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Abstract

Background: There has been a considerable increase in studies investigating rates of diversification and character
evolution, with one of the promising techniques being the BiSSE method (binary state speciation and extinction).
This study uses simulations under a variety of different sample sizes (number of tips) and asymmetries of rate
(speciation, extinction, character change) to determine BiSSE’s ability to test hypotheses, and investigate whether
the method is susceptible to confounding effects.

Results: We found that the power of the BiSSE method is severely affected by both sample size and high tip ratio
bias (one character state dominates among observed tips). Sample size and high tip ratio bias also reduced
accuracy and precision of parameter estimation, and resulted in the inability to infer which rate asymmetry caused
the excess of a character state. In low tip ratio bias scenarios with appropriate tip sample size, BiSSE accurately
estimated the rate asymmetry causing character state excess, avoiding the issue of confounding effects.

Conclusions: Based on our findings, we recommend that future studies utilizing BiSSE that have fewer than
300 terminals and/or have datasets where high tip ratio bias is observed (i.e., fewer than 10% of species are
of one character state) should be extremely cautious with the interpretation of hypothesis testing results.
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Background
Maddison et al. [1] described a method using a binary-
state speciation and extinction model (BiSSE) that esti-
mates rates of change in a binary character and rates of
speciation and extinction contingent on the character
state, given a known distribution of observed states on
the tips of a tree of contemporaneous species. The BiSSE
method assumes that the tree includes all extant species
and that all species have known data for the state of the
single binary character [1]. FitzJohn et al. [2] provided
additional methodology for including known species di-
versity into an incomplete phylogeny if a researcher
could confidently place taxa into unresolved terminal
clades. BiSSE provides estimates for the rates of speci-
ation in each character state (λ0, λ1), extinction in each
state (μ0, μ1), and character transition rates between
states (q01, q10). Such estimates are important to studies
of whether a particular feature is controlling the diversi-
fication rates of clades and whether the effect is on
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speciation, extinction, or both [3-5]. Recent studies have
also modified the basic approach of the BiSSE method to
estimate further parameters associated with quantitative
characters [6] and geography [7].
Maddison et al. [1] discussed the development of the

BiSSE method and demonstrated its ability to estimate
rates from simulated data sets. Recently there has been a
burst in the number of studies that have utilized the
BiSSE method to explore rates of diversification in vari-
ous taxonomic groups for the purpose of testing hypoth-
eses involving key innovations and the evolution of
characters [8-19]. However, the majority of these studies
explore diversification and character evolution hypoth-
eses with fewer than 200 taxa, despite the initial warning
by Maddison et al. [1] that the power of analysis may be
affected by low sample size.
Wise use of any statistical method should be guided

by an understanding of its power and ability to distin-
guish hypotheses of interest, but current empirical
studies lack sufficient guidance, because there has been
little work on the BiSSE method’s behavior under dif-
ferent sample sizes (numbers of species) and parameter
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Figure 1 Power of BiSSE under simulations with asymmetrical
rates of (a) speciation, (b) character change, (c) extinction. See
Table 1 and Additional file 1: Table S1-S3 for list of rate values.
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values. The primary goal of this study is to explore the
power and accuracy of parameter estimation of the
BiSSE method. Using simulations we explore the num-
ber of species needed to obtain good power, the
advantages of estimating fewer parameters, and the ef-
fect of the extreme asymmetries in rates. Additionally,
because there are many ways that an observed excess
of a character state can be explained through macro-
evolutionary processes (e.g., increased speciation rates
in taxa with State 1, higher extinction rates in taxa
with State 0), there is also concern regarding con-
founding effects [20], and whether BiSSE can identify
which rate asymmetries are causing the observed char-
acter excess in empirical data.

Results
Power of BiSSE method
Asymmetries in speciation rate
Extremely low power (<5%) was observed when tree size
included 50 taxa, regardless of the degree of rate asym-
metry (Figure 1a, Additional file 1: Table S1). Power
marginally improved for tree sizes of 100 taxa, but
decreased considerably as the asymmetry increased to
10 and 20× rate difference (Figure 1a). A tree size of 300
tips indicated a higher overall power for each difference
in rate than those observed with 50 or 100 taxa. Power
increased as the degree of difference in rate asymmetry
increased, until reaching a rate difference of four times
the speciation rate where the power begins to decrease
as the degree of rate asymmetry grows. This same pat-
tern was observed for a tree size of 500 tips (Figure 1a).
In general, power increased as tree size increased
(Figure 1a), and a pattern of power decrease following
an increase in tip-ratio bias resulting from rate asym-
metry was observed in the simulation including more
tips (Figure 1a).

Asymmetries in rate of character state change
For each asymmetrical model of character change (e.g.,
2×, 5×), power increased with an increase in tree size
(Figure 1b). Power remained low and did not increase
with a difference in rates when the tree size was 50 taxa.
There was a slight increase in power as the degree of dif-
ference in rates increased with tree sizes of 100 taxa
(Figure 1b). Power was higher for simulations with 300
taxa for each respective difference in rates compared to
the same simulations with 100 and 50 taxa. Power
increased as the rate difference increased to 5× then lev-
eled off to 10×, followed by a strong decrease in power
as the difference in rates increased to 20× and 40×
(Figure 1b). This same pattern was observed in simula-
tions of 500 taxa and in general there was a decrease in
power observed in all tip sizes beyond a 10x difference
in rates of character change (Figure 1b).
Asymmetries in extinction rate
As with rates of speciation and character state change,
power increased as tree size increased regardless of the
amount of difference in extinction rate (Figure 1c). With
tree sizes of 50 taxa, power was low regardless of the de-
gree of rate asymmetry, and power was similarly low
with 100 taxa. With tree sizes of 300 and 500 taxa,
power increased until a rate difference of 3×, with power
decreasing as the degree of rate asymmetry continue to
increase. Overall, power in hypothesis testing with ex-
tinction rates was lower than those for speciation or
character state change (Figure 1c).
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Power of six parameter model vs. four parameter model
The change in power among low and high tip bias sce-
narios when using a model that estimates fewer para-
meters is observed in Figure 2 (Additional file 1: Table
S4). The reduced four parameter model differs from the
full six parameter model (λ0, λ1, μ0, μ1, q01, q10) with two
of the rates constrained to be equal in both character
states, for example (λ0, λ1, μ0=μ1, q01=q10). In nearly all
cases, especially with tree sizes greater than 300 taxa,
there was an increase in power when the four parameter
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Figure 2 Power of BiSSE under four versus six parameter
models under low (31:10) and high (71:10) character state bias
as the result of rate asymmetries in (a) speciation, (b) character
change, and (c) extinction. See Additional file 1: Table S4 for
rate values.
model was used compared to the six parameter model
(Figure 2). The greatest increase in power occurred in the
scenarios with a greater degree of bias (7:1 State 1 favored),
and the effect was observed regardless of which parameter
possessed the rate asymmetry (Figure 2, Additional file 1:
Table S4). As was the case with the six parameter estima-
tions, power is low when tree size is below 300 taxa with a
four parameter model.

Parameter estimation
Estimating parameters under asymmetrical speciation
As previously identified by Maddison et al. (2007), the
BiSSE method estimates speciation rates well, with
strong delimitation of known asymmetrical rates given
an appropriate tree size (Figure 3a), although precision
decreases as the speciation rate asymmetry, and tip bias,
increases. For estimates of known symmetrical rates of
character change under asymmetrical speciation rates,
accuracy and precision of estimating the known rates be-
come significantly worse under the higher tip bias sce-
nario (Figure 3b). A similar pattern is recovered for
estimates of known symmetrical extinction values where
rates were estimated with more accuracy and precision
under low tip bias (asymmetrical speciation rate of 1.25),
with accuracy and precision strongly decreasing under
high tip bias (20× asymmetry in speciation rates) as
observed in Figure 3c. Accuracy and precision of param-
eter estimation greatly decreases for all rates with a
small sample size of tips, regardless of low or high tip
bias (Additional file 2: Figure S1).

Estimating parameters under asymmetrical character change
Estimates of asymmetries in character change are not as
accurate or precise as estimating rates of speciation
(Figure 4b). In general, precision decreases as the rate
difference increase results in a high tip bias scenario,
with parameter estimation being poor for a known esti-
mate of a 40× rate difference in character change. Sym-
metrical speciation rates (λ0 = 0.1, λ1= 0.1) are well
estimated when the rate of character change is 2× (low
tip bias) as seen in Figure 4a. However, with a 40× (high
tip bias) difference in the rate of character change the
precision of parameter estimation appears to decrease,
and the number of estimates for highly asymmetrical
speciation rates increases (Figure 4a). Parameter esti-
mation of known extinction rates (μ0 = 0.03, μ1 =
0.03) is more accurate under the 2× (low tip bias) sce-
nario rather than the 40× (high tip bias) scenario
where estimates of known extinction values are very
poor (Figure 4c).

Estimating parameters under asymmetrical extinction
Estimates of known extinction values are poor and
seem to lack precision, with precision decreasing as
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the difference in extinction rates increase (Figure 5c).
Speciation values are well estimated to the known
values (λ0 = 0.1, λ1= 0.1) when the difference between
extinction rates is 2× (low tip bias), but accuracy and
precision seems to decrease dramatically as the extinc-
tion rate asymmetry increases (high tip bias), leading
to an abundance of highly asymmetrical estimates of
speciation rates (Figure 5a). Parameter estimation of
character change has the same pattern, in which the
known rate (q01 = 0.01, q10 = 0.01) is well estimated
under 2× (low tip bias) extinction rate differences
(Figure 5b), but is poorly estimated under an increased
difference in extinction rate asymmetry that leads to
high tip bias (Figure 5b). This poor estimation leads to
a dramatic increase in asymmetrical rates of character
change that favor transitions from State 0 to 1.
Discussion
Impact of tree size on power
The statistical power of the BiSSE method depends on
the number of taxa and the degree of asymmetry in rates
of speciation, extinction, and character state change. In
terms of tree size, BiSSE achieves extremely low power
when testing hypotheses of rate asymmetry if fewer than
100 taxa are used in the analysis, even when rates are
known to be highly asymmetrical (Figure 1). As a result,
the potential for a Type II error (failing to reject the null
hypothesis when the alternate hypothesis is true) is ex-
tremely high.
The highest power attributed to any rate asymmetry

associated with 300 taxa is only 50% (Figure 1) under a
six parameter model. Researchers that attempt to utilize
the BiSSE method with fewer than 300 taxa should take
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caution. Below 200 taxa there is little statistical power
associated with identifying rate asymmetries, regardless
of whether strong asymmetries exist. Maddison et al. [1]
hypothesized that large amounts of data would be
needed to distinguish significant asymmetries because
there are many ways to arrive at a given phylogeny.

Power of simplified models
If external information justifies a simplification of the
model, then greater power can be achieved. We found an
overall increase in power when utilizing a four parameter
model over a six parameter model regardless of which
rate possesses the asymmetry (Figure 2, Additional file 1:
Table S4), although tree sizes greater than 300 tips are
still desirable. Whether researchers can take advantage of
this greater power using a model with fewer free para-
meters depends of course on whether it is reasonable to
assume in advance that any asymmetries are restricted to
one rate.

Confounding processes
Strong asymmetries in rates of speciation, character
state change, and extinction yielded, as expected, a
strong excess of tips with a single character state
(Table 1). The question to a biologist observing such a
pattern is; which rate’s asymmetry might have led to
such excess? Maddison [20] hypothesized that teasing
apart parameters that are the cause of taxonomic state
frequency asymmetry is difficult, and that simultaneously
estimating these parameters may help address this issue.
We found that under best-case scenarios where high tip
bias is absent and sample size is high (preferably greater
than 300 taxa), parameters are estimated accurately and
precisely (Figures 3, 4, 5, Additional file 2: Figure S1,
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Table 2). This indicates that the BiSSE method is cap-
able of identifying the rate asymmetry that is causing
taxonomic excess when datasets are used with a suffi-
cient amount of tips and where high tip bias is absent,
as seen in Figures 3, 4, 5 (Table 2). In these scenarios,
BiSSE is able to properly identify the known process
with the rate asymmetry (Table 2), whether it was spe-
ciation (Figure 3a), character change (Figure 4b), or ex-
tinction (Figure 5c). This is further corroborated by the
power, which remains high in cases where sample size
is large and tip ratio bias is minimized (Figure 1). How-
ever, teasing apart which rate asymmetries are causing
taxonomic excess of one character state is a problem
under two conditions; if tree size is small (Additional
file 2: Figure S1), regardless of the degree of tip bias,
and if there is a high degree of tip ratio bias towards
one state, even while simultaneously estimating para-
meters using the BiSSE method with trees of substantial
size (500 tips, Figures 3, 4, 5, Additional file 2: Figure S1,
Table 2). Below we discuss why high tip ratio bias leads
to a decrease in power and parameter estimation, and
how much tip ratio bias is necessary to have an adverse
affect on teasing apart confounding processes.
When taxa are saturated for a particular state (high tip

ratio bias), the BiSSE method estimates high rate asym-
metries to explain this pattern, even for those rates
known to be low and symmetrical (Figure 3, 4, 5,
Table 2). For example, when extinction is 10× higher for
State 0 than State 1 (Tip bias of 101:10), the extinction
asymmetry is detected, but the rate of character change
is also estimated to be highly asymmetrical (Table 2).
The method infers rapid change from State 0 to 1



Table 1 Parameter values for rate asymmetry simulations
used to assess power and parameter estimation of BiSSE
method

Rate asymmetry Tip ratio Figure % State 0

Speciation (q01 and q10 = 0.01,
μ0 and μ1 = 0.03)

1.25× (λ0 = 0.1, λ1= 0.125) 31:10 1A 29.23

1.5× (λ0 = 0.1, λ1= 0.15) 51:10 1A 19.33

2× (λ0 = 0.1, λ1= 0.2) 101:10 1A 9.90

3× (λ0 = 0.1, λ1= 0.3) 201:10 1A 4.94

4× (λ0 = 0.1, λ1= 0.4) 301:10 1A 3.19

5× (λ0 = 0.1, λ1= 0.5) 401:10 1A 2.50

10× (λ0 = 0.1, λ1= 1.0) 901:10 1A 1.13

20× (λ0 = 0.1, λ1= 2.0) 1801:10 1A 0.51

Character Change (λ0 and λ1= 0.1,
μ0 and μ1 = 0.03)

2× (q01 = 0.01, q10 = 0.005) 21:10 1B 33.96

3× (q01 = 0.015, q10 = 0.005) 31:10 1B 24.01

4× (q01 = 0.02, q10 = 0.005) 41:10 1B 20.57

5× (q01 = 0.025, q10 = 0.005) 51:10 1B 16.69

10× (q01 = 0.05, q10 = 0.005) 101:10 1B 9.14

20× (q01 = 0.1, q10 = 0.005) 201:10 1B 4.69

40× (q01 = 0.2, q10 = 0.005) 401:10 1B 2.39

Extinction (λ0 and λ1= 0.1, q01
and q10 = 0.01)

2× (μ0 = 0.06, μ1 = 0.03) 31:10 1C 23.85

3× (μ0 = 0.09, μ1 = 0.03) 61:10 1C 13.21

4× (μ0 = 0.12, μ1 = 0.03) 91:10 1C 9.29

5× (μ0 = 0.15, μ1 = 0.03) 121:10 1C 7.12

10× (μ0 = 0.3, μ1 = 0.03) 271:10 1C 3.40

The observed percent of terminals with State 0 are for simulations with 500
taxa. Observed tip ratios were nearly identical for other taxa sizes (50, 100,
and 300).
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(Figure 5b, Table 2) when in fact, the constrained rates
were fairly low and symmetrical (q01 = 0.01, q10 = 0.01).
The inability to identify confounding processes when
there is high tip ratio bias results in the observed de-
crease in power when the degree of rate asymmetry
increases in either the rate of speciation, extinction, or
character change (Figure 1). This issue is not resolved
with larger tree sizes (Figure 1), and the degree of tip
bias needed to adversely affect the accuracy and preci-
sion of parameter estimation varied with the process
(e.g., speciation, extinction, character change).
The amount of bias needed to reduce accuracy and

precision of parameter estimation, leading to worst-case
scenarios, changed depending on the process. When es-
timating parameters associated with asymmetries of spe-
ciation rates, power sharply decreases when fewer than
2.5% of the taxa have one of the binary traits (Tables 1,
2, Figures 1, 3). Character change and extinction rate
asymmetries are more adversely affected by trait rarity,
with the worst-case scenarios happening when a binary
trait occurs in fewer than 8–10% of the terminal taxa.
As with speciation, high tip ratio bias leads to a sharp
decrease in power regardless of sample size (Figures 1b,
1c, 4, 5; Tables 1, 2, Additional file 1: Tables S1-S3).
Overall, caution is recommended when using the BiSSE
method if tip ratio bias is greater than a 10:1 ratio for
binary states in terminal taxa, as this level of trait rarity
in one state may have a negative impact on the power of
the analysis (regardless of sample size) and the ability to
identify confounding processes under these worst-case
scenarios.
The observed pattern of a decrease in power asso-

ciated with speciation, extinction, and character change
when rates become increasingly asymmetrical is troub-
ling (Figure 1). In general, investigators should be cau-
tious using the BiSSE method when one of the binary
characters in question is exceedingly rare in their data
sets (less than 10%). BiSSE may mistakenly estimate the
wrong parameter (or combination of parameters) to be
the cause of taxonomic excess in situations where high
tip ratio bias is observed, and increased tree size does
not alleviate this issue. If investigators report a signifi-
cant result, there is a possibility that the inability to
identify confounding processes in these scenarios may
impact the interpretation of the causes for the observed
pattern of state asymmetries. Further work is needed to
establish a robust methodology within the BiSSE frame-
work for teasing apart the parameters that are directly
contributing to character state bias under these high tip
ratio scenarios.

Difference in estimation accuracy among processes of
change
We found that the BiSSE method is far more accur-
ate and precise with estimates of rates of speciation
and character change than with extinction rates
(Table 2, Figures 3, 4, 5, Additional file 2: Figure S1),
which was also noted by Maddison et al. [1]. Overall,
a greater degree of tip ratio bias is needed to reduce
the accuracy and precision of speciation parameter
estimation and a loss of power when the rate asym-
metry is related to speciation (discussed previously).
While extinction can leave a signal in molecular
phylogenetic trees recovered from extant taxa alone
[21,22], estimating extinction rates from molecular
phylogenies often results in rates approaching zero,
which is potentially the result of cladogenetic events
being directly inferred from molecular phylogenies
and not extinction events [22]. Recently, Rabosky
[23] indicated that without information from the fos-
sil record, estimating extinction rates from molecular
data alone may be potentially impossible if rates of



Table 2 Summary statistics of parameter estimates for rate asymmetry simulations with 500 taxa under low and high
tip bias scenarios

Rate asymmetry λ0 λ1 q10 q01 μ0 μ1
Speciation (Figure 3)

Low Tip Bias (31:10)

Simulated 0.1 0.125 0.01 0.01 0.03 0.03

Estimated (Mean ± Se) 0.101 ± 0.018 0.125 ± 0.013 0.01 ± 0.003 0.01 ± 0.006 0.035 ± 0.031 0.029 ± 0.022

Medium Tip Bias (401:10)

Simulated 0.1 0.5 0.01 0.01 0.03 0.03

Estimated (Mean ± Se) 0.107 ± 0.119 0.502 ± 0.033 0.012 ± 0.007 0.09 ± 0.295 0.103 ± 0.33 0.034 ± 0.046

High Tip Bias (1801:10)

Simulated 0.1 2.0 0.01 0.01 0.03 0.03

Estimated (Mean ± Se) 0.377 ± 2.57 2.048 ± 0.124 0.018 ± 0.028 3.1 ± 7.6 1.78 ± 4.85 0.11 ± 0.17

Character Change (Figure 4)

Low Tip Bias (21:10)

Simulated 0.1 0.1 0.005 0.01 0.03 0.03

Estimated (Mean ± Se) 0.103 ± 0.033 0.099 ± 0.011 0.005 ± 0.002 0.0099 ± 0.005 0.038 ± 0.053 0.03 ± 0.02

Medium Tip Bias (101:10)

Simulated 0.1 0.1 0.005 0.05 0.03 0.03

Estimated (Mean ± Se) 0.104 ± 0.032 0.098 ± 0.009 0.0058 ± 0.006 0.057 ± 0.218 0.048 ± 0.075 0.026 ± 0.014

High Tip Bias (401:10)

Simulated 0.1 0.1 0.005 0.2 0.03 0.03

Estimated (Mean ± Se) 0.142 ± 0.145 0.098 ± 0.008 0.008 ± 0.009 0.193 ± 0.443 0.281 ± 0.462 0.023 ± 0.014

Extinction (Figure 5)

Low Tip Bias (21:10)

Simulated 0.1 0.1 0.01 0.01 0.06 0.03

Estimated (Mean ± Se) 0.1 ± 0.02 0.099 ± 0.01 0.009 ± 0.002 0.009 ± 0.006 0.063 ± 0.031 0.028 ± 0.016

Medium Tip Bias (31:10)

Simulated 0.1 0.1 0.01 0.01 0.09 0.03

Estimated (Mean ± Se) 0.077 ± 0.014 0.102 ± 0.009 0.009 ± 0.003 0.012 ± 0.013 0.093 ± 0.047 0.027 ± 0.014

High Tip Bias (101:10)

Simulated 0.1 0.1 0.01 0.01 0.3 0.03

Estimated (Mean ± Se) 0.116 ± 0.109 0.098 ± 0.008 0.013 ± 0.03 0.194 ± 1.2 0.29 ± 0.33 0.028 ± 0.015
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diversification vary across a topology. As demon-
strated by this study, BiSSE is capable of estimating
rates of extinction from known values given sufficient
data (e.g., large tree size, low tip bias), albeit with far
less accuracy and precision than rates of speciation
or character change. Also, if an asymmetry in extinc-
tion rates leads to a high tip ratio bias, the accuracy
and precision of extinction rates estimation decreases
(Figure 5c). Finally, the accuracy and precision of es-
timating rates is also impacted by a small sample size
(<300 tips) regardless of tip ratio bias as indicated in
Additional file 2: Figure S1. In addition to low power
associated with small tree sizes, investigators should be
cautious of a significant result if tree size is less than
300 tips, as the inferred cause(s) for the potential
evolutionary pattern may be misled by the issue of con-
founding processes.

Identifying critical values
An additional issue uncovered in this analysis is the diffi-
culty in finding appropriate critical values. The critical
values from our simulations suffer from a great deal of
variation (Additional file 1: Tables S1-S4). The nearly
consistent difference in critical values suggests that sim-
ply comparing the statistic to a χ2 distribution may not
be appropriate as suggested by Maddison et al. [1].
Therefore, we suggest simulating your own critical
values, using as many replicates as possible, as we did
here. Suitable simulators are available in both Mesquite
and the Diversitree R-package [2].
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Implementation issues
Another possibility is that the method performs better
than these results suggest, but limitations of our likeli-
hood optimizer limit the power of our implementation.
Our implementation, as described in Maddison et al.
[1] uses several techniques to overcome the limitations
of the Brent [24] optimizer, including using multiple
searches from randomly generated starting points, and
the option of starting searches from values estimated
from more constrained models. Tests (Midford unpub-
lished) with alternative optimizers, using the Diversi-
tree package described FitzJohn et al. [2] indicate that
little, if any, loss of power is actually related to the
choice of optimizer.

Conclusion
The power of the BiSSE likelihood method to test hy-
potheses of rate asymmetry is susceptible to both tree
size and variation in parameter rates. Overall, power of
the BiSSE method is low if the tree size is below 300
taxa, and investigators should take special care to inves-
tigate the power of their results if applying the BiSSE
method to topologies with fewer than 300 tips. Power is
increased when estimating fewer parameters, so utilizing
a four parameter model to test hypotheses may be pre-
ferable if appropriate.
This study indicates that contrary to the hope

expressed in Maddison [20], the problem of con-
founding effects can still occur while estimating
process parameters simultaneously if there is low
sample size and/or high tip ratio bias. Under scenar-
ios of large sample size (greater than 300 taxa) and
low tip bias, the BiSSE method accurately and pre-
cisely identifies the rate parameters contributing to
the observed taxonomic excess. However, if diversifi-
cation rate parameters are too asymmetrical (yielding
a high tip ratio bias) and/or sample size is low,
BiSSE is unable to accurately estimate rates. This in
turn results in a dramatic decrease of power. We
recommend that investigators must be cautious when
interpreting their results if there is a character state
bias among tips greater than a 10:1 ratio in favor of
either binary state. In these worst-case situations,
properly identifying the process responsible for taxo-
nomic excess may be impossible regardless of the
number of tips in the dataset. If investigators using
data with fewer than 300 tips and/or with high tip
bias report a significant result, there exists a possibil-
ity that the issue of confounding effects has misled
the identified rate cause(s) of the significant result.
Further work is needed within the BiSSE framework
to develop methods to better identify which parameters
are causing the character state bias in these worst-case
scenarios (e.g., low sample size, high tip bias). Further
exploration of the impact of multiple rate asymmet-
ries is also needed. However, it is clear that if multiple
rate asymmetries are occurring that promote high tip
ratio bias there will be difficulties with power and
parameter estimation.

Methods
Hypothesis testing and the power of the BiSSE method
The BiSSE likelihood calculation and parameter esti-
mations were done in the Diverse package [25] of
Mesquite 2.7 [26]. Maddison et al. [1] suggested that
the probability of rejecting a false null hypothesis
(power) may vary with the number of species in an
analysis, and with the degree of rate difference among
parameters. The initial exploration of power for the
BiSSE method in Maddison et al. [1] focused on three
rate asymmetric scenarios (one for speciation, charac-
ter change, and extinction) with a tree size of 500
tips. To explore the full range of power for the BiSSE
method when using the six parameter model, 500
trees were simulated under a variety of tip sizes and
parameter combinations where an asymmetry in one
rate parameter was introduced (e.g., λ0 < λ1).
When a tree and character are simulated with

asymmetrical rates in one process — speciation, ex-
tinction, or character state change — our question
was whether the BiSSE method could detect this
asymmetry and estimate the rates correctly. A biolo-
gist facing such a question with real data may be
interested in just one of the processes (e.g., is there
an asymmetry in speciation rates?), and would there-
fore face a choice: are the other processes assumed
to be symmetrical (i.e. extinction rates μ0 = μ1) or
not? Assuming the other processes to be symmetrical
reduces the complexity of the models and permits
the method to focus entirely on the process of inter-
est. We studied the benefits of such simplifying
assumptions as described in the next section. How-
ever, because biologists typically would not have in-
formation confirming the other processes to be
symmetrical, in most of our analyses we permitted
all three processes to be asymmetrical, thus requiring
us to compare the null five-parameter model against
a full six parameter model.
Thus, for any given asymmetry simulation, the

BiSSE likelihood score for the full six parameter
model was calculated and compared to the likelihood
score of a corresponding five parameter model where
the rate parameter with an asymmetry being tested is
constrained to be equal for both states (e.g., λ0 = λ1).
In addition, a null hypothesis set of simulations with
500 trees was generated where all rate values are sym-
metrical, and a distribution of the BiSSE likelihood
score difference for the six and five parameter models
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were calculated for each null hypothesis. Power was
determined as the percentage of likelihood difference
scores between the six and five parameter models of
the asymmetrical simulations that were above the 5%
cutoff value established by the corresponding likeli-
hood difference score distributions of the rate sym-
metrical null hypothesis simulations. We simulated
sets of 500 trees with varying bias for each of the
three parameter pairs as well as sets without bias and
each rate parameter combination (Table 1) was tested
under tree sizes of 50, 100, 300, and 500 taxa, re-
spectively, in which the probability of the root state
was stationary [27].
Many asymmetries in rates would yield biases in the

frequency of the two character states observed in the
contemporaneous species at the tips of the tree, with
stronger asymmetries yielding strong biases. Insofar as
BiSSE’s behavior might differ depending on the strength
of the bias in state frequencies, we explored examples
with rate parameter asymmetries that would result in a
range of observed high and low biases in character state
distributions across the tips (Tables 1 and 2). Ratios of
tip bias (taxa with state 0 relative to state 1) were calcu-
lated from their corresponding biases in the model rates
using the stationary frequency formula in Appendix 2 of
Maddison et al. [1].

g xˆ 1� xˆð Þ � xˆq01þ 1� xˆð Þq10 ¼ 0 ð1Þ

Where g = λ0 – μ0 – λ1+μ1, and xˆ is the stationary
frequency of state 0.
As expected, tip bias increased as asymmetries in the

simulation parameters increased steadily across all tree
sizes, and the observed asymmetry in taxa with each
state matched expectations given the starting rate
asymmetries (Table 1, Additional file 1: Tables S1, S2,
and S3).

Power in reduced (4-parameter) models
We investigated whether estimating fewer parameters
would lead to an increase in power. In some biological
systems it may be reasonable to assume from the begin-
ning that some processes are symmetrical. To examine
this we compared the results of the previously
described 5 vs. 6 parameter tests with the results of
tests involving reduced models of 3 vs. 4 parameters.
The reduced test compared a four-parameter model,
where two of the rates were constrained to be equal in
both character states, for example (λ0, λ1, μ0=μ1,
q01=q10), and a three-parameter model where all three
rates were constrained to be equal in both character
states. These scenarios were done for two tip bias sce-
narios, one with a small bias (3:1 character state ratio)
and one with a greater degree of bias (7:1 character
state ratio) as seen in Additional file 1: Table S4. We
simulated sets of 500 trees with both levels of bias for
each of the three parameter pairs as well as sets with-
out bias for a six/five and four/three model compari-
sons as seen in Additional file 1: Table S4.

Estimating parameters in asymmetrical scenarios
Using BiSSE to estimate rates of speciation, extinc-
tion and character change may be illuminating not
only to understand the degree of any asymmetries,
but also to distinguish which potential factor (biased
speciation, extinction, or character change) is respon-
sible for an observed excess of species with a par-
ticular state. Rate parameters for unconstrained (six
parameter) models were tabulated under a best-case
scenario representing a small degree of tip bias and a
worst-case scenario that included a high degree of
tip bias with tree sizes of 500 taxa. Parameters were
estimated from the same 500 trees and respective
characters that were used to calculate the BiSSE likeli-
hood difference (Table 1). With these simulated cases
we asked whether the parameter values were estimated
well, with a special focus on whether a bias in one
process (e.g., extinction) might be confounded with a
bias in another process (e.g., character change).

Implementation
The computer software used in this study was a
refined version of the package Diverse [25] described
in Maddison et al. [1], with these refinements already
implemented in Mesquite [26]. Two of these refine-
ments are described here. The simulation module
(“Evolving Binary Speciation/Extinction Character”) was
modified to generate trees more efficiently by means
of a continuous approximation. The updated module
calculates the rate of events on the tree as the product
of the number of terminal branches on the tree and
sum of rates for each event type. The time to the next
event was drawn from an exponential distribution and
the type and location (branch) of the new event were
drawn from appropriately weighted uniform distribu-
tions. Following this, all terminal branches were
extended to the time point of the generated event.
This process continued until the tree reached a limit-
ing number of tips, or the unlikely event that all ter-
minal branches became extinct. The second refinement
is an enhanced parameter estimator that uses a numer-
ical integrator that implements the RKF45 method
[28]. The RKF45 method improved on the RK4
method, used in Maddison et al. [1] by adaptively
adjusting the step-size used in the integration process.
Our implementation specified a starting step-size and
subsequent changes in step-size were limited a range
of 1/10x to 10x the original step-size.
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Additional files

Additional file 1: Table S1. Power of asymmetrical speciation rate
simulations. Remaining parameters were symmetrical for each simulation
(q01 = 0.01, q10 = 0.01, μ0 = 0.03, μ1 = 0.03). Power is plotted in Figure 1A.
The observed percent of terminal taxa with State 0 is indicated by the
mean value from 500 simulations. Table S2. Power of simulations for
character rate change. Remaining parameters were symmetrical for each
simulation (μ 0 = 0.03, μ 1 = 0.03, λ 0 = 0.1, λ 1 = 0.1). Power is plotted in
Figure 1B. The observed percent of terminal taxa with State 0 is indicated
by the mean value from 500 simulations. Table S3. Power of
asymmetrical extinction rate simulations. Remaining parameters were
symmetrical for each simulation (q01 = 0.01, q10 = 0.01, λ 0 = 0.1, λ 1 = 0.1).
Power is plotted in Figure 1C. The observed percent of terminal taxa with
State 0 is indicated by the mean value from 500 simulations. Table S4.
This table lists statistical power of the BiSSE model for 500 simulations
containing 3:1 and 7:1 biases in terminal states for varying tree sizes for
likelihood comparisons of power in four versus six parameter models.
Power is plotted in Figure 2. Using the stationary frequency formula, in an
iterative calculation, we obtained ratios of rates necessary to generate a
low bias representative (31:10) and high bias representative (71:10) tip ratios
using values symmetrically placed around base rates (λ = 0.1, μ = 0.05,
and q = 0.005). For the low bias, rate ratios were 1.1425, 1.3046 and 3.0
for speciation, extinction and character change respectively, yielding
simulated rates for speciation λ0=0.0936, λ1= 0.10689, for extinction,
μ0=0.04378, μ1= 0.05711, and for character change q0= 0.00289,
q1= 0.00866. For the high bias, rate ratios were 1.407, 1.960, and 7.000,
yielding simulated rates for speciation λ0=0.0843, λ1=0.1186, for extinction
μ0=0.0357, μ1= 0.07, and for character change q0=0.00189, q1= 0.01323.
Simulated rates without bias were set to their base rates.

Additional file 2: Figure S1. Parameter estimations of (a) speciation,
(b) character change, and (c) extinction under different tree sizes and
degrees of asymmetry in speciation rates with corresponding tip ratios.
Point of intersection between red lines represents known values.
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