal to -1. The simplest case of a BDIM, which
can have, depending on the parameters, three types of as-
ymptotic behavior described by Theorem 1 (excluding the
first one, hyper-exponential, which corresponds to a non-
balanced BDIM; all linear BDIMs are balanced) and, in
particular, any power asymptotics, is a model with linear
birth and death rates of the form:

λi = λ (i + a), δi = δ (i + b), where a and b are constants.
 (5.7)

The parameters a and b account, in the simplest possible
form, for the deviation of the domain birth and death
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rates from those under the independence assumption.
More precisely, according to (5.7), the average birth rate
per domain in a family of size i is λi/i = λ + λa/i. So, for
small i, the average birth rate is close to λ + λa, whereas,
for large i, it tends to λ. Similarly, the average death rate
changes from δ + δb in a small family to the limit value δ
in a large family. Thus, if a and b are positive (which seems
to be the case for the available data; see below), both the
birth rate and the death rate per domain decrease with the
increase of the class number (size of the respective do-
main families); conversely, if a and b are negative, these
rates increase with the class number (Fig. 5).

Corollary 1 of Theorem 2 implies that equilibrium fre-
quencies pi of a linear BDIM have asymptotics

pi ~ θiia-b-1, where θ = λ/δ.  (5.8)

In particular, if λ ≠ δ and a = b, the linear BDIM is first-or-
der balanced and the equilibrium frequencies pi follow
the logarithmic distribution (in this case, the linear BDIM
is asymptotically equivalent to the simple BDIM). If λ = δ,
the linear BDIM is second-order balanced and the equilib-
rium frequencies pi follow the power distribution

pi ~ ia-b-1.   (5.9)

Thus, the dependence of the domain frequency on the
family size is actually determined by the difference a - b. If
a > b, the birth rate decreases faster than the death rate
with the increase of family size, i. e. there seems to be a
"competition" between domains in a family; in contrast,
if a <b, the death rate drops faster, i.e. a "synergy" between
domains appears to exist (Fig. 4).

More detailed information can be obtained using Propo-
sition 4:

i) for a first-order balanced linear BDIM, the equilibrium sizes
fi of domain families are

fi = cν/δθi-1Γ(i + a)/(Γ(i + 1 + b)) for all i

where

c = Γ (1 + b)/Γ (1 + a)

and the total number of domain families at equilibrium is

Feq = cν/δ[  θj-1Γ(j + a) / (Γ(j + 1 + b)].  (5.10)

ii) for a second-order balanced linear BDIM (θ = 1),

fi = c1ν/δ Γ (i + a)/Γ (i + 1 + b)

and

According to (2.3), in the equilibrium state of a linear
BDIM, f1 = ν/δ1 = ν/(δ(1 + b)) and so, for a second-order
balanced linear BDIM, we have the formula

Suppose that equilibrium frequencies obtained from em-
pirical data follow the power distribution pi ~ i-γ; in this
case, -γ is the slope of the empirical curve (lnfi versus lni)
and can be estimated from the data. Assuming that the
system is well described by a linear BDIM, it follows from
(5.9) that a - b = 1 - γ and λ = δ. Thus,

fi = cν/δ Γ (i + a)/Γ (i + a + γ), where c = Γ (γ + a)/Γ (1 + a),
 (5.12)

Figure 5
Dependence of per domain birth and death rates on the
domain family size for the second-order balanced linear
BDIM.
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and

where a is the single free parameter.

For the linear second-order balanced BDIM, the ratio of
the birth rate to the innovation rate is

if 1 + a - b ≠ 0. As

if 1 + a - b < 0 and G(N)→∞ if 1 + a - b > 0 at N→∞.

The case 1 + a - b = 0 (slope of the asymptote in double
logarithmic coordinates equal to a - b - 1 = -2) is a critical
one.

In this case,

G(N) =  Γ(1 + b) / Γ(b) Γ (i + b) / (Γ (i + 1 + b) =

b1/(i + b) = b [PolyGamma(0, b+N) - PolyGam-

ma(0, b+1)].

Accordingly, G(N)→∞ at N→∞.

The total number of domains in the equilibrium state for
a second-order balanced linear BDIM is

If the slope of the asymptote γ = -1, the linear second-or-
dered BDIM shows the same asymptotic behavior as a
simple BDIM (2.1), but behaves differently at small i. If γ
≠ -1, the system cannot be described by a simple BDIM
even asymptotically, but can be described by a linear
BDIM. As indicated above, in this case, the average per-do-
main birth and death rates depend on the size of the do-
main family and the difference a-b characterizes this
dependence.

Quadratic BDIM
The linear BDIM takes into account the dependence of av-
erage birth and death rates of individual domains on the
size of domain family, but does not imply a specific form
of interaction between domains. Let us consider the sim-
plest, pairwise interaction, which leads to λi ~ i2 and/or δi
~ i2, i.e. one or both rates are polynomials on i of the sec-
ond degree. If these degrees are different (i.e., λi ~ i and δi
~ i2), then the corresponding BDIM is non-balanced and
equilibrium frequencies have hyper-exponential asymp-
totics. Thus, let

λi = λ (i2 + r1i + r2), δi = δ (i2 + q1i + q2),  (5.13)

where rk, qk, k = 1,2 are constants (such that λi, δi are pos-
itive for all i) or

λi = λ (i + a1)(i + a2),

δi = δ (i + b1)(i + b2)

Then, r1 = a1 + a2, q1 = b1 + b2, and

χ (i) = λi-1/δi = θ (1 + (r1-q1-2)/i + O(1/i2)),

where θ = λ/δ.

According to theorem 3 and Proposition 3, the quadratic
BDIM with rates (5.13) has equilibrium sizes of domain
families
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fi = c2 ν/δ θi-1 Γ (i + a1) Γ (i + a2) / (Γ (i + 1 + b1) (Γ (i + 1
+ b2)) c2ν/δ θi-1iρ-2  (5.14)

where ρ = r1 - q1 and the constant c2 = [(Γ (1+b1) Γ (1+b2)]
/ [Γ (1+a1) Γ (1+a2)], and the total number of domain
families at equilibrium

Feq = c2ν/δ (  θj-1 Γ(j+a1) Γ(j+a2) / (Γ(j+1+b1)

(Γ(j+1+b2)).  (5.15)

Note that the asymptotic behavior of frequencies pi does
not depend on free coefficients r2, q2 in (5.13), but only
on θ and r1-q1 (as follows from (5.14)), although the val-
ues of fi are proportional to the constant c2, which could
depend on the free coefficients r2, q2. Let us consider the
case r2 = q2 = 0 in more detail.

If only square terms are present in the expressions for the
birth and death rates, λi = λi2, δi = δi2, then ak = bk = 0, k =

1,2 and so c2 = 1, fi = ν/δ θi-1/i2 and Feq = ν/δ  θj-1/j2.

So at N→∞

Feq  ν/δ  θj-1 / j2 = ν/λ Polylog(2,θ)  (5.16)

where Polylog is a special function, Polylog(k,x) = xj/

jk.

According to (3.2), f1 = ν/δ1; for this particular case of
quadratic BDIM, f1 = ν/δ and

Feq/f1  Polylog(2,θ).  (5.17)

Formula (5.17) allows estimating parameter θ from
empirical data if N is large enough.

More precisely, Feq = ν/λ  θj/j2 = ν/λ (Polylog(2,θ)-

θ1+N LerchPhi(θ,2,1+N)), where LerchPhi is a special
function (these and other special functions used below
can be computed using program packages Mathematika
or Maple).

If, additionally, θ = 1 (the BDIM is second-order bal-
anced), then

fi = (ν/δ)/i2 = f1/i2  (5.18)

and, at large N

Feq  ν/δ π2/6  1.645 ν/δ = 1.645f1.  (5.19)

From formulas (5.8), (5.15), we can extract some addi-
tional information, which could be helpful for estimating
the model parameters at relatively small N. Let us recall
definitions of some special functions.

The digamma function φ(z) is logarithmic derivative of
Γ(z), φ(z) = Γ'(z)/Γ(z).

The function PolyGamma(n,z) is nth derivative of φ(z),
PolyGamma(n,z) = dnφ(z)/dzn, such that φ(z)= PolyGam-
ma(0,z).

It is known that

 1/i2 = π2/6-PolyGamma(1,1+N),

Thus we have

Feq = ν/δ  1/j2 = ν/δ [π2/6-PolyGamma(1,1+N)]

 (5.20)

Feq/f1 = π2/6-PolyGamma(1,1+N),

which can be used for estimating unknown parameters of
the model.

The values of PolyGamma(1,x) are tabulated and can be
computed using standard program packages; for a rough
preliminary estimate, PolyGamma(1,x) = 1/x+1/
2x2+O(1/x4).

If linear terms are also present in the quadratic BDIM, λi =
λ (i2+a1i), δi = δ (i2+b1i), then

fi = c2ν/δ θi-1/i Γ (i+a1)/Γ (i+1+b1)

where c2 = Γ (1+b1)/Γ (1+a1); Feq = Σfi can be computed
using special functions. In particular, if the BDIM is sec-
ond-order balanced, θ = 1, then
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fi = c2ν/δ Γ (i+a1) / (i Γ (i+1+b1)).

For this variant of the model, f1 = ν/δ1 = ν/(δ(1+b1)), and
so

Polynomial BDIMs
The quadratic models take into account the dependence
of birth and death rates of individual domains on the sim-
plest, pairwise interactions. If interactions of higher orders
are postulated, λi ~ Pn(i) and/or δi ~ Qm(i), where Pn(i),
Qm(i) are polynomials on i of the n-th and m-th degrees.
Again, if the degrees n and m are different, then the BDIM
is non-balanced and equilibrium frequencies have hyper-
exponential asymptotics. Thus, let n = m,

λi = λR (i) = λ rkim-k, δi = δQ(i) = δ qkim-k

(5.21)

where rk, qk are constants and r0 = q0 = 1. We suppose, of
course, that R(i), Q(i) are positive for all integer i. Note
that, in this case, χ (i) ≡ λi-1/δi = θ (1+(r1 - q1 - m)/i+O(1/
i2)), where θ = λ/δ. We will suppose that θ ≤ 1.

According to Theorem 3, the polynomial BDIM with rates
(5.21) has equilibrium sizes of domain families with pow-
er-exponential asymptotics

fi ~ θiiρ-m  (5.22)

where ρ = r1 - q1.

In particular, if ρ - m > -1, the equilibrium frequencies pi
follow the Pascal distribution with parameters (ρ - m + 1,
θ);

if ρ - m = -1, the equilibrium frequencies pi follow the
(truncated) logarithmic distribution;

if ρ - m = 0, the equilibrium frequencies pi follow the geo-
metric distribution;

if λ = δ, the polynomial BDIM is second-order balanced
and the equilibrium frequencies pi follow the power dis-
tribution

pi ~ iρ-m.  (5.23)

Note that the degree of the power distribution (5.23) de-
pends only on m, the common degree of the polynomials
(5.21), and on ρ, the difference between the coefficients r1
and q1, and does not depend on other coefficients. In par-

ticular, if r1 = q1, then pi ~ i-m. This relation could be inter-
preted as follows: if the first two coefficients of
polynomial rates λi and δi are equal, then the degree of the
power distribution (5.19) is equal to the "order of interac-
tions" of domains.

Formula (5.22) can be refined. Let R(i) =  (i+ak), Q(i)

=  (i+bk).

Then (see Proposition 3) the equilibrium numbers of do-
main families fi of the polynomial BDIM (5.18) are

fi = Cν/δθi-1  [Γ(i+ak)/Γ(i+1+bk)]

where C =  [Γ(1+bk)/Γ(1+ak)], and the equilibrium

total number of domain families

Feq = Cν/δ  θj-1  [Γ(j+ak)/Γ(j+1+bk)].

For the polynomial model f1 = ν/δ1 = ν/(δ qk), so

Feq/f1 = C  θj-1  (Γ(j+ak)/Γ(j+1+bk))/ qk.

This formula can be used for estimating the model param-
eters.

For the polynomial second-order balanced BDIM, the ra-
tio of the death rate to the innovation rate is

G(N) =  λifi/ν = (  Γ(1+bk)/Γ(1+ak))

 Γ(i+1+ak)/Γ(i+1+bk) =

 [Γ(i+1+ak)/Γ(1+ak)]/[Γ(i+1+bk)/Γ(1+bk)].
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Approximation of the observed domain family size distributions in 
prokaryotic and eukaryotic genomes with different BDIMs
Having developed the mathematical theory of BDIMs, we
sought to determine which of these models, if any, ade-
quately described the empirical data on domain family
size distribution. To identify the domain sets of domains
encoded in each of the genomes, the CDD library of posi-
tion-specific scoring matrices (PSSMs), which includes the
domains from the Pfam and SMART databases, was used
in RPS-BLAST searches [12] against the protein sequences
from a set of completely sequenced eukaryotic and
prokaryotic genomes  [http://www.ncbi.nlm.nih.gov/ent-
rez/query.fcgi?db=Genome]. The CDD domain library is
partially redundant, so when the results obtained from in-
dividual PSSMs showed significant overlap (more than
50% of hits overlapped for more than 50% of their
length), the corresponding domains were examined case-
by-case for redundancy. PSSMs representing structurally
similar domains and producing overlapping lists of hits
were joined into "synonymy clusters".

The results of RPS-BLAST searches against the sets of pro-
tein sequences from individual genomes were interpreted
as follows: non-overlapping hits to the same protein were
treated independently; among overlapping hits, only the
strongest one (lowest E-value) was recorded; all hits from
a synonymy cluster were assigned to one representative
domain family. The number of hits that a domain family
had in a genome, with the cut-off of E = 0.001, was record-
ed as the number of domains of the given family encoded
in the given genome. The CDD domain library certainly

does not include all existing domains. In practice, do-
mains from this collection were detected in >50% in each
of the analyzed species, with the only exception of hu-
man, for which the analyzed protein set is likely to con-
tain a substantial fraction of false predictions (Table 1).

To enable statistical analysis using the χ2-method for the
entire range of the data, including the sparsely distributed
classes corresponding to large families, the data needed to
be combined. For each genome, the observed domain
family frequencies were grouped into bins, each contain-
ing at least 10 families; typically, bins corresponding to
families with small number of members included a single
size class (e.g. all single-member families, two-member
families etc), whereas bins corresponding to large families
may span hundreds of size classes, most of them empty.
Theoretical distribution values for a bin combining ob-
served data from m-th to n-th class were computed as

, where f'i is the predicted number of families in

the i-th class and depends on the model parameters. Since
the model displays only a weak dependence on the maxi-
mum number of domains in a family (N), instead of in-

cluding N as a model parameter, the sum  (where

imax is the number of domains in the most abundant of
the detected families), was normalized to equal the total
number of families detected in the given genome (a re-

Table 1: Domain families in sequenced genomes and parameters of the best-fit second-order balanced linear BDIM

No. of ORFs 
in genome

No. of 
detected 
domain 
families

No. of 
detected 
domains

No. of 
ORFs with 
RPS-BLAST 

hits

Maximum 
size of a 
family

f1 (f'1) a b k ν/δ = ν/λ

G =  λifi/ν

Sceb 6340 1080 4575 3331 130 420 (436) 1.55 3.27 -2.72 1861.8 [3.28..3.53]
Dme 13605 1405 11734 7262 335 426 (435) 1.62 2.79 -2.17 1648.2 [8.44..15.50]
Cel 20524 1418 17054 11090 662 423 (421) 1.13 2.03 -1.89 1273.0 [16.18..∞ ]
Ath 25854 1405 21238 15006 1535 270 (277) 3.80 4.98 -2.18 1657.7 [17.09..26.89]
Hsa 39883 1681 27844 16755 1151 298 (288) 5.16 6.43 -2.27 2136.2 [17.14..22.88]
Tma 1846 772 1683 1268 97 501 (499) 0.14 2.22 -3.08 1606.4 [1.04..1.06]
Mth 1869 693 1480 1150 43 438 (436) 0.12 2.00 -2.88 1305.3 [1.18..1.27]
Sso 2977 695 1950 1614 81 386 (385) 0.36 2.04 -2.68 1167.8 [1.83..2.00]
Bsu 4100 1002 3413 2502 124 507 (510) 0.48 2.01 -2.53 1534.6 [2.46..2.79]
Eco 4289 1078 3624 2765 140 523 (519) 0.84 2.54 -2.70 1837.0 [2.45..2.61]

a: f1(f'1), the observed (predicted) number of domains in class 1 (represented only once in the genome); a, b, parameters of the second-order bal-
anced linear BDIM; k, slope of the power asymptotic; ν/δ = ν/λ, ratio of the innovation rate to the per domain death (birth) rate; G, ratio of the 
innovation rate to the total (per genome) birth rate. b: Species abbreviations: Sce, Saccharomyces cerevisiae, Dme, Drosophila melanogaster, Cel, 
Caenorhabditis elegans, Ath, Arabidopsis thaliana, Hsa, Homo sapiens, Tma, Thermotoga maritima, Mth, Methanothermobacter thermoautotrophicum, Sso, 
Sulfolobus solfataricus, Bsu, Bacillus subtilis, Eco, Escherichia coli.
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quirement for the χ2 analysis). χ2 values were computed
to measure the quality of fit between the observed and the
theoretical distributions. The distribution parameters (θ
for the simple BDIM, a and b for the second-order bal-
anced linear BDIM) were adjusted to minimize the χ2 val-
ue.

The simplest model that resulted in a good fit to the ob-
served domain family size distributions was the second-
order balanced linear BDIM (Fig.

6,7,8,9,10,11,12,13,14,15). For all analyzed genomes,
P(χ2) for this model was >0.05, i.e. no significant differ-
ence between the model predictions and the observed
data was detected. Considering the first-order balanced
linear BDIM, which involves varying the parameter θ, did
not result in a significant improvement of fit for any of the
analyzed genomes (data not shown). In contrast, a fit to a
truncated logarithmic distribution (prediction of a simple
BDIM) failed for all genomes (P(χ2) < 10-5; Fig. 16, 17,
and data not shown). An exact power-law distribution,
which is often used to approximate protein family fre-
quency distributions, similarly failed to adequately fit the
observed data, even when the most deviant class 1 fami-

Figure 6
Fit of empirical domain family size distributions to the sec-
ond-order balanced linear BDIM: the yeast Saccharomyces cer-
evisiae. A. Distribution of the size of domain families grouped
into bins B. Domain family size distribution in double loga-
rithmic coordinates. Magenta line: fi = 11521Γ(i+1.55)/
Γ(i+4.27) C. Cumulative distribution function of domain fam-
ily size. The line shows the prediction of the second-order
balanced linear BDIM.
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Figure 7
Fit of empirical domain family size distributions to the sec-
ond-order balanced linear BDIM: the fruit fly Drosophila mela-
nogaster. The panels and the designations are as in Fig. 6. B.
Magenta line: fi = 5258Γ(i+1.62)/Γ(i+3.79)
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lies were excluded (P(χ2) = 0.0013 for T. maritima; P(χ2)
< 10-5 for the rest of the genomes; Fig. 16, 17 and data not
shown). Notably, second-order balanced linear BDIM re-
sults in a correct prediction of the number of very large
families, whereas simple BDIM systematically underesti-
mates the number of families in the highest bins. Con-
versely, the power-law fit underestimates the slope of the
best-fit line (in double logarithmic coordinates) com-
pared to the asymptote of the linear BDIM prediction and,
accordingly, significantly overestimates the number of
families in the highest bins (Fig. 16, 17). These results are
compatible with the recent observation that the domain

family size distributions are better described by the gener-
alized Pareto distribution than by power laws [31].

Fitting the observed domain family size distribution with
the second-order balanced linear BDIM resulted in posi-
tive values of the parameters a and b, with a <b, for all an-
alyzed genomes (Table 1). Accordingly, domain family
size distributions in all cases asymptotically tend to the
power law with the power k < -1 and, for all species with
the exception of C. elegans, k < -2 (Table 1 and Fig. 8). As
discussed above, this seems to indicate the existence of
"synergy" between domains in a family whereby the like-
lihood of survival is greater for a domain that belongs to

Figure 8
Fit of empirical domain family size distributions to the sec-
ond-order balanced linear BDIM: the nematode worm
Caenorhabditis elegans. The panels and the designations are as
in Fig. 6. B. Magenta line: fi = 2453Γ(i+1.13)/Γ(i+3.03)
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Fit of empirical domain family size distributions to the sec-
ond-order balanced linear BDIM: the thale cress Arabidopsis
thaliana. The panels and the designations are as in Fig. 6. B.
Magenta line: fi = 10750Γ(i+3.80)/Γ(i+5.98)
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a large family than for a domain from a small family (Fig.
5). For all species, we find that the innovation rate is ap-
proximately three orders of magnitude greater than the
per domain birth (death) rate. Accordingly, the total per
genome birth (duplication) rate is comparable to but, typ-
ically, several times greater than the innovation rate (Ta-
ble 1). The ratio of the per genome birth rate to the
innovation rate increases with the number of genes in a
genome or the number of detected domains, with nearly
identical rates seen for small prokaryotic genomes and
values as high as 20 for the largest plant and animal ge-
nomes (Table 1).

The data used to fit the BDIM typically included 50–60%
of the proteins encoded in a given genome (Table 1); the
remaining proteins were not represented by sufficiently
similar domains in the current CDD collection. It cannot
be ruled out that the fit would be significantly affected as
a result of including all proteins encoded in the genome,
in case the proteins currently not recognized in CDD
searches have a family size distribution substantially dif-
ferent from that of the recognized ones. However, second-
order balanced linear BDIM can accommodate considera-
ble perturbations of the distribution through adjustment
of the parameters, so we believe that this model is likely
to approximate well also the size distribution of domain

Figure 10
Fit of empirical domain family size distributions to the sec-
ond-order balanced linear BDIM: Homo sapiens. The panels
and the designations are as in Fig. 6. B. Magenta line: fi =
22030Γ(i+5.16)/Γ(i+7.43)
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Figure 11
Fit of empirical domain family size distributions to the sec-
ond-order balanced linear BDIM: the hyperthermophilic bac-
terium Thermotoga maritima. The panels and the designations
are as in Fig. 6. B. Magenta line: fi = 4256Γ(i+0.14)/Γ(i+3.22)
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families for complete sets of proteins encoded in a ge-
nome. An alternative approach that at least partially cir-
cumvents the sampling problem involves analysis of all
families of paralogs detectable using clustering by se-
quence similarity, with employing a predefined library of
domains; this analysis is beyond the scope of the present
work but may be a subject of further investigation.

General discussion and conclusions
Here, we presented a complete mathematical description
of the size distribution of protein domain families encod-
ed in genomes for simple but not unrealistic models of ev-

olution, which include three types of events: domain
duplication (birth), domain elimination (death), and do-
main innovation. In biological terms, innovation could
involve gene acquisition via horizontal gene transfer,
emergence of a new domain from a non-coding sequence
or a non-globular protein sequence, or major modifica-
tion of a domain obliterating its connection with a pre-ex-
isting family. Innovation via horizontal gene transfer
appears to be particularly common in prokaryotes
[32,39], which might account for the apparent higher rel-
ative innovation rate in prokaryotic genomes observed in
the present analysis (Table 1).

Figure 12
Fit of empirical domain family size distributions to the sec-
ond-order balanced linear BDIM: the thermophilic euryar-
chaeon Methanothermobacter thermautotrophicus. The panels
and the designations are as in Fig. 6. B. Magenta line: fi =
2753Γ(i+0.12)/Γ(i+3.00)
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Figure 13
Fit of empirical domain family size distributions to the sec-
ond-order balanced linear BDIM: the hyperthermophilic cre-
narchaeon Sulfolobus solfataricus. The panels and the
designations are as in Fig. 6. B. Magenta line: fi =
2714Γ(i+0.36)/Γ(i+3.04)
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We showed that birth-death-innovation models (BDIMs)
with different levels of complexity lead to readily distin-
guishable predictions regarding the distribution of do-
main family sizes in genomes. In particular, we defined
the exact analytic conditions that lead, exactly or asymp-
totically, to power law distributions, which have recently
received ample attention, as they were uncovered in vari-
ous biological and social contexts [20,25]. In contrast to
previous analyses [16,17,30] but in agreement with the re-
sults of a recent re-examination [31], we showed that the
power law only asymptotically approximates the domain
family size distributions.

Three groups of observations made in this work seem to
have the greatest potential of enhancing our understand-
ing of genome evolution and, perhaps, evolution of other
complex systems. First, we proved that, within the BDIM
framework, there is a unique equilibrium state of the sys-
tem, which is approached exponentially, with respect to
time, from any initial state. In this equilibrium state, the
number of domain families in each size class remains con-
stant and follows a unique distribution depending on the
type and parameters of the BDIM. In particular, power as-
ymptotics emerges when and only when a BDIM is sec-
ond-order balanced, i.e. the rates of domain birth and
death are asymptotically equal. Since we showed that the

Figure 14
Fit of empirical domain family size distributions to the sec-
ond-order balanced linear BDIM: the bacterium Bacillus subti-
lis. The panels and the designations are as in Fig. 6. B.
Magenta line: fi = 3489Γ(i+0.48)/Γ(i+3.01)
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Figure 15
Fit of empirical domain family size distributions to the sec-
ond-order balanced linear BDIM: the bacterium Escherichia
coli. The panels and the designations are as in Fig. 6. B.
Magenta line: fi = 6776Γ(i+0.84)/Γ(i+3.54)
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observed size distributions of domain families in all ana-
lyzed genomes indeed tend to power law asymptotics, the
results are compatible with the notion that the genomes
are close to a steady state with respect to the domain di-
versity (Feq, the number of distinct domain families at
equilibrium, under the using the BDIM convention) and
distribution (fi). Taking a broader biological perspective,
this result might indicate that evolving lineages go
through lengthy periods of relative stasis when the level of
genomic complexity remains more or less the same. Un-
der this view, the stasis epochs are punctuated by relative-
ly short periods of dramatic changes when the complexity
either greatly increases (the emergence of eukaryotes is the
most obvious case in point) or decreases (e.g. evolution of
parasites). These bursts of evolution might be described as
transitions between different BDIMs in the parameter
space, with some of the trajectories potentially involving
non-balanced BDIMs. The analogy between this emerging
picture of genome evolution and the punctuated equilib-
rium concept of species evolution, which has been devel-
oped through analysis of the paleontological record [40],
is obvious.

Second, we showed that the simplest model that ade-
quately describes the observed domain family size distri-
butions is the second-order balanced linear BDIM; in
contrast, simple BDIMs do not show a good fit to the ob-
servations. This has potentially important implications
for the mode of domain family evolution. Simple BDIMs
are based on the notion that the likelihood of duplication
(birth) or elimination (death) of a domain is uniform
across the genome and does not depend on the size or
other characteristics of domain families (the independ-
ence assumption). Clearly, under the independence as-
sumption, a duplication (birth) as well as elimination
(death) of a domain is more likely to occur in a large fam-
ily than in a small one, but only because the overall prob-
ability of such an event is proportional to the number of
family members, whereas the birth (death) rate per domain
remains the same. The key observation of this work, that
the actual domain frequency distributions are well de-
scribed by a linear but not by a simple BDIM, suggests that
the independence assumption is an oversimplification.
Instead, the linear BDIM includes parameters that de-
scribe the dependence of the per domain birth (death)

Figure 16
Comparison of different approximations of the empirical
domain family size distribution: Escherichia coli. Magenta line:
second-order balanced linear BDIM, fi = 6776Γ(i+0.84)/
Γ(i+3.54), Red line: simple BDIM, fi = 528 × 0.87i/i, Cyan line:
power law, fi = 602i-1.76.
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Figure 17
Comparison of different approximations of the empirical
domain family size distribution: Arabidopsis thaliana. Magenta
line: second-order balanced linear BDIM, fi = 10750Γ(i+3.80)/
Γ(i+5.98), Red line: simple BDIM, fi = 344 × 0.98i/i, Cyan line:
power law, fi = 516i-1.36.
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rate on the family size. The asymptotics of the theoretical
distribution that is the best fit for the actual data is a pow-
er law, with the power equal to a-b-1, where a and b are the
parameters of a linear BDIM. We observed that, for all an-
alyzed genomes, a-b-1 < -1 (a <b), which corresponds to
"synergy" between domains in a family. Both the domain
birth rate and the death rate drop with the increase of the
size of a domain family, but the death rate decreases faster
(Fig. 5). In general terms, this suggests that small families
are more dynamic during evolution than large families. In
particular, under the BDIM formalism, innovation con-
tributes only to single-member families (class 1), which
have the greatest evolutionary mobility, and either quick-
ly proliferate and are stabilized or perish. An implication
of these observations is that, in general, large families are
older than small ones. Exceptions to this generalization,
i.e. the existence of small, ancient families, probably point
to selection for a specific family size; for example, it seems
likely that selection acts against proliferation of certain es-
sential proteins, e.g. ribosomal proteins, which typically
form single-member families [41]. Another pertinent ob-
servation is that the linear BDIM seems to adequately ac-
commodate even the largest of the identified domain
families. Lineage-specific expansion of paralogous fami-
lies appears to be one of the principal modes of organis-
mic adaptation during evolution [13,14,42]. Thus,
quantitatively, adaptive family expansion appears to fit
within the BDIM framework, although these models do
not explicitly incorporate the notion of selection. Of
course, for BDIMs, it is irrelevant which families expand,
and this choice is determined by selection.

Third, the BDIM equilibrium condition with respect to the
total number of domain families, ν = δ1f1 (ν is the inno-
vation rate, δ1 is the domain death rate for class 1 families,
and f1 is the number of domain families in class 1) allows
us to estimate the ratio between domain innovation rate
and the domain death and birth rates. Indeed, according
to the above and the definition of a second-order linear
BDIM, which is the best fit for the actual data, λ = δ = ν/
f1(1+b). Since the number of domain families in class 1
(families with only one member) is in the hundreds for
each genome, this translates into an innovation rate that
is much greater than the duplication or elimination rate
per domain (Table 1). Such high innovation rates might
appear counter-intuitive, but let us note that the duplica-
tion rate over all domain families is a number that tends
to be nearly identical to ν for small prokaryotic genomes
and several-fold greater than ν for large eukaryotic genom-
es (Table 1). Thus, under the second-order balanced linear
BDIM, the likelihood of appearance of a new domain in a
genome is close to or several times less than the likelihood
of a duplication or elimination of an existing domain.
Nevertheless, the finding that the innovation rate is com-
parable to the overall duplication/elimination rate seems

surprising. If the linear BDIM is indeed a realistic evolu-
tionary model, this emphasizes the critical role of innova-
tion in maintaining the balance (steady state) in genome
evolution. In prokaryotes, innovation via horizontal gene
transfer appears to be particularly extensive [32,39],
which might underlie the greater relative innovation rate
in these organisms (Table 1).

As already indicated, BDIMs do not explicitly incorporate
selection. However, the present analysis shows that only
models with precisely balanced domain birth, death and
innovation rates can account for the observed distribution
of domain family size in each of the analyzed genomes. It
seems likely that the balance between these rates is itself a
product of selection. There is little doubt that BDIMs will
be eventually replaced by more sophisticated formalisms
that will more realistically capture the mechanisms of ge-
nome evolution. Nevertheless, even the crude modeling
described here seems to reveal several potentially interest-
ing and non-trivial aspects of the evolutionary process.

Mathematical Appendix. Proofs of some statements
Proof of Proposition 1
When system (3.1) is solved consecutively from the last
equation to the second one, it becomes obvious that the
solution is unique up to a constant multiplier.

Next, if fi = fi-1λi-1/δi, fi+1 = fi-1λi-1λi/(δiδi+1), then the sub-
stitution shows that (fi-1,fi,fi+1) satisfy the i-th equation of
system (3.2). Substituting f2 = f1λ1/δ2 in the first equation,

we get f1 = ν/δ1 and, consequently, 

for all i = 2,...N. By definition, Feq = fi, so we have

(3.3).

Since system (2.2) is linear, the equilibrium state (f1,...fN)
is asymptotically stable if the real parts of all characteristic
values of the matrix

are negative.

The following theorem (see [43]) gives the desired criteri-
on: the real part of all the characteristic values of a real ma-
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trix C = |cij|, i,j = 1,..n with non-negative non-diagonal
elements are negative if and only if (-1)kDk > 0 for all k =
1,..n, where Dk is the main minor of the matrix C of the k-
th order.

To apply this theorem, let us consider the n × n matrix, n
≤ N

It is easy to see that

det Bn = -(λn + δn)det Bn-1 - λn-1δn det Bn-2,  (A1)

det An = -δndet Bn-1 - λn-1δn det Bn-2.

Using these equalities, we can prove that for any n

det An = (-1)nδnδn-1... δ2δ1.

Indeed,

det An = -δn det Bn-1-λn-1δn det Bn-2=

δn((λn-1+δn-1) det Bn-2 + λn-2δn-1 det Bn-3) - λn-1δn det Bn-

2=

δnδn-1 (det Bn-2 + λn-2 det Bn-3)= (subsequently using
(A1))=

(-1)n-2δnδn-1... δ3(det B2 + λ2 det B1) = (-1)nδnδn-1... δ2δ1.

Further, it is easy to see that for any n

det Bn = det An - λn det Bn-1.

Taking into account that B1 = -(λ1 + δ1) < 0 and that the
sign of det An coincides with (-1)n, it is easy to prove that

det Jn > det An if det An > 0 and det Jn < det An if det An < 0.

Thus, the sign of det Bn coincides with the sign of det An
and so (-1)nBn > 0 for all n = 1,..N. According to the afore-
mentioned theorem, the real parts of all the characteristic
values of a real matrix AN are negative and so the single
equilibrium is asymptotically stable, QED.

Proof of Proposition 2
For simple BDIM (2.1) 

fi = ν  λk /  δk = (ν/δ)θi-1/i = (ν/λ)θi/i, so

Feq = fi = ν/λ  θi/i, and

pi = fi/Feq = (θi/i)/  θj/j.

If a simple BDIM is balanced, then θ = 1 and so

Feq = ν/λ  θj/j.

pi = ν/λ Feq/i = 1/i (  1/j)-1.

Proof of Theorem 1
The condition (3.10) can be rewritten as λi-1/δi = isθ(1+a/

i+O(1/i2)) = isθ (1+a/i)(1+O(1/i2)). Thus, we can choose

S in such a way that  (1 + O(1/s2)) converge, 0

<  (1 + O(1/s2)) < ∞. It follows that

 (λs-1/δs) ~ Γ(j)s θj  (1+a/s).

According to Proposition 1, pi = fi/Feq ~  λk /  δk.

So

pi ~  (λs-1/δs) ~ Γ(i)s θi  (1+a/s) = Γ(i)sθi

Γ(i+a+1)/Γ(i+1).

Applying the main asymptotic property of Γ-function, i.e.
Γ (i+c)/Γ(i)~ic at large i for any c, we have

Γ (i+a+1)/ Γ (i+1) ~ ia, and so pi ~ Γ (i)s θiia.

Proofs of Corollaries 1–3
If a discrete random variable ξ has the Pascal distribution,
then
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P(ξ = i)  1 / Γ (r) (1-q)rir-1qi ~ qiir-1 for large i,

and it becomes evident that, for a > -1, equilibrium fre-
quencies pj of the first-order balanced BDIM follow the
Pascal distribution with parameters (a+1,θ).

If a = -1, then pi ~ θi/i and so pi follows the truncated log-
arithmic distribution with parameter θ. If a = 0, then pj ~
θi and pi follows the geometric distribution.

Further, pi ~ ia, that is the sequence pi follows the power
distribution with the power a, if and only if θ = 1, that is,
if the BDIM is second-order balanced.

Finally, if λi-1/δi = 1 + O(1/i2), that is, if θ = 1 and a = 0,
then pi ~ const; in particular, if λi-1 = δi for all i, then, ac-
cording to Proposition 1, fi = ν for all i and pi = 1/N.

Proof of Theorem 2
According to Proposition 1, system (3.1) has the unique
solution:

f1 = νδ1, fi = ν  λs /  δs for all i = 2,...N. So

fi = ν/λθi P(s) / Q(s), i > 1.

Applying the Lemma (see below), we get

fi Cν/λ θi Γ (i)ηiρ-β, as i→∞,

where the constant C =  [(Γ(1+bk))^βk] / 

[Γ(1+ak)^αk].

Lemma. Let P(j) =  (j+ak)^αk, Q(j) =  (j+bk)^βk,

where ak, bk are positive. Let us denote

η =  αk -  βk, ρ = ak αk - bkβk, β =

 βk,.

Then with fixed j

N(j) = P(s) / Q(s) C Γ(j)ηj^(ρ-β)

as j→∞, where

C =  [(Γ(1+bk))^βk] /  [Γ(1+ak)^αk].

Proof.

 (s+ak)^αk = [Γ(j+ak) / Γ(1+ak)]^αk,

 (s+bk)^βk = [Γ(j+1+bk) / Γ(1+bk)]^βk, so

N(j) = {  [Γ(j+ak) / Γ(1+ak)]^αk}/{  [Γ(j+1+bk)/

Γ(1+bk)]^βk}=

C  [(Γ(j+ak))^αk]/  [(Γ(j+1+bk))^βk]

where

C =  [(Γ(1+bk))^βk]/  [Γ(1+ak)^αk].

Let us use the known asymptotic relation

Γ (t+a)/Γ (t) ta with t→∞.

Thus we have
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≅

s

i

=

−

∏
1

1

s

i

=
∏

1

s

i

=

−

∏
1

1

s

i

=
∏

1

≅

k

m

=
∏

1 k

n

=
∏

1

k

n

=
∏

1 k

m

=
∏

1

k

n

=
∑

1 k

m

=
∑

1 k

n

=
∑

1 k

m

=
∑

1

k

m

=
∑

1

s

j

=

−

∏
1

1

s

j

=
∏

1
≅

k

m

=
∏

1 k

n

=
∏

1

s

j

=

−

∏
1

1

s

j

=
∏

1

k

n

=
∏

1 k

m

=
∏

1

k

n

=
∏

1 k

m

=
∏

1

k

m

=
∏

1 k

n

=
∏

1

≅

k

n

=
∏

1 k

m

=
∏

1

k

n

=
∏

1 k

m

=
∏

1

≅

k

n

=
∏

1 k

m

=
∏

1

Page 24 of 26
(page number not for citation purposes)



BMC Evolutionary Biology 2002, 2 http://www.biomedcentral.com/1471-2148/2/18
and Lemma is proved.

Proof of Proposition 3
It follows from the proof of the Lemma that

fi = Cν/λ θi  [(Γ(j+ak))^αk] /  [(Γ(j+1+bk))^βk]

for i > 1,

where C =  [(Γ(1+bk))^βk] /  [(Γ(1+ak))^αk].

Let us show that f1 can be expressed by the same formula
if i = 1. Indeed,

Cν/δ  [(Γ(1+ak))^αk] /  [(Γ(1+1+bk))^βk=

ν/δ (  (Γ(1+bk))^βk /  (Γ(1+ak))^αk)) (

(Γ(1+ak))^αk /  (Γ(2+bk))^βk=

ν/δ (  (Γ(1+bk))^βk /  (Γ(2+bk))^βk = ν/δ (

(1+bk))^βk = f1

Thus,

Feq = Cν/δ (  θj-1  (Γ(j+ak))^αk/

(Γ(j+1+bk))^βk).

QED.
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