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Abstract

given habitat threat.

Background: Haldane's Rule, the tendency for the heterogametic sex to show reduced fertility in hybrid crosses, can
obscure the signal of gene flow in mMtDNA between species where females are heterogametic. Therefore, it is important
when studying speciation and species limits in female-heterogametic species like birds to assess the signature of gene
flow in the nuclear genome as well. We studied introgression of microsatellites and mtDNA across a secondary contact
zone between coastal and interior lineages of Western Scrub-Jays (Aphelocoma californica) to test for a signature of
Haldane’s Rule: a narrower cline of introgression in mtDNA compared to nuclear markers.

Results: Our initial phylogeographic analysis revealed that there is only one major area of contact between coastal and
interior lineages and identified five genetic clusters with strong spatial structuring: Pacific Slope, Interior US, Edwards
Plateau (Texas), Northern Mexico, and Southern Mexico. Consistent with predictions from Haldane's Rule, mtDNA showed
a narrower cline than nuclear markers across a transect through the hybrid zone. This result is not being driven by
female-biased dispersal because neutral diffusion analysis, which included estimates of sex-specific dispersal rates, also
showed less diffusion of mtDNA. Lineage-specific plumage traits were associated with nuclear genetic profiles for
individuals in the hybrid zone, indicating that these differences are under genetic control.

Conclusions: This study adds to a growing list of studies that support predictions of Haldane’s Rule using cline analysis of
multiple loci of differing inheritance modes, although alternate hypotheses like selection on different mtDNA types
cannot be ruled out. That Haldane's Rule appears to be operating in this system suggests a measure of reproductive
isolation between the Pacific Slope and interior lineages. Based on a variety of evidence from the phenotype, ecology,
and genetics, we recommend elevating three lineages to species level: A. californica (Pacific Slope); A. woodhouseii (Interior
US plus Edwards Plateau plus Northern Mexico); A. sumichrasti (Southern Mexico). The distinctive Edwards Plateau
population in Texas, which was monophyletic in mtDNA except for one individual, should be studied in greater detail
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Background

The study of speciation has been influenced during the
last decade by increasing awareness that different parts of
the genome tell different evolutionary stories [1-3]. Previ-
ously, speciation studies relied heavily on mitochondrial
DNA (mtDNA), given the numerous benefits offered by
these data for inferring evolutionary history at diverse
timescales (e.g., high substitution rates) [4]. Yet, along with
these benefits come drawbacks [5], among them that
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mtDNA is a single recombinational unit that can present
a biased snapshot of evolutionary history when mtDNA
data are not balanced by independent evidence from nu-
clear markers.

One case in which mtDNA data can be particularly
misleading occurs during gene flow between popula-
tions in secondary contact. Haldane was the first to note
that when two differentiated lineages come back into re-
productive contact, the heterogametic sex (ie., the one
with two types of sex chromosomes) often shows reduced
fertility [6]. The mechanistic reasons behind Haldane’s
Rule, as it came to be known, are under intense study
[7-10]. While we may not understand why Haldane’s Rule
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occurs, the consequences for female-heterogametic species
like birds and butterflies are clear: if female hybrids show
reduced fertility, then mtDNA, which is inherited as a sin-
gle recombinational unit from the female parent, is less
likely to be passed on to the next generation. As a result,
mtDNA might show little or no evidence of hybridization,
despite the fact that hybridization occurs and paternal, nu-
clear alleles move between lineages.

The potential mismatch between gene flow estimated
from mtDNA and gene flow estimated using nuclear
markers is not just theoretical; it has been demonstrated
empirically by studies of female-heterogametic organisms
[11-18]. This phenomenon is of interest to biologists,
among other reasons, because of the continuing influence
of the Biological Species Concept (BSC) and its emphasis
on cessation of gene flow as a necessary criterion for spe-
cies delimitation [19]. While the BSC may not be applied
as commonly in practice as is claimed [20], it is neverthe-
less evident that many attempts to split species taxonom-
ically fail due to the existence of gene flow and the
perceived importance of the BSC. As empirical evidence
continues to mount demonstrating mito-nuclear discord-
ance [21,22], the use of nuclear markers has become es-
sential to species delimitation and the study of speciation.

Western Scrub-Jays (Aphelocoma californica) are an ex-
cellent model for testing the mismatch between mtDNA
and nuclear markers across a hybrid zone predicted by
Haldane’s Rule because previous work documented a zone
of secondary contact and hybridization between two diver-
gent lineages. Western Scrub-Jays are widely distributed
in North America from British Columbia, Canada to
Oaxaca, Mexico and east to the Great Plains (Figure 1).
Prior research delimited several lineages based on
morphology, allozymes, and mtDNA variation [23-26].
Two of these lineages — one found primarily in oak
woodlands along the Pacific slope and the other found in
pinyon-juniper or pine-oak habitats in the interior US and
Mexico — meet and hybridize in a few mountain ranges in
western Nevada east of Lake Tahoe (Figure 2), but are
otherwise separated from one another by the high-
elevation conifer forests of the Sierra Nevada.

These two lineages (‘coastal’ and ‘interior’) are thought
to have diverged from each other anywhere from 1 to 4
million years ago (Ma) based on divergence times cali-
brated with a fossil and estimated molecular substitution
rates [24]. Coastal individuals are easily distinguished from
those in the interior by their brighter blue plumage, bolder
white supercilium, and more pronounced blue collar.
Coastal individuals also have stout, hooked bills, which are
better for husking acorns than the smaller, more pointed
bills of interior individuals, which are better suited for
extracting pine seeds from cones [27,28].

The hybrid zone was originally described by Pitelka
[25] who traversed the zone and analyzed numerous
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museum specimens. He found intermingling of coastal
and interior phenotypes in western Nevada, as well as in-
dividuals that appeared to be F1 hybrids. The hybrid zone
has never been studied in detail using genetic techniques,
although previous work documented a relatively rapid
turnover of mtDNA types and mismatches of taxonomy
and genotype of birds from this zone [23,24]. Neverthe-
less, a prior proposal to elevate the coastal and interior lin-
eages to species status [29] failed because of doubts
concerning the extent of gene flow in the contact zone.
The purpose of this study was to test for a prediction of
Haldane’s Rule that there will be a mismatch between
mtDNA and nuclear gene flow across the contact zone.
Specifically, we predict that if Haldane’s Rule is operating
in this system, we will see a narrower (i.e., steeper) cline in
the transition of mtDNA haplotypes compared to nuclear
markers. Before addressing this hypothesis, however, we
needed to determine the exact nature of the contact zone
in western Nevada and whether there were any unde-
scribed contact zones nearby that might confound our re-
sults. We therefore first assessed broad-scale patterns of
divergence and gene flow among Western Scrub-Jays
across their entire geographic range, using deep sampling
of populations and a suite of nuclear markers. Previous
molecular studies sampled only one or a few individuals of
different populations, focusing largely on allozymes [26]
or mtDNA [23]. Our study design includes nearly 700 in-
dividuals sampled from throughout the range of the spe-
cies, thus providing a comprehensive portrait of genetic
divergence and allowing us to locate potentially unde-
scribed contact zones. Finally, we correlated proportion
of hybrid ancestry with phenotypic traits for a subset of in-
dividuals in the contact zone, as a way to control for the
influence of environment and therefore test for a genetic
basis of phenotypic differences between the coastal and in-
terior lineages. If phenotypic traits are genetically based,
we expect to see a correlation between neutral genetic as-
signment to coastal or interior lineages and the phenotypic
differences known to characterize those lineages.

Results

Geographic structure of coastal and interior mtDNA types
To assess gene flow throughout the range of Western
Scrub-Jays, we conducted simple mtDNA typing of all 689
individuals using restriction digest, which showed that
most populations are composed entirely of coastal or in-
terior mtDNA types, with very few populations showing
mixing of mtDNA types. The four populations showing
mixing were (1) the previously described contact zone in
western Nevada, which featured several populations hav-
ing mixed types 100 km east and southeast of Reno and
Carson City (sites inside the inset square in Figure 1); (2) a
single interior type (among n =16 coastal types) found at
the base of the western Sierra 100 km east of Stockton,
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Figure 1 Sampling locations for Western Scrub-Jays. Green shading represents heavily forested regions that correspond with high-elevation
barriers to dispersal. Numbers correspond to site numbers listed in Table 2. Dot color corresponds to the five nuclear genetic clusters from the
Structure results shown in Figure 3. The square outline denotes the region of the hybrid zone depicted in greater detail in Figure 2. Dots with
black points inside them represent the three coastal sites away from the hybrid zone that contain one or more interior mtDNA haplotypes. The
scrub-jay on the lower left is representative of the coastal type, with bolder blue plumage, a larger blue collar, a bolder eyestripe, whiter undertail
coverts, and a larger, more hooked bill compared to the interior type shown at upper right. Note that the range of the species extends into
southwestern Canada and into some parts of the Great Plains that are not shown.

CA (site 6); (3) an even mix of coastal and interior types
in the eastern Sierra Nevada to the west of the Owens
Valley near Independence, CA (site 18); and (4) one re-
markable interior type (among n =16 coastal types) in
the Santa Ana Mountains in Orange County, Los
Angeles (site 23).

Broad-scale geographic structure of microsatellite
variation

To complement the mtDNA typing results with infor-
mation from nuclear markers, we genotyped all 689 in-
dividuals at 14 microsatellite loci. No pairs of loci were
physically linked based on linkage tests. Of the 14 loci,
one locus (MJG8) showed significant deviations from
HWE across many populations following Bonferroni
correction. We removed this locus from the data set.
Four other loci showed deviations from HWE across
some populations. We ran downstream analyses with

and without these loci to investigate whether they were
driving any of the patterns of genetic structure we observed.
Results among analyses including and excluding loci were
qualitatively similar, so we retained the larger group of 13
loci. No loci showed consistent signs of other microsatellite
artifacts like large-allele drop-out or null alleles.

Initial Structure runs from K = 1-30 found increasing
likelihood (LnL) values until K = 9, followed by a plateau in
LnL until K = 13, followed by a decrease from K = 14-30.
Structure runs on successively smaller clusters revealed
five distinct geographic clusters of nuclear DNA variation
(Figure 3) that were largely uniform in their population as-
signment. These genetic clusters were (1) a Pacific Slope
group; (2) an Interior US group; (3) a group from the
Edwards Plateau in Texas; (4) an interior group from
Mexico north of the Transvolcanic Belt (Northern Mexico);
and (5) an interior group from Mexico south of the Trans-
volcanic Belt (Southern Mexico).
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Figure 2 Sampling sites in the hybrid zone. Green shading
corresponds to heavily forested regions considered to be a barrier to
dispersal. Numbers correspond to site numbers listed in Table 2. The
shading of the dots represent their cumulative Structure population
assignment (including only individuals along the transect run at K= 2)
averaged across all individuals in each population.
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gent clades within Western Scrub-Jays: (1) a Pacific Slope
clade that was sister to the Island Scrub-Jay (1.0 posterior
probability or PP); (2) a clade from Mexico south of the
Transvolcanic Belt (Southern Mexico; 1.0 PP); (3) a clade
of all other interior individuals (0.94 PP). Within this last
clade, we recovered a weakly supported (0.87 PP) group
from the Edwards Plateau in Texas, with the exception of
one individual that grouped elsewhere in the interior clade
(small arrow by terminal tip in Figure 4). There was no
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Figure 3 Results from Structure runs on 13 nuclear microsatellite loci for successively smaller genetic clusters (K= 2 for each run).
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Numbers correspond to sites listed in Table 2. (A) The first run split the individuals broadly into coastal and interior groups, with mixed
assignment for individuals in the contact zone, which were removed from further runs. (B) The coastal group showed little geographic structure.
(C) The interior group split into a US Interior cluster and a Mexico cluster. (D) An Edwards Plateau group split from the rest of US Interior; (E) A
northern Mexico group split from a southern Mexico group; (F) The southern Mexico group showed some evidence for differential assignment
between Oaxaca and Guerrero populations.
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Figure 4 BEAST consensus tree of scrub-jays based on cyt b mtDNA sequences new to this study combined with existing sequences
from GenBank. A more comprehensive version of this tree including all outgroup samples is available through Dryad [30]. The Western Scrub-Jay is
paraphyletic because it does not include the Island Scrub-Jay. The one texana individual that does not group with the clade of texana individuals with
0.87 PP is denoted with a small arrow next to the tip label.

support in mtDNA for a split between Interior US and  Geographic cline analysis

Northern Mexico (as was found in microsatellites), al-  Both the mtDNA and microsatellite data showed a step
though some geographic localities grouped together cline pattern of variation across the hybrid zone, and the
with high PP. null model of no clinal variation had much higher AICc
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scores in each case (mtDNA: null model = 96.11; cline
model = 13.76; nuclear DNA: null model = 63.53; cline
model = 15.72). Model 1 with no scaling was accepted as
the most likely model for both datasets. Estimates of the
center of the cline (c) were similar and had overlapping
confidence intervals. The center of the mtDNA cline
was ~300 km (280 — 319), and the center of the nuclear
DNA cline was ~315 km (271 — 377). The width of the
mtDNA cline was ~131 km (76 — 270), and the width of
the nuclear DNA cline was ~331 km (145 — 678). The
estimated width of the mtDNA cline fell outside the 2
log likelihood confidence intervals for the nuclear DNA,
and vice versa, therefore the mtDNA cline was significantly
narrower than the microsatellite cline (Figure 5). Disparity
in dispersal distances between males and females did not
account for the difference in cline width between mtDNA
and microsatellites because our time-of-contact estimates
under a model of neutral diffusion, which included esti-
mates of male and female dispersal distance (females: o =
1.5 — 5.0 km; males: 0 = 0.5 — 3.0 km; [31]), did not overlap
(mtDNA = ~690 — 7600 years, microsatellites = ~12,000 —
440,000 years). In other words, even taking sex-biased dis-
persal into account, mtDNA showed less diffusion.

Correlation between phenotype and genotype

We observed strong correlations between hybrid values
(Q-scores) from Structure and many phenotypic traits for
the full data set of 123 individuals that included many pure
coastal and interior individuals outside the hybrid zone, es-
pecially for plumage traits and principal components (PC)
axes describing bill shape (Table 1; see Additional file 1 for
PCA loadings table). However, by including individuals
from allopatric ranges, this test potentially confounds gen-
etic and environmental causes of trait variation. Within the
hybrid transect and inside the core hybrid zone, where indi-
viduals experience the same environment, plumage traits,
but not morphological traits, were correlated with Q-scores
(Table 1).

Discussion

Haldane’s Rule and the mismatch in cline width between
mtDNA and microsatellites

Our results support a key prediction from Haldane’s
Rule that mtDNA will show a steeper cline across a hy-
brid zone than nuclear markers. Although Haldane’s
Rule may explain the clinal pattern we observed, this
pattern could also result from divergent selection on
mtDNA types [32] or sex-biased dispersal, wherein fe-
males (and the mitochondrial genomes they pass on)
tend to disperse less than males. Although we have not
looked at selection, what little is known about natal dis-
persal in Western Scrub-Jays suggests that, to the con-
trary, females disperse about three times farther than
males on average [31]. The results from our time-since-
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Figure 5 Transition in genetic types across the hybrid zone for
(A) mtDNA and (B) nuclear markers. Black circles represent
sampling localities, the dark line is the cline estimate and the gray
shading represents confidence around the cline estimate.

contact analyses, which incorporated estimates of dispersal
distances, also support predictions from Haldane’s Rule, with
less diffusion of mtDNA compared to nuclear markers.

Our results showing steeper clines in mtDNA compared
to nuclear markers add to a gathering corpus of research
showing discordant rates of DNA transmission across hy-
brid zones among different marker types [11-18,22], a pat-
tern that has often been attributed to Haldane’s Rule [21].
Whatever the root cause, these results caution that con-
clusions about individual-level gene flow made on the
basis of mtDNA alone may be underestimated. In our
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Table 1 Regression (R?) values between hybrid index and
phenotypic traits within and outside the hybrid zone

Trait All Transect Core hybrid
Wing 0.04* ns ns
Tail ns ns ns
Tarsus ns ns ns
Bill length ns ns ns
Bill depth ns ns ns
Bill width 0.777%** ns ns
Morph PCT' ns ns ns
Morph PC2? 0.06** ns ns
Morph PC3? 0.05%* ns ns
Collar 0.38*** 0.23** ns
Vent 0.51%%* 046 0.36***
Eyestripe 0.371%%* 0.25%%* 0.37%%*

'PC1 describes general size.

2PC2 describes a trade-off between body and bill size.

3PC3 describes a trade-off between bill length and bill width.
ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001.

study, gene flow is generally restricted in both mtDNA
and nuclear markers, due to the low dispersal distances of
Western Scrub-Jays. In other species, such as long-
distance dispersers with no sex-biased dispersal, mis-
matches could be much more pronounced.

Recent work on the genetic basis for Haldane’s Rule sug-
gests it results from incompatibilities among genes that
are exposed to selection on hybrid female Z chromo-
somes, causing sterility [7], whereas only those incompati-
bilities that are dominant are visible to selection in hybrid
ZZ males. If Haldane’s Rule is indeed the cause of the cli-
nal mismatch we observed, then our results suggest that
the coastal and interior lineages of Western Scrub-Jay
have begun the process of reproductive isolation. Ultim-
ately, Haldane’s Rule as the cause of the mismatch in
marker introgression rates could be determined through
field studies or captive mating experiments that document
the reproductive viability of female offspring resulting
from hybrid crosses [33].

Clarifying the hybrid zone between coastal and interior
Western Scrub-Jays

Our results also help clarify the nature of the hybrid zone
between coastal and interior lineages of Western Scrub-
Jays. The fact that our hybrid transect populations could
be fit to a cline suggests that Pitelka [25] was correct that
the major axis of gene flow is from the northwest to
southeast, as coastal populations continue around the
north side of the Sierra Nevada and meet with interior
populations in western Nevada. However, the coastal in-
fluence of the Woodford site (45 in Figure 2) warrants fur-
ther study. In addition to gene flow from the north, some
gene flow may link the southern end of the Sierra Nevada
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to the Woodford site, with coastal individuals inhabiting
canyons of the southeastern Sierra that were not sampled
for this study.

Our results also support Pitelka’s [25] conclusions that
the hybrid zone is narrow and the result of secondary con-
tact. Even the oldest time estimates from our time-since-
contact analysis across the hybrid zone (~437,000 years)
are younger than divergence estimates of the original split
between coastal and interior lineages [1 to 4 Ma; 24], sup-
porting the hypothesis that the hybrid zone results from
secondary contact and not in situ divergence. In terms of
broader biogeographic evidence, several other species have
secondary contact zones where coastal and interior line-
ages meet in this general region of the Great Basin [34,35].

Our results also confirm that the contact zone in west-
ern Nevada is the only place where coastal and interior
lineages come into contact to any great degree. Outside of
western Nevada, two sites (6 and 23 in Figure 1) appear to
contain examples of rare, long-distance dispersers from
pure interior populations because the nuclear DNA profile
of the two individuals matches their mtDNA type (the in-
terior mtDNA individual at site 6 was 97% interior in nu-
clear DNA, and the interior mtDNA individual at site 23
was 95% interior in nuclear DNA). In contrast, at a third
site in the eastern Sierra Nevada (18 in Figure 1), the three
individuals with interior mtDNA had strongly coastal nu-
clear DNA profiles (91%, 95%, and 89% coastal), suggest-
ing that they were advanced backcrosses from older
hybridization events (ie., nuclear DNA profiles of Fls
would be closer to 50/50). Thus, although there appears to
be one major contact zone, the exceptions show that the
reality of dispersal and gene flow among jays in and
around the Sierras — and across the Mojave Desert farther
south — is more complex. Fine-scale sampling, combined
with habitat-based methods of identifying dispersal corri-
dors [36], could provide a more complete picture of gene
flow across and around the Sierra Nevada for this and
other species.

Previous studies documented phenotypic differences be-
tween coastal and interior Western Scrub-Jays [25,28], but
ours is the first to provide evidence for a genetic basis for
some traits. There was a correlation between nuclear gen-
etic variation and phenotypic traits, such as bill shape and
plumage traits, when considering all individuals, even
those from pure populations (Table 1). However, including
individuals from different geographic locations potentially
confounds environmental and genetic sources of pheno-
typic variation. Still, many of these relationships remained,
for the plumage traits at least, within the contact zone
where there are hybrid individuals and all variety of back-
crosses. The correlation between proportion of interior vs.
coastal genetic ancestry and phenotypic traits for individ-
uals that were fledged in the hybrid zone and therefore ex-
perienced the same environment since fledging provides
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evidence for a genetic basis of plumage traits, at the very
least. Why we did not observe similar relationships for bill
traits is not clear, but could be due to low statistical power,
stabilizing selection, or greater plasticity in bill traits. Fur-
ther studies with more individuals and better genomic
coverage will help discriminate between these alternate
hypotheses, as will studies that attempt to identify the gen-
etic loci or environmental pressures responsible for the
phenotypic differences.

Genetic differentiation across North America’s

scrub woodland

Previous genetic studies of species inhabiting North
America’s pine-oak and scrub woodland have uncovered
unexpectedly deep phylogenetic structure within species
[37,38]. Results of the current study, which are the most
comprehensive in terms of geographic, individual, and
genetic sampling of Western Scrub-Jays, indicate at least
five genetic clusters with strong spatial structuring (col-
ored dots in Figure 1). The Pacific Coast and Southern
Mexico groups have been recovered previously in stud-
ies of phenotype, allozymes, and mtDNA [23-26]. The
Edwards Plateau group and the split between Interior
US and Northern Mexico individuals are novel, although
the inferred population clusters align with current subspe-
cies designations [25].

This study is the first to show clear evidence of nu-
clear and mtDNA differentiation of Western Scrub-Jays
on the Edwards Plateau in Texas (currently a separate
subspecies, A. c. texana). All individuals in the Edwards
Plateau population except one possess a unique mtDNA
haplotype differing from other interior US haplotypes by
two substitutions. Nuclear and mtDNA differentiation on
the Edwards Plateau is interesting given the history of isola-
tion of this region and its unique flora and fauna. The oak
savanna and Ashe juniper woodland of the Edwards Plateau
are separated from other scrub woodland to the west by an
extension of the Chihuahuan Desert in the Pecos Valley.
Fossil and pollen data suggest, however, that pygmy wood-
land was continuous across this region, and connected the
Edwards Plateau to western forests throughout the last gla-
cial maximum until about 11,000 years ago [39]. At least
one other distinct bird species with a similar geographic
range occurs on the Edwards Plateau, the Golden-cheeked
Warbler (Setophaga chrysoparia), and other organisms in
this region have distinct populations or subspecies [40,41].
Our results lend additional support to the distinctiveness of
the biota in this region, where native habitat is under per-
sistent conservation threat from urbanization.

The nuclear genetic break between the Interior US and
Northern Mexico populations, occurring roughly where
the Sierra Madre Occidental and Oriental turn into a net-
work of sky islands near the US border, could be explained
either by a break in suitable habitat or a sampling artifact.

Page 8 of 15

Addressing the latter point, observations posted on eBird
(ebird.org) confirm observations of Western Scrub-Jays in
southeastern Arizona and northern Sonora (in the vicinity
of the genetic break), but these records could represent
wandering individuals. Likewise few observations exist in
the vicinity of the genetic break in southwestern Texas, and
virtually no observations exist from northern Coahuila,
where congeneric Mexican Jays (Aphelocoma wollweberi)
occur at lower elevations, seemingly occupying the Western
Scrub-Jay niche [25,42-44]. Thus, while available evidence
suggests that the genetic break between Interior US and
Mexico populations relates to a real distributional break
near the US border, the exact causes of this break remain
unclear. Future niche modeling could be used to determine
if there are cryptic breaks in suitable habitat.

Lack of genetic differentiation along the Pacific Coast

In contrast to the highly structured genetic portrait of
the interior US and Mexico, Western Scrub-Jays along
the Pacific Slope show a remarkable lack of genetic struc-
ture despite 2,500 km of nearly unbroken sampling from
northern Oregon to the southern tip of Baja California.
Lack of genetic structure over large distances suggests two
possible scenarios: (1) high levels of dispersal and gene flow
link coastal populations; or (2) recently expanded coastal
populations have had insufficient time to accumulate gen-
etic differences. Available evidence suggests that Western
Scrub-Jays generally have low dispersal [31], notwithstand-
ing a few rare, long-distance dispersal events discussed
above. Furthermore, the original split between coastal and
interior lineages occurred between 1-4 million years ago
[24], providing ample time for genetic structure to
emerge in coastal populations, absent other demographic
events. Thus, the hypothesis that seems most likely is a re-
cent expansion following a population bottleneck. How-
ever, Pleistocene niche models of Western Scrub-Jay
niches suggest ample habitat along the Pacific Slope dur-
ing the last glacial maximum [45]. Further study is needed
to determine the cause of the apparent genetic homogen-
eity of Pacific Slope populations.

Taxonomic recommendations

We recommend splitting the current concept of the Western
Scrub-Jay into three species, as has already been suggested
previously [46]. The Pacific Slope lineage (A. californica, in-
cluding subspecies californica, oocleptica, caurina, obscura,
hypoleuca, superciliosa, immanis, and cactophila) is pheno-
typically distinct [25], possesses a bill morphology adapted to
local resources [27,28], is monophyletic in mtDNA, and is
sister to another recognized species, the Island Scrub-Jay
[23,24]. This study shows that the Pacific Slope lineage is also
well-differentiated in nuclear markers and has only a narrow
zone of contact with interior populations. The genetic clines
across the hybrid zone are generally steep, and the mismatch
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between mtDNA and nuclear clines suggests a measure of
reproductive isolation. These results would appear to meet
criteria for species distinction under even the most stringent
species concept.

Southern Mexico populations (A. sumichrasti, includ-
ing subspecies sumichrasti and remota) also meet criteria
for species recognition. They are phenotypically distinct
[25], with behavioral evidence that some southern pop-
ulations are cooperative breeders [47], whereas other
Western Scrub-Jays breed in territorial pairs. This study
demonstrates that these southern populations are recip-
rocally monophyletic to other interior populations in
mtDNA and well-differentiated in nuclear markers.

Finally, we recommend that the remaining interior popu-
lations (A. woodhouseii including subspecies texana, wood-
houseii, nevadae, grisea, and cyanotis) be elevated to species
level, given their diagnostic phenotype [25], adaptive bill
morphology [28], high support for monophyly in mtDNA in
previous work [23,24] and this study (0.94 PP), and differen-
tiation in nuclear markers (this study). Within this group,
we do not recommend elevating the genetically distinctive
Edwards Plateau population to species level at this time be-
cause our study sampled only one population. More infor-
mation is needed on potential gene flow with other interior
US populations, as well as a modern multivariate analysis of
their phenotypic differentiation and studies of their eco-
logical and behavioral divergence. Likewise, we do not cur-
rently recommend splitting Interior US from Northern
Mexico populations, unless, at minimum, further sampling
near the US-Mexico confirms that the break seen in micro-
satellite variation is not the result of a sampling artifact.

Conclusions

We report a mismatch in cline widths between mtDNA
and nuclear markers across a hybrid zone in Western
Scrub-Jays. This result is consistent with predictions based
on Haldane’s Rule, where there is less mtDNA introgression
between lineages in female-heterogametic species. This
study adds to a growing list of studies that support predic-
tions of Haldane’s Rule using cline analysis of multiple loci
of differing inheritance modes. Structure results of micro-
satellite variation confirm that there is only one major area
of contact between coastal and interior lineages. Further-
more, Structure identified at least five clusters of individuals
with strong spatial structuring: Pacific Slope, Interior US,
Edwards Plateau, Northern Mexico, and Southern Mexico.
Based on a variety of evidence from the phenotype, ecology,
and genetics, we recommend elevating three lineages to
species level: A. californica (Pacific Slope); A. woodhouseii
(Interior US plus Edwards Plateau plus Northern Mexico);
A. sumichrasti (Southern Mexico). The distinctive Edwards
Plateau population in Texas, which was also monophyletic
in mtDNA except for one individual, should be studied in
greater detail given conservation concerns.
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Methods

Specimens and DNA extraction

We obtained tissues from Western Scrub-Jays represent-
ing all known subspecies, genetic lineages, and geographic
regions from existing frozen tissue specimens in museums
or from new specimens (Table 2; see [30] for a complete
list of the 689 specimens used in this study and associated
data). We collected new specimens with United States fed-
eral permit MB101618 and Nevada state permit S3505.
Field collecting complied with Occidental College’s Insti-
tutional Animal Care and Use Committee protocol R12-
1011-01. We then extracted DNA from blood or tissue
using a DNeasy Tissue Kit (QIAGEN Inc., Valencia, CA)
according to the manufacturer’s protocols.

Assigning coastal vs. interior mtDNA haplotypes

Phylogenies based on mtDNA have been characterized in
previous studies of Western Scrub-Jays using a limited
numbers of individuals [23,24]. Our goal was to conduct
deep mtDNA sampling across the range of the species and
assign coastal and interior types to determine the extent
of mixing within populations, and to determine whether
rare long-distance dispersal events have occurred.

Instead of direct sequencing, we screened individuals for
coastal versus interior mtDNA type with a rapid, diagnos-
tic assay. We used previously sequenced individuals [24]
to identify a rare-cutting restriction enzyme that differed
between coastal individuals, which had the cut site, and
interior individuals, which did not. Then, for new samples
of unknown haplotype, we amplified the cyt b gene using
previously published primers and PCR conditions [24].
Once completed, we added 0.5 puL. of BSR-DI (2000 U/mL,
New England Biolabs, Ipswitch, MA) to each reaction and
incubated for one hour at 65°C, followed by visualization
on an agarose gel. We scored individuals having two bands
as coastal and individuals having one band as interior,
employing both positive and negative controls. We ran
samples where mtDNA type conflicted with geographic
(sampling) location a second time to confirm the result.

Nuclear microsatellite loci

We used microsatellites to gain insight into differenti-
ation and gene flow of the nuclear genome and to score
individuals as potential hybrids (given that mtDNA is
haploid and provides no information as to the hybrid an-
cestry of individuals). Previously characterized microsat-
ellite loci have been isolated from the Florida Scrub-Jay
[48]. From these loci, we chose a panel of 14 loci that
amplified well and were variable among Western Scrub-
Jays. To reduce processing time and cost while maintain-
ing data quality, we pooled up to three loci and amplified
them together (multiplexing) with a single dye [49], after
first confirming that allele size classes for pooled loci did
not overlap.
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Table 2 Locality information for Western Scrub-Jays sampled for this study
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Map Location Coordinates n Subspecies

1 Vida, Oregon, USA 441463, —122.5701 6 immamis

2 Alturas, California, USA 4155, —120.6667 23 superciliosa

3 Lassen Co., California, USA 40.7047, —120.7391 1 superciliosa

4 Douglas City, California, USA 40.5833, -123 18 caurina

5 Beckwourth, California, USA 39.75, —120.3667 2 superciliosa

6 Poole Station Rd, Calaveras Co., California, USA 38.1, -120.6333 17 superciliosa

7 Martinez, Contra Costa Co., California, USA 38.0128, —=122.1325 1 oocleptica

8 El Sobrante, Contra Costa Co., California, USA 37.9755, —=122.2859 1 oocleptica

9 Alhambra Valley Rd., Contra Costa Co., California, USA 37.9663, —122.2059 1 oocleptica

10 Berkeley, California, USA 37.8788, —122.2583 1 oocleptica

11 Carmel Valley Rd., Alameda Co., California, USA 37.874,-121.832 1 superciliosa

12 Moraga 1, Contra Costa Co,, California, USA 37.8598, —122.1343 7 oocleptica

12 Moraga 2, Contra Costa Co., California, USA 37.8653, —122.1386 1 oocleptica

12 Moraga 3, Contra Costa Co., California, USA 37.8602, —122.1235 1 oocleptica

12 Orinda, Contra Costa Co., California, USA 37.8654, —122.1519 17 oocleptica

13 Danville, Contra Costa, Co., California, USA 37.8307, —121.9826 1 oocleptica

14 San Ramon, Contra Costa Co., California, USA 37.75, =122 26 oocleptica

15 Dublin, Alameda Co., California, USA 37.7131,-121.9247 1 oocleptica

16 Purisima Creek, San Mateo Co., California, USA 374070, —122.4059 1 oocleptica

17 North Fork, Madera Co., California, USA 37.2429, —119.5421 1 superciliosa

18 Independence, Inyo Co., California, USA 36.7667, —118.2833 6 superciliosa

19 Bradley, Monterey Co., California, USA 35.8690, —120.9267 21 californica

20 Bodfish, Kern Co., California, USA 356167, —1185 20 superciliosa

21 Big Bear City, San Bernadino Co,, California, USA 343167, -116.8333 5 obscura

22 Pioneertown, San Bernadino Co., California, USA 34.1667, —116.5333 2 obscura

23 Santa Ana Mountains, Orange Co., California, USA 33.7,-1176167 16 obscura

24 Love Valley, San Diego Co,, California, USA 33.5833, —116.7833 12 obscura

25 Pinyon Flat, Riverside Co., California, USA 33.5833, —116.4667 6 obscura

26 Vallecito Mountains, San Bernadino Co,, California, USA 33.027-116.242 10 obscura

27 Mountain Springs Pass, Imperial Co., California, USA 326667, —116.0833 1 obscura

28 Jacumba, San Diego Co,, California, USA 326333, -116.2167 7 obscura

29 La Rumorosa, Baja California, Mexico 32.55,-116.05 8 obscura

30 Potrero, San Diego Co,, California, USA 3265, -116.6167 3 obscura

31 La Rosa de Castilla, Baja California, Mexico 32.05,—-116.1333 20 obscura

32 San Lucas, Baja California Sur, Mexico 27.5,-1123333 1 cactophila

33 Bahia Magdalena, Baja California Sur, Mexico 24.7833,-112.1 15 cactophila

34 La Burrera, Baja California Sur, Mexico 23.5,-110.1167 12 hypoleuca

35 Virginia Mountains, Storey Co., Nevada, USA 394977, -119.6344 4 superciliosa x nevadae
36 Lousetown, Storey Co., Nevada, USA 39.3854, —119.6322 1 superciliosa x nevadae
37 Brunswick Cyn, Pine Nut Mountains, Douglas Co., Nevada, USA 39.1458, —119.6491 4 superciliosa x nevadae
38 Sunrise Pass Rd. 1, Pine Nut Mountains, Douglas Co., Nevada, USA 39.066, —119.569 2 superciliosa x nevadae
39 Sunrise Pass Rd. 2, Pine Nut Mountains, Douglas Co., Nevada, USA 39.0654, —119.5586 2 superciliosa x nevadae
40 Lebo Spring, Pine Nut Mountains, Douglas Co., Nevada, USA 39.0557, —=119.5703 22 superciliosa x nevadae
41 Sunrise Pass Rd. 3, Pine Nut Mountains, Douglas Co., Nevada, USA 39.0523, —-119.6028 2 superciliosa x nevadae
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Table 2 Locality information for Western Scrub-Jays sampled for this study (Continued)

42 Hot Springs Mountain, Douglas Co., Nevada, USA
43 Pine Nut Creek, Douglas Co., Nevada, USA

44 Gardnerville, Douglas Co., Nevada, USA

45 Woodford, Alpine Co., California, USA

46 Nye Canyon, Pine Grove Hills, Lyon Co., Nevada, USA
47 Pine Grove Hills, Lyon Co., Nevada, USA

48 Lucky Boy Pass Rd, Wassuk Range, Mineral Co., Nevada, USA
49 North Canyon, Wassuk Range, Mineral Co., Nevada, USA
50 Excelsior Mountains, Mineral Co., Nevada, USA

51 White Mountains, Inyo Co., California, USA

52 Mt Charleston, Clark Co., Nevada, USA

53 Toiyabe Mountains, Lander Co., Nevada, USA

54 Baker, Millard Co., Utah, USA

55 Hualapi Mountains, Mohave Co., Arizona, USA

56 Drake, Yavapai Co., Arizona, USA

57 Stansbury Mountains, Tooele Co., Utah, USA

58 Uinta Mountains, Duschesne Co,, Utah, USA

59 Duschesne Co., Utah, USA

60 Bonanza, Uitah Co., Utah, USA

61 Whitewater, Mesa Co., Colorado, USA

62 Monument, Teller Co., Colorado, USA

63 Gardner, Huerfano Co., Colorado, USA

64 Manzano, Valencia Co., New Mexico, USA

65 Fort Davis, Jeff Davis Co., Texas, USA

66 Carta Valley, Edwards Co., Texas, USA

67 Villa Ocampo, Durango, Mexico

68 Sombrerete, Zacatecas, Mexico

69 Rancho Santa Rita, Jalisco, Mexico

70 El Diamante Pass, Coahuila, Mexico

71 Bledos, San Luis Potosi, Mexico

72 Taxco, Guerrero, Mexico

73 Xocomanantlan, Guerrero, Mexico

74 San Lorenzo de Abarrados, Oaxaca, Mexico

39.0333, —=119.6333 6 superciliosa x nevadae
38.9414, —119.7069 6 superciliosa x nevadae
38.8333, -119.6167 5 superciliosa x nevadae
38.7833, -119.75 7 superciliosa x nevadae
38.5703, —119.2083 10 nevadae

38.5133, —=119.2040 1 nevadae

384549, —118.6701 1 nevadae

384625, —118.6475 3 nevadae

38.2792, —118.4844 1 nevadae

37.2833, -118.1667 16 nevadae

36.3667, —115.6333 27 nevadae

39.3333, -117.1333 15 nevadae

39.05, —114.0833 1 nevadae
35.15,-1139 2 nevadae

35, -112.25 26 nevadae

40.35, =112.5333 15 woodhouseii

40.5816, —110.0105 1 woodhouseii

399813, —=110.2620 1 woodhouseii

39.7811, —109.0260 1 woodhouseii

38.9199, —108.4834 4 woodhouseii

39.0938, —104.8296 1 woodhouseii

37.8833, -105.2 13 woodhouseii

34.6667, —106.4667 26 woodhouseii

30.7, —104.1333 22 woodhouseii

29.8333, —100.6833 28 texana

264667, —105.4833 12 grisea

23.7,=103.75 9 grisea

2145, =101.9167 19 grisea

25.3667, —100.8667 21 cyanotis

218667, —101.15 20 cyanotis

18.5833, —=99.6333 3 remota

17.55, =99.65 12 remota

17, -96.1667 24 sumichrasti

Map numbers correspond to sampling sites in figures.

After amplification, we determined fragment size using
an ABI PRISM 3730 capillary sequencer and analyzed the
resulting data using Geneious v. 6.0.4 (Biomatters). We
called alleles objectively by creating bins based on known
microsatellite repeat motifs [48], and assessed artifacts
after genotyping (e.g., stuttering, null alleles, big-allele
drop-out) using Microchecker [50]. To ensure that micro-
satellite loci were evolving under neutral processes, we
assessed each locus for deviation from Hardy-Weinberg
equilibrium (HWE) using GenePop on the Web (http://
genepop.curtin.edu.au). Strong population structure can
lead to false positives for deviations from HWE when

populations are pooled (Wahlund Effect), so we assessed
HWE in each population at each locus individually, apply-
ing Bonferroni correction to control for false positives
resulting from the effect of conducting multiple simultan-
eous tests. We also performed a test of linkage disequilib-
rium to confirm independent sorting of loci.

Analysis of microsatellite variation for genetic clustering
across the geographic range

We assessed genetic structure of microsatellite data using
Structure v. 2.3.4 [51], which uses Bayesian analysis to
infer the number of populations (K) from a group of
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individuals based only on their genetic variation, without
prior information on where the individuals originated. We
did not use the method of Evanno et al. [52] to detect the
‘true K because this method is known to underestimate
genetic structure in all but cases of very strong genetic dif-
ferentiation [53]. Initial tests of the Evanno et al. [52]
method suggested K=2 as the best model for our data;
however, analysis at higher K revealed strong structure
that was highly justified based on biology and geography.
Thus, because one of our goals was discovery of the basic
units of spatially structured genetic diversity, we instead
used Structure to analyze successively smaller clusters of
individuals at K=2 until Structure could no longer find
any clustering within groups, as demonstrated previously
[54]. For example, when two clear geographic population
clusters with strong biological justification emerged in the
complete data set, we ran each of these clusters in its own
analysis until K=2 revealed no remaining geographical
clusters. After the first run, we excluded hybrid popula-
tions (identified as populations with both coastal and in-
terior mtDNA types) from the analysis. We ran Structure
with an admixture model, correlated allele frequencies,
and a burn-in period set to 100,000 generations, followed
by 500,000 generations, which was sufficient for each run
to reach stationarity.

Analysis of microsatellite variation across the hybrid zone
To assess population assignment and potential hybrid an-
cestry of individuals across the hybrid zone, we delimited
13 populations along a transect running northwest to
southeast from the Sierra Nevada in northeastern California
into west-central Nevada (Figure 2). This line conforms to
prior descriptions of the contact zone [25,55,56] and our
own field observations. To obtain estimates of hybrid an-
cestry (i.e, Q-scores) within the hybrid zone, individuals
from these 13 populations were analyzed in Structure sep-
arately from all other individuals in the study using K= 2;
their resulting Q-scores were recorded for later use in cline
analysis. The Q-score values provide an overall estimate of
nuclear variation that is expected to suffer less from ran-
dom processes affecting individual loci. Moreover, cline
analysis requires binary data or frequency values varying
from 0 to 1. Due to large number of alleles at a given locus,
individual microsatellite loci do not usually conform to this
standard.

Testing for phylogenetic structure of microsatellite
groups using mtDNA

Previous studies that generated mtDNA phylogenies of
Western Scrub-Jays did not sample deeply within popula-
tions [23,24]. Thus, to determine if nuclear DNA groups
discovered in this study were discernible using mtDNA,
we sequenced multiple individuals from all major groups
suggested by our microsatellite results for the mtDNA cyt
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b gene, using previous protocols [24]. We combined these
new data with existing data for Aphelocoma and close out-
groups (Calocitta formosa, Gymnorhinus cyanocephalus,
and Cyanocitta stelleri) from GenBank, and we generated
a phylogeny from these sequences using BEAST v. 1.7.5
[57]. We ran the analysis using the best-fit substitution
model for the cyt b gene determined through Akaike In-
formation Criterion (AIC), which was HKY + 1+ G with
six gamma categories and base frequencies estimated as
determined by MrModeltest, v2 [58]. We used a strict
clock with a random starting tree. We ran the chain to
1.0 x 10° iterations, sampling every 1,000. The analysis
converged quickly as determined by observing the plot
of likelihood scores and ESS scores > 200 with Tracer.
We discarded the first 1,000 of 10,000 trees as burn-in and
produced a consensus tree from the remaining posterior
trees using Geneious [59]. The maximum clade credibility
produced with TreeAnnotator was almost identical,
with key nodes mentioned in the Results having the
same PP values.

Fitting geographic clines to genetic data across the
hybrid zone

We used HZAR v2.5 [60], a statistical package imple-
mented in R, to determine the width of geographic
clines estimated from mtDNA and nuclear markers, and
the extent of mismatch, if any. We measured the dis-
tance between points from the coastal northwest end of
the hybrid zone (site 2 in Figure 1), through the contact
zone, continuing to pure interior populations to the
southeast (site 52 in Figure 1). These were then com-
pressed to a single line using HZAR. This transect likely
captures the major axis of gene flow across the hybrid
zone [25], with minor caveats covered in the Discussion.
We estimated clines for mtDNA haplotype frequency
and average Q-score per site as determined in our Struc-
ture analyses. We used these cline analyses to estimate
changes of the molecular characters in local mean fre-
quencies. We modeled the cline shape using three equa-
tions [61,62] describing a sigmoid shape at the center of
the transition with two exponential decay curves on ei-
ther side of the transition. We estimated several parame-
ters, including width (w), center (c), delta (d, distance
between the center and the tail), and tau (¢, slope of the
tail). We also incorporated the possibility that Pmax and
Pmin (the “top” and “bottom” of the cline) were either
fixed or free to vary. We fit three sets of five cline
models using the Metropolis-Hasting algorithm in R.
Model set 1 has no scaling (Pmin =0, Pmax =1), model
set 2 has fixed scaling (Pmin =observed minimum,
Pmax = observed maximum), and model set 3 allows
Pmin and Pmax to vary. Within each model set, scaling
and tails are fixed or free to vary. We compared these
models to a null model of no clinal transition.
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For the two genetic datasets, we set up a covariance
matrix by running each model for 1.0 x 10° generations.
We ran three independent chains for 9.0 x 10° generations
and assessed for convergence and stability by visualizing
the MCMC traces. We performed model selection using
corrected AIC (AICc). We estimated two log-likelihood
confidence intervals around each parameter estimate. If
the parameter estimate from one dataset did not overlap
with the confidence interval of the parameter estimate
from the other dataset, we considered them to be signifi-
cantly different. We also used estimates of cline width to
determine the time since contact under a neutral diffusion
model solving for ¢ in the equation w = 2.510V¢ [63], where
t is the time since contact and o is the root mean square
dispersal distance from estimates in [31]. Because females
and males have different dispersal distances, we used the
female dispersal distance (1.5 — 5 km) to estimate time
since contact using mtDNA, and we used the average dis-
persal estimate of males and females (0.5 — 3.0) to esti-
mate time since contact for the nuclear dataset.

Correlating phenotype with hybrid ancestry

We collected phenotypic data on a subset of 124 coastal
and interior Western Scrub-Jay specimens within and
outside the hybrid zone. Unfortunately we could not
perform a cline analysis along the transect because we
did not have sufficient sample sizes from pure popula-
tions at both ends of the transect. However, to deter-
mine the extent to which phenotype is correlated with
nuclear DNA variation, we conducted regression analysis
of phenotypic traits (plumage and morphology) with Q-
scores at several spatial scales. The set of 124 specimens
includes the full ranges of coastal and interior pheno-
types, many hybrids, and pure individuals of each lineage
with no evidence for hybrid genetic ancestry (Q-score at
or close to 1 or 0). Because environment can influence
phenotype when considering allopatric lineages, a more
robust test of the genotype-phenotype link occurs within
the hybrid zone where individuals share the same envir-
onment and there is more continuous variation in Q-
scores. Here, we looked specifically at the 68 specimens
that are part of the hybrid transect, as well as a more re-
strictive sample of 50 individuals within the core hybrid
zone defined as sites 35—45 in Figure 1.

To ensure consistent measurements, one author (TCW)
measured wing, tail, tarsus, bill length, bill depth, and bill
width to the nearest 0.1 mm with digital calipers on all
124 birds after first verifying high repeatability scores for
all traits. On a subset of 66 of these birds, another author
(JEM) assessed three qualitative plumage traits known to
vary between coastal and interior lineages: the amount of
blue collar (reduced in interior birds); size of the eyestripe
(reduced in interior birds); and color of the undertail co-
verts (blue-tinged in interior birds as opposed to white in
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coastal birds). We determined variation in plumage traits
by lining up all 66 specimens at the same time and arran-
ging them in order of trait appearance (e.g., very white
undertail coverts to very blue undertail coverts). We then
divided the arranged specimens into six even categories
and assigned a value of 1 to 6. We repeated these steps for
each trait. We analyzed morphological data with principal
components analysis on the correlation matrix in Stata 10
to identify axes defining the most variation in the data.
We assessed relationships between Q-scores and univari-
ate and multivariate phenotypic traits with linear regres-
sion at each of the three spatial extents described above
(full range, hybrid transect, core hybrid zone) using Stata.

Availability of supporting data

New DNA sequences have been deposited in Genbank
under accession numbers KJ835799-KJ835861. Museum
catalog numbers, localities, raw microsatellite data, pheno-
typic data, and Q-scores for each individual are available
through Dryad http://dx.doi.org/10.5061/dryad.57f48.
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