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Genes with a large intronic burden show greater
evolutionary conservation on the protein level
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Abstract

Background: The existence of introns in eukaryotic genes is believed to provide an evolutionary advantage by
increasing protein diversity through exon shuffling and alternative splicing. However, this eukaryotic feature is
associated with the necessity of exclusion of intronic sequences, which requires considerable energy expenditure
and can lead to splicing errors. The relationship between intronic burden and evolution is poorly understood. The
goal of this study was to analyze the relationship between the intronic burden and the level of evolutionary
conservation of the gene.

Results: We found a positive correlation between the level of evolutionary conservation of a gene and its intronic
burden. The level of evolutionary conservation was estimated using the conservation index (Cl). The Cl value

was determined on the basis of the most distant ortholog of the human protein sequence and ranged from O
(the gene was unique to the human genome) to 9 (an ortholog of the human gene was detected in plants). In
multivariable model, both the number of introns and total intron size remained significant predictors of Cl. We also
found that the number of alternative splice variants was positively correlated with Cl.

The expression level of a gene was negatively correlated with the number of introns and total size of intronic
region. Genes with a greater intronic burden had lower density of missense and nonsense mutations in the coding
regions of the gene, which suggests that they are under a stronger pressure from purifying selection.

Conclusions: We identified a positive association between intronic burden and Cl. One of the possible explanations
of this is the idea of a cost-benefits balance. Evolutionarily conserved (functionally important) genes can “afford” the
negative consequences of maintaining multiple introns because these consequences are outweighed by the benefit
of maintaining the gene. Evolutionarily conserved and functionally important genes may use introns to create novel

splice variants to tune the gene function to developmental stage and tissue type.
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Background
The division of genes into introns and exons is a hall-
mark of eukaryotic evolution. This division is believed to
be evolutionarily beneficial because it allows the produc-
tion of multiple proteins from the same gene through
alternative splicing and may accelerate the creation of
novel proteins through exon shuffling [1-4].

However, little is known about the forces that in-
fluence the exon/intron structure of genes [5-9]. Several
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biologically important characteristics correlated with in-
tronic burden have been identified. For example, highly
expressed genes tend to have shorter introns [10]. Simi-
larly, a study of 391 genes from 19 eukaryotic species
conducted by Carmel et al. [11] demonstrated that the
probability of intronic gains is positively correlated with
the level of evolutionary conservation of the gene. How-
ever, a whole-genome assessment of the association bet-
ween the number and length of introns and the level of
evolutionary conservation has not yet been conducted.
We sought to determine whether evolutionary conser-
vation was correlated with intronic load in a whole-
genome analysis.
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Results and discussion

Variation in number of introns among human genes
There is significant variation in the number of introns in
human genes (Figure 1). More than 600 human genes
are intronless [12]. On the other side of the distribution,
the TTN gene has more than 300 introns. The average
number of introns per human gene is 8-9 [5]. The pro-
portion of genes with small numbers of introns (0, 1,
and 2) is relatively low (2%, 4%, and 6%, respectively).
Genes with 3 to 6 introns are most common and com-
prise more than 30% of human genes. Genes with a
larger number of introns are comparatively rare; genes
with more than 30 introns comprise less than 5% of the
genome.

Association between the conservation index (Cl), number

of introns, and total intron size

There was a significant positive correlation between CI
and the size of the intronic region (only genes with
available CI were included in the analysis) (Spearman rank
R=0.06, N=16,194, P<10™°). Figure 2(a) and (b) detail
the association between the total intron length and CI. Al-
though there was a positive association between the total
intron length and CI, the corresponding curve consists of
several segments of different slope. We used segmented
linear regression analysis to define the curve’s segments.
The breakpoints were selected by maximizing the global
R? against a single segment model and penalizing for
higher numbers of segments [13]. As a result, the asso-
ciation curve between the total intron length and CI was
divided into three segments (Figure 2(b)). Segment 1
encompasses genes with the smaller intron lengths (18
nucleotides to 3 kb). The correlation between CI and the
total intron length for this segment was Spearman rank
R=023 (N=1,420, P<107°. In the second segment
(genes with the total intron length of 3 to 30 kb), the cor-
relation coefficient between CI and the intronic length
was Spearman rank R = 0.10 (N = 6,642, P < 107°). For the
third segment (genes with intron length >30 kb), the
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Figure 1 The distribution of the number of introns in the
human genome.
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correlation between CI and the intron size was not signifi-
cant (Spearman rank R = -0.02, N = 8,189, P < 0.08).

We also observed a significant positive correlation
between the number of introns in a gene and its CI
(Spearman rank R = 0.16, N = 16,249, P < 10~°). Figure 2(c)
and (d) show the relationship between the number of in-
trons in a gene and the gene’s CI. On the basis of seg-
mented regression analysis, the curve of this relationship
was divided into two segments: the first segment of genes
with 0 to 10 introns showed a linear positive correla-
tion, and the second segment of genes with > 11 introns
showed a plateau in terms of correlation.

We used a multiple linear regression model to estimate
the independent effects of the total intron length and the
number of introns as predictors of CI. We analyzed only
the genes that satisfied two conditions: 10 or fewer introns
and total intron size between 3 and 30 kb (too few genes
had a total intron size less than 3 kb). For this subset of
the data the assumption of linearity is justified. We also
checked the subset for independence of the errors, con-
stant variance of the errors and normality of the distri-
bution of the errors. Because all the conditions were met,
multiple regression was applied to the data to assess
whether the number of introns and the total intronic
length are independent predictors of CI. In the multiple
regression model including number of introns and total
intron size both regression coefficients were significant:
bpoi =0.11, N =1,420, P<0.00003; by =0.21, N =1,420,
P < 10°°. These results suggest that both the number of in-
trons and the total intron size are independent predictors
of CI for a subset of the data we have used.

Intronic burden and gene expression

Figure 3(a) shows an association between the total in-
tron lengths of 20,156 human genes and their mean gene
expression levels in 10 normal human tissues [14]. The
expression of the genes with small total intron size (less
than 1 kb) was relatively low and increased markedly
until the total intron size reached 5 kb. For the genes
with the total intron lengths greater than 5 kb, there was
a negative association with expression. A similar curve
described the relationship between gene expression and
the number of introns (Figure 3(b)). Intronless genes
and those with a single intron had relatively low expres-
sion levels. The highest expression levels were observed
in the group of genes with three introns, and then the
average expression level decreased as the number of in-
trons increased. The negative correlation between gene
expression and intronic burden observed in this study
supports the hypothesis that introns have a biological
cost. It is known that transcription of introns is as-
sociated with considerable energy expenditures [15].
Similarly, splicing multiple introns out of mRNA is bio-
logically expensive in terms of both energy expended
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Figure 2 The association between the conservation index (Cl) and (a, b) the total intron size; (c, d) the number of introns. Colored lines

and risk of splicing errors [16,17]. Larger introns are
more prone to splicing errors [18]. Because having in-
trons is associated with obvious biological disadvantages,
it is logical to assume that only functionally important
genes can support the burden of a large number of in-
trons (or large total intron size).

The cost-benefit hypothesis predicts that genes with a
large intronic burden are more functionally important

than genes with a small intronic burden. A gene’s level
of evolutionary conservation reflects its functional sig-
nificance, and conserved genes are more likely to be
involved in basic biological functions [19,20]. However,
evolutionary conservation of a gene reflects not only its
functional significance but also its evolutionary history,
which is usually unknown. To further assess the func-
tional significance of the genes, we used data on the
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Figure 3 The association between the mean gene expression levels in diverse normal human tissues and the total intron size (panel a)
and number of introns (panel b). Vertical lines on the right panel are standard errors of mean. Expression level is shown in Z-scores.

b 25
_ 2
[
-
@
c 1.5
o
B
w
£ ]
o 1
L
0.5
0 +—r—v—v-"r—r—vr—rrrr
0246 81012141618202224262830
Number of introns




Gorlova et al. BMC Evolutionary Biology 2014, 14:50
http://www.biomedcentral.com/1471-2148/14/50

density of functional polymorphisms. Genes with low
functional importance accumulate functional (protein-
changing) polymorphisms more easily [21,22]. Using
dbSNP data, we found that the number of synonymous
single nucleotide polymorphisms (SNPs) per codon did
not correlate with CI (R=0.01, N=16,194, P=0.18),
whereas the number of non-synonymous SNPs and stop-
gained SNPs was negatively correlated with CI (R=-0.1,
n=16,194, P<10°® and R=-0.06, n=16,194, P<10°°,
respectively). These findings are consistent with the idea
that the density of potentially functional polymorphisms
can be used as a measure of the functional importance of
a gene. We used the ratio of missense to synonymous sub-
stitutions (MIS/SYN) and the ratio of nonsense to syn-
onymous substitutions (NON/SYN) to assess the strength
of purifying selection on a gene. Strength of purifying se-
lection can be used as a measure of functional importance
of the gene under the assumption that more important
genes are less tolerant to missense and nonsense substitu-
tions. We noted a significant negative correlation between
MIS/SYN and the number of introns (R = -0.05, n = 3,363,
P =0.006). The correlation between the number of in-
trons and NON/SYN was also negative and significant
(R=-0.26, n=3,363, P<107°). The correlation between
MIS/SYN and the total intron length was negative but did
not reach statistical significance (R=-0.03, n=3,363,
P =0.11), whereas the correlation between NON/SYN and
the total intron length was significant (R = -0.13, n = 3,363,
P <107°). These results support the idea that genes with a
large total intron size and/or multiple introns tend to be
more functionally important than the genes with smaller
intronic loads as manifested in lower density of missense
and nonsense substitutions.

We assume that functionally important genes may
have more and larger introns because they can better
“afford” a larger intronic burden than can less important
genes. The other possible explanation for the mainten-
ance of introns in functionally important genes may be
related to alternative splicing. Up to 90% of human
genes undergo alternative splicing [23]. Even if the ma-
jority of rare splice variants are the products of splicing
errors [16], many of the alternative splice variants are
functional [24-26]. Furthermore, exon boundaries often
correspond to functional domains [27,28]. Therefore, it
is conceivable that a larger number of introns enables
functionally important genes to use alternative splicing
to adjust and modify their functions on the basis of de-
velopmental stage or tissue type. We found a significant
positive correlation between the number of splice vari-
ants and the CI of genes (R =0.07, N=15.819, P < 1079).
The association remained significant after controlling
for the number of introns or the the total intron length
(P=0.0001) and suggests that functionally important
genes are more likely to undergo alternative splicing.
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Conversely, genes with a small number of introns
(0-2) and a small total intron size (<3 kb) may be differ-
ent from other genes. We found that the smallest genes
in the human genome have the lowest CIs and low ex-
pression levels. These genes also have a higher density
of non-synonymous and stop-gained SNPs than other
genes (t-test values of 2.1 [P =0.03] and 2.02 [P =0.02]
respectively), but they do not have a higher density of
synonymous SNPs (t-test 0.2, df = 16,192, P = 0.87). This
observation is consistent with the results of the analysis
conducted by Krylov at al. [29]. In their analysis of 7
complete genomes, the authors demonstrated that the
propensity of gene loss was positively correlated with the
rate of accumulation of nucleotide substitutions and
negatively correlated with the gene’s expression level.
The smallest genes may be enriched with young genes
that have yet to develop an important biological function
and thus cannot accumulate or maintain multiple in-
trons. An alternative possibility is that the smallest genes
are mostly dying genes that for some reason (e.g., envir-
onmental changes) became less functional, lost their in-
trons, and started to accumulate non-synonymous and
stop-gained mutations.

Heterogeneity of genetic composition across intronic
groups
Database for Annotation, Visualisation, and Integrated
Discovery (DAVID) http://david.abcc.ncifcrf.gov/home.jsp
was used to check if the top and bottom 5% of the genes
in terms of intronic burden were enriched by gene cate-
gories. We found that the bottom 5% of the genes with
lowest number of introns are enriched by G-protein
coupled receptor genes (GPCRs) (Benjamini P = 6.8E-54).
This enrichment, however, is unlikely to drive low CI in
the group. We found no significant difference in CI bet-
ween GPCRs and other genes: average CI was 4.01 £ 0.11
for GPCRs and 4.19+0.09 for other genes, Mann—
Whitney U Test, adjusted Z=0.34, P =0.73. We also did
not notice a significant difference in expression levels be-
tween GPRCs and other genes (nonparametric Mann
Whitney test = 0.56, P =0.24). The top 5% of genes with
largest number of introns are enriched by ATP-binding
genes (P value for enrichment is 1.1E-40) and cytoske-
leton-associated genes (P value for enrichment is 2.2E-19).
We believe that heterogeneity of genetic composition is
unlikely to be a major driving force behind the association
between the intronic burden and CI. Firstly, the curve
describing the relationship between intronic burden and
CI is monotonic (Figure 2) suggesting that the intronic
number rather than effect of the gene composition drives
the association. For the middle part of the distribution
gene enrichment is relatively low but we still see strong
positive association between intronic burden and CI. Also
for several gene families showing enrichment we found no
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evidence that the enrichment significantly contributes to
the association.

Conclusions

Our analysis demonstrated that evolutionarily conserved
genes have a greater intronic burden. Previous research
found a positive association between the level of evolu-
tionary conservation and the size of the intronic region
of a gene for a fraction of the human genes. We con-
firmed that association for the whole human genome.
The results of our analysis also suggest that not only the
total intronic length but also the number of introns is an
independent predictor of the level of evolutionary con-
servation of a gene.

Using the latest and most precise estimates of gene ex-
pression levels, we demonstrated a negative association
between the intronic burden and the level of expression.
Similar to the above analysis, this investigation showed
that both the total intronic length and the number of in-
trons independently predict expression level. We found
that the genes with the lowest intronic burden are diffe-
rent from most other human genes, suggesting that they
could be evolutionarily young (which is why they tend to
have a lower conservation index) and have yet to acquire
an indispensable biological function.

In conclusion, the problem of evolutionary advantages
(or disadvantages) of introns is complex. Having mul-
tiple introns is obviously associated with a burden in
terms of energy and resources: a cell needs first to tran-
scribe all introns, then to remove them. It has been
shown that splicing is often associated with errors that
produce abnormal product and may have a negative
effect on cell survival [1]. On the other hand, having
multiple introns provides an opportunity for alternative
splicing which can be associated with distinct and im-
portant biological functions [2]. It is not clear if by alter-
native splicing the cell tries to make use of something
already available, or alternative splicing is a driver of

Table 1 Conservation index (Cl) scale
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intronic additions. It is also possible that introns are
gained more often in important genes because they have
higher expression levels and more open chromatin struc-
ture. Additionally it is possible that the disadvantage of an
intron gain is less in important compared to not-so-
important genes. We demonstrated that both the total size
of intronic sequences and the total number of introns are
independent predictors of the level of evolutionary con-
servation. Our findings raise an interesting possibility that
intronic burden could be used as a predictor of the func-
tional importance of a gene.

Methods

We used CI as a measure of evolutionary conservation of
the protein sequence. CI values were assigned on the basis
of the most distant ortholog of the human gene using data
taken from the HomoloGene database [30]. HomoloGene
provides a list of orthologs detected in 20 completely
sequenced genomes: M. oryzae, M. mulatta, H. sapiens,
P. troglodytes, C. lupus, B. taurus, M. musculus, R. norve-
gicus, G. gallus, D. rerio, D. melanogaster, A. gambiae, C.
elegans, S. pombe, S. cerevisiae, K. lactis, E. gossypii, N.
crassa, A. thaliana, and O. sativa. These species were
ranked on the basis of their evolutionary distance from
humans. Because the estimated time of divergence bet-
ween some of these species (e.g., M. musculus and R.
norvegicus) and humans is essentially the same [31], we
assumed that they marked the same time point in the evo-
lutionary past. Also, not for all species divergence time
data are available. As a result, 20 completely sequenced
species provided only 10 divergence time points (Table 1).
CI ranged from O (when a gene was unique to H. sapiens)
to 9 (when a human ortholog was detected in any plant
species). The approach we used was similar to the ap-
proach used by Domazet-Loso and Tautz [32], except we
used alignments from HomoloGene [30,33], whereas
Domazet-Loso and Tautz performed their own protein
sequence alignments.

An example of the most distant species with Phylogenic Divergence time Reference Cl
detectable human ortholog group (million years)

Homo sapiens Unique to humans 0
Pan troglodytes Great apes 6 [31] 1
Macaca mullata Primates 35 [31] 2
Rattus norvegicus Rodents 90 [31] 3
Gallus gallus Birds 310 [34] 4
Danio rerio Fishes 400 [34] 5
Anopheles gambiae Insects 600 [35] 6
Caenorhabditis elegans Worms 700 [35] 7
Schizosaccharomyces pombe Fungi 800 [35] 8
Oryza sativa Plants 900 [35] 9
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Data on the exon/intron structure of genes, including
the number of alternatively spliced isoforms, were ob-
tained from the Exon-Intron Database. This database was
created and is curated by one of the authors (A.F.) [36], is
based on NCBI Gene Bank data, and allows large-scale
computational examination of exon/intron structure. We
assessed gene expression levels using data from the RNA-
Seq Atlas database [14]. This database provides estimates
of gene expression levels across 10 human tissues (colon,
heart, hypothalamus, kidney, liver, lung, ovary, skeletal
muscle, spleen, and testes) and is based on RNA sequen-
cing, which provides a less biased estimate of gene ex-
pression than probe-based technologies. As previously
published, Z-scores were used as quantitative measures of
gene expression [14]. In brief, Z-score is a measure of the
expression of an individual gene to the gene’s relative to
the expression distribution in a reference population. The
reference distribution is based on the distribution of the
expression of all genes in all tissues. The expression value
of a given gene in given tissue (Z-score) represents the
number of standard deviations away from the mean of ex-
pression in the reference population.

To assess the correlation between the density of func-
tional polymorphisms (missense and nonsense mutations)
and intronic burden, we used the dbSNP database. The
density of functional polymorphisms in a given gene was
computed by dividing the total number of reported mis-
sense and nonsense mutations by the size of the coding
region. Only validated SNPs were used for the analysis.
We used the number of SNPs per codon as a measure
of the SNP density. The nonparametric Spearman cor-
relation coefficient was used to assess the correlation bet-
ween the size and number of introns and the CL To
identify segments of linearity we used R*-based method
[13]. Statistical analysis was done using STATA software
(version 10, StataCorp LP, College Station, TX).
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